Your data matches 34 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001213: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 2
[1,0,1,0]
=> 4
[1,1,0,0]
=> 3
[1,0,1,0,1,0]
=> 6
[1,0,1,1,0,0]
=> 5
[1,1,0,0,1,0]
=> 5
[1,1,0,1,0,0]
=> 6
[1,1,1,0,0,0]
=> 4
[1,0,1,0,1,0,1,0]
=> 8
[1,0,1,0,1,1,0,0]
=> 7
[1,0,1,1,0,0,1,0]
=> 7
[1,0,1,1,0,1,0,0]
=> 8
[1,0,1,1,1,0,0,0]
=> 6
[1,1,0,0,1,0,1,0]
=> 7
[1,1,0,0,1,1,0,0]
=> 6
[1,1,0,1,0,0,1,0]
=> 8
[1,1,0,1,0,1,0,0]
=> 9
[1,1,0,1,1,0,0,0]
=> 7
[1,1,1,0,0,0,1,0]
=> 6
[1,1,1,0,0,1,0,0]
=> 7
[1,1,1,0,1,0,0,0]
=> 8
[1,1,1,1,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> 10
[1,0,1,0,1,0,1,1,0,0]
=> 9
[1,0,1,0,1,1,0,0,1,0]
=> 9
[1,0,1,0,1,1,0,1,0,0]
=> 10
[1,0,1,0,1,1,1,0,0,0]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> 9
[1,0,1,1,0,0,1,1,0,0]
=> 8
[1,0,1,1,0,1,0,0,1,0]
=> 10
[1,0,1,1,0,1,0,1,0,0]
=> 11
[1,0,1,1,0,1,1,0,0,0]
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> 9
[1,0,1,1,1,0,1,0,0,0]
=> 10
[1,0,1,1,1,1,0,0,0,0]
=> 7
[1,1,0,0,1,0,1,0,1,0]
=> 9
[1,1,0,0,1,0,1,1,0,0]
=> 8
[1,1,0,0,1,1,0,0,1,0]
=> 8
[1,1,0,0,1,1,0,1,0,0]
=> 9
[1,1,0,0,1,1,1,0,0,0]
=> 7
[1,1,0,1,0,0,1,0,1,0]
=> 10
[1,1,0,1,0,0,1,1,0,0]
=> 9
[1,1,0,1,0,1,0,0,1,0]
=> 11
[1,1,0,1,0,1,0,1,0,0]
=> 12
[1,1,0,1,0,1,1,0,0,0]
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> 9
[1,1,0,1,1,0,0,1,0,0]
=> 10
[1,1,0,1,1,0,1,0,0,0]
=> 11
[1,1,0,1,1,1,0,0,0,0]
=> 8
Description
The number of indecomposable modules in the corresponding Nakayama algebra that have vanishing first Ext-group with the regular module.
Mp00199: Dyck paths prime Dyck pathDyck paths
St000395: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> 4
[1,1,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 6
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 5
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 5
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 6
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 8
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 7
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 7
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 8
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 6
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 7
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 8
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 9
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 7
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 6
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 7
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 8
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 10
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 9
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 9
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 10
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 9
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 8
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 10
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 11
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 9
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 10
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 7
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 9
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 8
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 8
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 9
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 7
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 10
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 9
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 11
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 12
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 9
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 10
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 11
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 8
Description
The sum of the heights of the peaks of a Dyck path.
Mp00199: Dyck paths prime Dyck pathDyck paths
St001034: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> 3
[1,1,0,0]
=> [1,1,1,0,0,0]
=> 4
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 5
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 5
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 6
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 5
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 6
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 6
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 7
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 6
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 7
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 7
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 8
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 8
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 8
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 8
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 9
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 7
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 7
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 8
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 7
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 8
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 8
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 9
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 9
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 9
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 10
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 7
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 8
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 8
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 9
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 8
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 9
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 9
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 10
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 9
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 10
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 10
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 11
Description
The area of the parallelogram polyomino associated with the Dyck path. The (bivariate) generating function is given in [1].
