edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>2 [1,0,1,0]=>4 [1,1,0,0]=>3 [1,0,1,0,1,0]=>6 [1,0,1,1,0,0]=>5 [1,1,0,0,1,0]=>5 [1,1,0,1,0,0]=>6 [1,1,1,0,0,0]=>4 [1,0,1,0,1,0,1,0]=>8 [1,0,1,0,1,1,0,0]=>7 [1,0,1,1,0,0,1,0]=>7 [1,0,1,1,0,1,0,0]=>8 [1,0,1,1,1,0,0,0]=>6 [1,1,0,0,1,0,1,0]=>7 [1,1,0,0,1,1,0,0]=>6 [1,1,0,1,0,0,1,0]=>8 [1,1,0,1,0,1,0,0]=>9 [1,1,0,1,1,0,0,0]=>7 [1,1,1,0,0,0,1,0]=>6 [1,1,1,0,0,1,0,0]=>7 [1,1,1,0,1,0,0,0]=>8 [1,1,1,1,0,0,0,0]=>5 [1,0,1,0,1,0,1,0,1,0]=>10 [1,0,1,0,1,0,1,1,0,0]=>9 [1,0,1,0,1,1,0,0,1,0]=>9 [1,0,1,0,1,1,0,1,0,0]=>10 [1,0,1,0,1,1,1,0,0,0]=>8 [1,0,1,1,0,0,1,0,1,0]=>9 [1,0,1,1,0,0,1,1,0,0]=>8 [1,0,1,1,0,1,0,0,1,0]=>10 [1,0,1,1,0,1,0,1,0,0]=>11 [1,0,1,1,0,1,1,0,0,0]=>9 [1,0,1,1,1,0,0,0,1,0]=>8 [1,0,1,1,1,0,0,1,0,0]=>9 [1,0,1,1,1,0,1,0,0,0]=>10 [1,0,1,1,1,1,0,0,0,0]=>7 [1,1,0,0,1,0,1,0,1,0]=>9 [1,1,0,0,1,0,1,1,0,0]=>8 [1,1,0,0,1,1,0,0,1,0]=>8 [1,1,0,0,1,1,0,1,0,0]=>9 [1,1,0,0,1,1,1,0,0,0]=>7 [1,1,0,1,0,0,1,0,1,0]=>10 [1,1,0,1,0,0,1,1,0,0]=>9 [1,1,0,1,0,1,0,0,1,0]=>11 [1,1,0,1,0,1,0,1,0,0]=>12 [1,1,0,1,0,1,1,0,0,0]=>10 [1,1,0,1,1,0,0,0,1,0]=>9 [1,1,0,1,1,0,0,1,0,0]=>10 [1,1,0,1,1,0,1,0,0,0]=>11 [1,1,0,1,1,1,0,0,0,0]=>8 [1,1,1,0,0,0,1,0,1,0]=>8 [1,1,1,0,0,0,1,1,0,0]=>7 [1,1,1,0,0,1,0,0,1,0]=>9 [1,1,1,0,0,1,0,1,0,0]=>10 [1,1,1,0,0,1,1,0,0,0]=>8 [1,1,1,0,1,0,0,0,1,0]=>10 [1,1,1,0,1,0,0,1,0,0]=>11 [1,1,1,0,1,0,1,0,0,0]=>12 [1,1,1,0,1,1,0,0,0,0]=>9 [1,1,1,1,0,0,0,0,1,0]=>7 [1,1,1,1,0,0,0,1,0,0]=>8 [1,1,1,1,0,0,1,0,0,0]=>9 [1,1,1,1,0,1,0,0,0,0]=>10 [1,1,1,1,1,0,0,0,0,0]=>6 [1,0,1,0,1,0,1,0,1,0,1,0]=>12 [1,0,1,0,1,0,1,0,1,1,0,0]=>11 [1,0,1,0,1,0,1,1,0,0,1,0]=>11 [1,0,1,0,1,0,1,1,0,1,0,0]=>12 [1,0,1,0,1,0,1,1,1,0,0,0]=>10 [1,0,1,0,1,1,0,0,1,0,1,0]=>11 [1,0,1,0,1,1,0,0,1,1,0,0]=>10 [1,0,1,0,1,1,0,1,0,0,1,0]=>12 [1,0,1,0,1,1,0,1,0,1,0,0]=>13 [1,0,1,0,1,1,0,1,1,0,0,0]=>11 [1,0,1,0,1,1,1,0,0,0,1,0]=>10 [1,0,1,0,1,1,1,0,0,1,0,0]=>11 [1,0,1,0,1,1,1,0,1,0,0,0]=>12 [1,0,1,0,1,1,1,1,0,0,0,0]=>9 [1,0,1,1,0,0,1,0,1,0,1,0]=>11 [1,0,1,1,0,0,1,0,1,1,0,0]=>10 [1,0,1,1,0,0,1,1,0,0,1,0]=>10 [1,0,1,1,0,0,1,1,0,1,0,0]=>11 [1,0,1,1,0,0,1,1,1,0,0,0]=>9 [1,0,1,1,0,1,0,0,1,0,1,0]=>12 [1,0,1,1,0,1,0,0,1,1,0,0]=>11 [1,0,1,1,0,1,0,1,0,0,1,0]=>13 [1,0,1,1,0,1,0,1,0,1,0,0]=>14 [1,0,1,1,0,1,0,1,1,0,0,0]=>12 [1,0,1,1,0,1,1,0,0,0,1,0]=>11 [1,0,1,1,0,1,1,0,0,1,0,0]=>12 [1,0,1,1,0,1,1,0,1,0,0,0]=>13 [1,0,1,1,0,1,1,1,0,0,0,0]=>10 [1,0,1,1,1,0,0,0,1,0,1,0]=>10 [1,0,1,1,1,0,0,0,1,1,0,0]=>9 [1,0,1,1,1,0,0,1,0,0,1,0]=>11 [1,0,1,1,1,0,0,1,0,1,0,0]=>12 [1,0,1,1,1,0,0,1,1,0,0,0]=>10 [1,0,1,1,1,0,1,0,0,0,1,0]=>12 [1,0,1,1,1,0,1,0,0,1,0,0]=>13 [1,0,1,1,1,0,1,0,1,0,0,0]=>14 [1,0,1,1,1,0,1,1,0,0,0,0]=>11 [1,0,1,1,1,1,0,0,0,0,1,0]=>9 [1,0,1,1,1,1,0,0,0,1,0,0]=>10 [1,0,1,1,1,1,0,0,1,0,0,0]=>11 [1,0,1,1,1,1,0,1,0,0,0,0]=>12 [1,0,1,1,1,1,1,0,0,0,0,0]=>8 [1,1,0,0,1,0,1,0,1,0,1,0]=>11 [1,1,0,0,1,0,1,0,1,1,0,0]=>10 [1,1,0,0,1,0,1,1,0,0,1,0]=>10 [1,1,0,0,1,0,1,1,0,1,0,0]=>11 [1,1,0,0,1,0,1,1,1,0,0,0]=>9 [1,1,0,0,1,1,0,0,1,0,1,0]=>10 [1,1,0,0,1,1,0,0,1,1,0,0]=>9 [1,1,0,0,1,1,0,1,0,0,1,0]=>11 [1,1,0,0,1,1,0,1,0,1,0,0]=>12 [1,1,0,0,1,1,0,1,1,0,0,0]=>10 [1,1,0,0,1,1,1,0,0,0,1,0]=>9 [1,1,0,0,1,1,1,0,0,1,0,0]=>10 [1,1,0,0,1,1,1,0,1,0,0,0]=>11 [1,1,0,0,1,1,1,1,0,0,0,0]=>8 [1,1,0,1,0,0,1,0,1,0,1,0]=>12 [1,1,0,1,0,0,1,0,1,1,0,0]=>11 [1,1,0,1,0,0,1,1,0,0,1,0]=>11 [1,1,0,1,0,0,1,1,0,1,0,0]=>12 [1,1,0,1,0,0,1,1,1,0,0,0]=>10 [1,1,0,1,0,1,0,0,1,0,1,0]=>13 [1,1,0,1,0,1,0,0,1,1,0,0]=>12 [1,1,0,1,0,1,0,1,0,0,1,0]=>14 [1,1,0,1,0,1,0,1,0,1,0,0]=>15 [1,1,0,1,0,1,0,1,1,0,0,0]=>13 [1,1,0,1,0,1,1,0,0,0,1,0]=>12 [1,1,0,1,0,1,1,0,0,1,0,0]=>13 [1,1,0,1,0,1,1,0,1,0,0,0]=>14 [1,1,0,1,0,1,1,1,0,0,0,0]=>11 [1,1,0,1,1,0,0,0,1,0,1,0]=>11 [1,1,0,1,1,0,0,0,1,1,0,0]=>10 [1,1,0,1,1,0,0,1,0,0,1,0]=>12 [1,1,0,1,1,0,0,1,0,1,0,0]=>13 [1,1,0,1,1,0,0,1,1,0,0,0]=>11 [1,1,0,1,1,0,1,0,0,0,1,0]=>13 [1,1,0,1,1,0,1,0,0,1,0,0]=>14 [1,1,0,1,1,0,1,0,1,0,0,0]=>15 [1,1,0,1,1,0,1,1,0,0,0,0]=>12 [1,1,0,1,1,1,0,0,0,0,1,0]=>10 [1,1,0,1,1,1,0,0,0,1,0,0]=>11 [1,1,0,1,1,1,0,0,1,0,0,0]=>12 [1,1,0,1,1,1,0,1,0,0,0,0]=>13 [1,1,0,1,1,1,1,0,0,0,0,0]=>9 [1,1,1,0,0,0,1,0,1,0,1,0]=>10 [1,1,1,0,0,0,1,0,1,1,0,0]=>9 [1,1,1,0,0,0,1,1,0,0,1,0]=>9 [1,1,1,0,0,0,1,1,0,1,0,0]=>10 [1,1,1,0,0,0,1,1,1,0,0,0]=>8 [1,1,1,0,0,1,0,0,1,0,1,0]=>11 [1,1,1,0,0,1,0,0,1,1,0,0]=>10 [1,1,1,0,0,1,0,1,0,0,1,0]=>12 [1,1,1,0,0,1,0,1,0,1,0,0]=>13 [1,1,1,0,0,1,0,1,1,0,0,0]=>11 [1,1,1,0,0,1,1,0,0,0,1,0]=>10 [1,1,1,0,0,1,1,0,0,1,0,0]=>11 [1,1,1,0,0,1,1,0,1,0,0,0]=>12 [1,1,1,0,0,1,1,1,0,0,0,0]=>9 [1,1,1,0,1,0,0,0,1,0,1,0]=>12 [1,1,1,0,1,0,0,0,1,1,0,0]=>11 [1,1,1,0,1,0,0,1,0,0,1,0]=>13 [1,1,1,0,1,0,0,1,0,1,0,0]=>14 [1,1,1,0,1,0,0,1,1,0,0,0]=>12 [1,1,1,0,1,0,1,0,0,0,1,0]=>14 [1,1,1,0,1,0,1,0,0,1,0,0]=>15 [1,1,1,0,1,0,1,0,1,0,0,0]=>16 [1,1,1,0,1,0,1,1,0,0,0,0]=>13 [1,1,1,0,1,1,0,0,0,0,1,0]=>11 [1,1,1,0,1,1,0,0,0,1,0,0]=>12 [1,1,1,0,1,1,0,0,1,0,0,0]=>13 [1,1,1,0,1,1,0,1,0,0,0,0]=>14 [1,1,1,0,1,1,1,0,0,0,0,0]=>10 [1,1,1,1,0,0,0,0,1,0,1,0]=>9 [1,1,1,1,0,0,0,0,1,1,0,0]=>8 [1,1,1,1,0,0,0,1,0,0,1,0]=>10 [1,1,1,1,0,0,0,1,0,1,0,0]=>11 [1,1,1,1,0,0,0,1,1,0,0,0]=>9 [1,1,1,1,0,0,1,0,0,0,1,0]=>11 [1,1,1,1,0,0,1,0,0,1,0,0]=>12 [1,1,1,1,0,0,1,0,1,0,0,0]=>13 [1,1,1,1,0,0,1,1,0,0,0,0]=>10 [1,1,1,1,0,1,0,0,0,0,1,0]=>12 [1,1,1,1,0,1,0,0,0,1,0,0]=>13 [1,1,1,1,0,1,0,0,1,0,0,0]=>14 [1,1,1,1,0,1,0,1,0,0,0,0]=>15 [1,1,1,1,0,1,1,0,0,0,0,0]=>11 [1,1,1,1,1,0,0,0,0,0,1,0]=>8 [1,1,1,1,1,0,0,0,0,1,0,0]=>9 [1,1,1,1,1,0,0,0,1,0,0,0]=>10 [1,1,1,1,1,0,0,1,0,0,0,0]=>11 [1,1,1,1,1,0,1,0,0,0,0,0]=>12 [1,1,1,1,1,1,0,0,0,0,0,0]=>7
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of indecomposable modules in the corresponding Nakayama algebra that have vanishing first Ext-group with the regular module.
Code
DeclareOperation("Ext1countall",[IsList]);

InstallMethod(Ext1countall, "for a representation of a quiver", [IsList],0,function(LIST)

local A,simA,RegA,U,L;
A:=LIST[1];
L:=ARQuiver([A,1000])[2];
RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A));
U:=Filtered(L,x->Size(ExtOverAlgebra(NthSyzygy(x,0),RegA)[2])=0);
return(Size(U));

end);
Created
Jun 20, 2018 at 16:24 by Rene Marczinzik
Updated
Jun 20, 2018 at 16:24 by Rene Marczinzik