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00065: Permutations permutation posetPosets
St000070: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> 2
[1,0,1,0]
=> [2,1] => ([],2)
=> 4
[1,1,0,0]
=> [1,2] => ([(0,1)],2)
=> 3
[1,0,1,0,1,0]
=> [2,3,1] => ([(1,2)],3)
=> 6
[1,0,1,1,0,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 5
[1,1,0,0,1,0]
=> [1,3,2] => ([(0,1),(0,2)],3)
=> 5
[1,1,0,1,0,0]
=> [3,1,2] => ([(1,2)],3)
=> 6
[1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 4
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> 8
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 7
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 7
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 8
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 6
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> 7
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 6
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> 8
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> 9
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 7
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> 6
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> 7
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> 8
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 10
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 9
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 9
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,2),(2,3),(2,4)],5)
=> 10
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 9
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 8
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> 10
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> 11
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 9
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> 10
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> 7
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> 9
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 8
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 8
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 9
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 7
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> 10
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 9
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> 11
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> 12
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 9
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> 10
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> 11
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 8
Description
The number of antichains in a poset. An antichain in a poset $P$ is a subset of elements of $P$ which are pairwise incomparable. An order ideal is a subset $I$ of $P$ such that $a\in I$ and $b \leq_P a$ implies $b \in I$. Since there is a one-to-one correspondence between antichains and order ideals, this statistic is also the number of order ideals in a poset.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St000394: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 6
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 5
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 5
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 6
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 8
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 7
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 7
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 8
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 6
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 7
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 6
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 8
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 9
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 7
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 6
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 7
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 8
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> 10
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> 9
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> 9
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> 10
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> 9
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> 8
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> 10
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> 11
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> 9
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> 10
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> 7
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> 9
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> 8
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> 8
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> 9
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> 7
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> 10
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> 9
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> 11
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> 12
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> 9
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> 10
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> 11
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> 8
Description
The sum of the heights of the peaks of a Dyck path minus the number of peaks.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00142: Dyck paths promotionDyck paths
St001348: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> 4
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 5
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 6
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 6
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 5
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 6
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 7
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 7
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 6
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 8
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 9
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 8
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 8
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 8
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 7
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 7
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 6
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 7
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 7
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 8
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 8
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 7
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 9
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 10
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 9
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 9
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 8
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 7
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 8
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 10
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 11
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 12
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> 12
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 11
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 10
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 11
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 10
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 10
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 10
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 11
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 10
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 10
Description
The bounce of the parallelogram polyomino associated with the Dyck path. A bijection due to Delest and Viennot [1] associates a Dyck path with a parallelogram polyomino. The bounce statistic is defined in [2].
Matching statistic: St000300
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00064: Permutations reversePermutations
Mp00160: Permutations graph of inversionsGraphs
St000300: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 2
[1,0,1,0]
=> [1,2] => [2,1] => ([(0,1)],2)
=> 3
[1,1,0,0]
=> [2,1] => [1,2] => ([],2)
=> 4
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 4
[1,0,1,1,0,0]
=> [1,3,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> 5
[1,1,0,0,1,0]
=> [2,1,3] => [3,1,2] => ([(0,2),(1,2)],3)
=> 5
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => ([(1,2)],3)
=> 6
[1,1,1,0,0,0]
=> [3,1,2] => [2,1,3] => ([(1,2)],3)
=> 6
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 7
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 7
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 7
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 7
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 8
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 8
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 7
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 8
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 9
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 8
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 8
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 10
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 8
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 8
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 9
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [5,4,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,5,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 9
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 10
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 11
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 10
Description
The number of independent sets of vertices of a graph. An independent set of vertices of a graph $G$ is a subset $U \subset V(G)$ such that no two vertices in $U$ are adjacent. This is also the number of vertex covers of $G$ as the map $U \mapsto V(G)\setminus U$ is a bijection between independent sets of vertices and vertex covers. The size of the largest independent set, also called independence number of $G$, is [[St000093]]
Matching statistic: St000639
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00064: Permutations reversePermutations
Mp00065: Permutations permutation posetPosets
St000639: Posets ⟶ ℤResult quality: 93% values known / values provided: 99%distinct values known / distinct values provided: 93%
Values
[1,0]
=> [1] => [1] => ([],1)
=> ? = 2 - 1
[1,0,1,0]
=> [1,2] => [2,1] => ([],2)
=> 2 = 3 - 1
[1,1,0,0]
=> [2,1] => [1,2] => ([(0,1)],2)
=> 3 = 4 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => ([],3)
=> 3 = 4 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [2,3,1] => ([(1,2)],3)
=> 4 = 5 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [3,1,2] => ([(1,2)],3)
=> 4 = 5 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => ([(0,1),(0,2)],3)
=> 5 = 6 - 1
[1,1,1,0,0,0]
=> [3,1,2] => [2,1,3] => ([(0,2),(1,2)],3)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => ([],4)
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,4,2,1] => ([(2,3)],4)
=> 5 = 6 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> 5 = 6 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> 6 = 7 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 6 = 7 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [4,3,1,2] => ([(2,3)],4)
=> 5 = 6 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> 6 = 7 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> 6 = 7 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 7 = 8 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> 7 = 8 - 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 6 = 7 - 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 7 = 8 - 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 8 = 9 - 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 7 = 8 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,5,3,2,1] => ([(3,4)],5)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,3,4,2,1] => ([(3,4)],5)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,4,2,1] => ([(2,3),(2,4)],5)
=> 7 = 8 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 7 = 8 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,4,2,3,1] => ([(3,4)],5)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 7 = 8 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> 7 = 8 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> 8 = 9 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> 8 = 9 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 7 = 8 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> 8 = 9 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 9 = 10 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 8 = 9 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [5,4,3,1,2] => ([(3,4)],5)
=> 6 = 7 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> 7 = 8 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 7 = 8 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> 8 = 9 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 8 = 9 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> 7 = 8 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> 8 = 9 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> 8 = 9 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> 9 = 10 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> 9 = 10 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> 8 = 9 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> 9 = 10 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 10 = 11 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [4,3,1,5,2] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> 9 = 10 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 7 = 8 - 1
Description
The number of relations in a poset. This is the number of intervals $x,y$ with $x\leq y$ in the poset, and therefore the dimension of the posets incidence algebra.
Matching statistic: St000641
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00064: Permutations reversePermutations
Mp00065: Permutations permutation posetPosets
St000641: Posets ⟶ ℤResult quality: 93% values known / values provided: 99%distinct values known / distinct values provided: 93%
Values
[1,0]
=> [1] => [1] => ([],1)
=> ? = 2 - 1
[1,0,1,0]
=> [1,2] => [2,1] => ([],2)
=> 2 = 3 - 1
[1,1,0,0]
=> [2,1] => [1,2] => ([(0,1)],2)
=> 3 = 4 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => ([],3)
=> 3 = 4 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [2,3,1] => ([(1,2)],3)
=> 4 = 5 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [3,1,2] => ([(1,2)],3)
=> 4 = 5 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => ([(0,1),(0,2)],3)
=> 5 = 6 - 1
[1,1,1,0,0,0]
=> [3,1,2] => [2,1,3] => ([(0,2),(1,2)],3)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => ([],4)
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,4,2,1] => ([(2,3)],4)
=> 5 = 6 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> 5 = 6 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> 6 = 7 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 6 = 7 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [4,3,1,2] => ([(2,3)],4)
=> 5 = 6 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> 6 = 7 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> 6 = 7 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 7 = 8 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> 7 = 8 - 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 6 = 7 - 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 7 = 8 - 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 8 = 9 - 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 7 = 8 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,5,3,2,1] => ([(3,4)],5)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,3,4,2,1] => ([(3,4)],5)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,4,2,1] => ([(2,3),(2,4)],5)
=> 7 = 8 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 7 = 8 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,4,2,3,1] => ([(3,4)],5)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 7 = 8 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> 7 = 8 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> 8 = 9 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> 8 = 9 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 7 = 8 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> 8 = 9 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 9 = 10 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 8 = 9 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [5,4,3,1,2] => ([(3,4)],5)
=> 6 = 7 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> 7 = 8 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 7 = 8 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> 8 = 9 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 8 = 9 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> 7 = 8 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> 8 = 9 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> 8 = 9 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> 9 = 10 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> 9 = 10 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> 8 = 9 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> 9 = 10 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 10 = 11 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [4,3,1,5,2] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> 9 = 10 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 7 = 8 - 1
Description
The number of non-empty boolean intervals in a poset.
Matching statistic: St000180
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00064: Permutations reversePermutations
Mp00065: Permutations permutation posetPosets
St000180: Posets ⟶ ℤResult quality: 73% values known / values provided: 73%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 2
[1,0,1,0]
=> [1,2] => [2,1] => ([],2)
=> 3
[1,1,0,0]
=> [2,1] => [1,2] => ([(0,1)],2)
=> 4
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => ([],3)
=> 4
[1,0,1,1,0,0]
=> [1,3,2] => [2,3,1] => ([(1,2)],3)
=> 5
[1,1,0,0,1,0]
=> [2,1,3] => [3,1,2] => ([(1,2)],3)
=> 5
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => ([(0,1),(0,2)],3)
=> 6
[1,1,1,0,0,0]
=> [3,1,2] => [2,1,3] => ([(0,2),(1,2)],3)
=> 6
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => ([],4)
=> 5
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,4,2,1] => ([(2,3)],4)
=> 6
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> 6
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> 7
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 7
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [4,3,1,2] => ([(2,3)],4)
=> 6
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> 7
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> 7
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 8
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> 8
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 7
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 8
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 9
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 8
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,5,3,2,1] => ([(3,4)],5)
=> 7
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,3,4,2,1] => ([(3,4)],5)
=> 7
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,4,2,1] => ([(2,3),(2,4)],5)
=> 8
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,4,2,3,1] => ([(3,4)],5)
=> 7
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 8
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> 8
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> 9
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> 9
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> 9
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 10
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 9
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [5,4,3,1,2] => ([(3,4)],5)
=> 7
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> 8
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 8
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> 9
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> 8
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> 9
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> 9
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> 10
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> 10
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> 9
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> 10
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 11
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [4,3,1,5,2] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> 10
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [4,6,5,2,3,1] => ([(1,5),(2,3),(2,4)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5] => [5,6,2,4,3,1] => ([(1,5),(2,3),(2,4)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,2,5] => [5,2,6,4,3,1] => ([(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,2,6,4] => [4,6,2,5,3,1] => ([(1,4),(1,5),(2,3),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,3,5,6,2,4] => [4,2,6,5,3,1] => ([(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,2,4,5] => [5,4,2,6,3,1] => ([(1,5),(2,5),(3,4),(3,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,6,3] => [3,6,5,2,4,1] => ([(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,4,5,2,6,3] => [3,6,2,5,4,1] => ([(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => [4,6,3,2,5,1] => ([(1,5),(2,5),(3,4),(3,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => [4,6,5,3,1,2] => ([(1,5),(2,3),(2,4)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => [6,3,5,4,1,2] => ([(1,5),(2,3),(2,4)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,4,5,6,3] => [3,6,5,4,1,2] => ([(0,5),(1,2),(1,3),(1,4)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,1,5,6,3,4] => [4,3,6,5,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,5] => [5,6,4,1,3,2] => ([(1,5),(2,3),(2,4)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,6] => [6,4,5,1,3,2] => ([(1,5),(2,3),(2,4)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [2,3,1,6,4,5] => [5,4,6,1,3,2] => ([(0,5),(1,5),(2,3),(2,4)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5] => [5,6,1,4,3,2] => ([(0,5),(1,2),(1,3),(1,4)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5] => [5,1,6,4,3,2] => ([(0,5),(1,2),(1,3),(1,4),(1,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,6] => [6,4,1,5,3,2] => ([(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,6,4] => [4,6,1,5,3,2] => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,1,4] => [4,1,6,5,3,2] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,1,4,5] => [5,4,1,6,3,2] => ([(0,5),(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,1,5,3,6] => [6,3,5,1,4,2] => ([(1,4),(1,5),(2,3),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,1,5,6,3] => [3,6,5,1,4,2] => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [2,4,5,1,3,6] => [6,3,1,5,4,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,1,3] => [3,1,6,5,4,2] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => [6,4,3,1,5,2] => ([(1,5),(2,5),(3,4),(3,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,1,3,6,4] => [4,6,3,1,5,2] => ([(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,1,6,3,4] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,1,3,4] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,1,3,4,5] => [5,4,3,1,6,2] => ([(0,5),(1,5),(2,5),(3,4),(3,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [3,1,2,5,6,4] => [4,6,5,2,1,3] => ([(0,5),(1,5),(2,3),(2,4)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [3,1,4,5,2,6] => [6,2,5,4,1,3] => ([(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,4,5,6,2] => [2,6,5,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(1,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,1,4,6,2,5] => [5,2,6,4,1,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,1,5,6,2,4] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [3,4,1,2,6,5] => [5,6,2,1,4,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [3,4,1,5,2,6] => [6,2,5,1,4,3] => ([(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,4,1,5,6,2] => [2,6,5,1,4,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,4,1,6,2,5] => [5,2,6,1,4,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,1,6,2] => [2,6,1,5,4,3] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,1,2,5] => [5,2,1,6,4,3] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,1,2,6,4] => [4,6,2,1,5,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,5,1,6,2,4] => [4,2,6,1,5,3] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,5,6,1,2,4] => [4,2,1,6,5,3] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,6,1,2,4,5] => [5,4,2,1,6,3] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => [6,3,5,2,1,4] => ([(1,5),(2,5),(3,4),(3,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,1,2,5,6,3] => [3,6,5,2,1,4] => ([(0,5),(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,1,5,6,2,3] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,5,1,2,6,3] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15}
Description
The number of chains of a poset.
The following 24 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000019The cardinality of the support of a permutation. St000081The number of edges of a graph. St000018The number of inversions of a permutation. St001616The number of neutral elements in a lattice. St000229Sum of the difference between the maximal and the minimal elements of the blocks plus the number of blocks of a set partition. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St001428The number of B-inversions of a signed permutation. St001033The normalized area of the parallelogram polyomino associated with the Dyck path. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St000029The depth of a permutation. St000197The number of entries equal to positive one in the alternating sign matrix. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000030The sum of the descent differences of a permutations. St000224The sorting index of a permutation. St000809The reduced reflection length of the permutation. St000866The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. St000957The number of Bruhat lower covers of a permutation. St001076The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12). St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001579The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation. St001726The number of visible inversions of a permutation. St000645The sum of the areas of the rectangles formed by two consecutive peaks and the valley in between.