Identifier
- St001213: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>2
[1,0,1,0]=>4
[1,1,0,0]=>3
[1,0,1,0,1,0]=>6
[1,0,1,1,0,0]=>5
[1,1,0,0,1,0]=>5
[1,1,0,1,0,0]=>6
[1,1,1,0,0,0]=>4
[1,0,1,0,1,0,1,0]=>8
[1,0,1,0,1,1,0,0]=>7
[1,0,1,1,0,0,1,0]=>7
[1,0,1,1,0,1,0,0]=>8
[1,0,1,1,1,0,0,0]=>6
[1,1,0,0,1,0,1,0]=>7
[1,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,0,1,0]=>8
[1,1,0,1,0,1,0,0]=>9
[1,1,0,1,1,0,0,0]=>7
[1,1,1,0,0,0,1,0]=>6
[1,1,1,0,0,1,0,0]=>7
[1,1,1,0,1,0,0,0]=>8
[1,1,1,1,0,0,0,0]=>5
[1,0,1,0,1,0,1,0,1,0]=>10
[1,0,1,0,1,0,1,1,0,0]=>9
[1,0,1,0,1,1,0,0,1,0]=>9
[1,0,1,0,1,1,0,1,0,0]=>10
[1,0,1,0,1,1,1,0,0,0]=>8
[1,0,1,1,0,0,1,0,1,0]=>9
[1,0,1,1,0,0,1,1,0,0]=>8
[1,0,1,1,0,1,0,0,1,0]=>10
[1,0,1,1,0,1,0,1,0,0]=>11
[1,0,1,1,0,1,1,0,0,0]=>9
[1,0,1,1,1,0,0,0,1,0]=>8
[1,0,1,1,1,0,0,1,0,0]=>9
[1,0,1,1,1,0,1,0,0,0]=>10
[1,0,1,1,1,1,0,0,0,0]=>7
[1,1,0,0,1,0,1,0,1,0]=>9
[1,1,0,0,1,0,1,1,0,0]=>8
[1,1,0,0,1,1,0,0,1,0]=>8
[1,1,0,0,1,1,0,1,0,0]=>9
[1,1,0,0,1,1,1,0,0,0]=>7
[1,1,0,1,0,0,1,0,1,0]=>10
[1,1,0,1,0,0,1,1,0,0]=>9
[1,1,0,1,0,1,0,0,1,0]=>11
[1,1,0,1,0,1,0,1,0,0]=>12
[1,1,0,1,0,1,1,0,0,0]=>10
[1,1,0,1,1,0,0,0,1,0]=>9
[1,1,0,1,1,0,0,1,0,0]=>10
[1,1,0,1,1,0,1,0,0,0]=>11
[1,1,0,1,1,1,0,0,0,0]=>8
[1,1,1,0,0,0,1,0,1,0]=>8
[1,1,1,0,0,0,1,1,0,0]=>7
[1,1,1,0,0,1,0,0,1,0]=>9
[1,1,1,0,0,1,0,1,0,0]=>10
[1,1,1,0,0,1,1,0,0,0]=>8
[1,1,1,0,1,0,0,0,1,0]=>10
[1,1,1,0,1,0,0,1,0,0]=>11
[1,1,1,0,1,0,1,0,0,0]=>12
[1,1,1,0,1,1,0,0,0,0]=>9
[1,1,1,1,0,0,0,0,1,0]=>7
[1,1,1,1,0,0,0,1,0,0]=>8
[1,1,1,1,0,0,1,0,0,0]=>9
[1,1,1,1,0,1,0,0,0,0]=>10
[1,1,1,1,1,0,0,0,0,0]=>6
[1,0,1,0,1,0,1,0,1,0,1,0]=>12
[1,0,1,0,1,0,1,0,1,1,0,0]=>11
[1,0,1,0,1,0,1,1,0,0,1,0]=>11
[1,0,1,0,1,0,1,1,0,1,0,0]=>12
[1,0,1,0,1,0,1,1,1,0,0,0]=>10
[1,0,1,0,1,1,0,0,1,0,1,0]=>11
[1,0,1,0,1,1,0,0,1,1,0,0]=>10
[1,0,1,0,1,1,0,1,0,0,1,0]=>12
[1,0,1,0,1,1,0,1,0,1,0,0]=>13
[1,0,1,0,1,1,0,1,1,0,0,0]=>11
[1,0,1,0,1,1,1,0,0,0,1,0]=>10
[1,0,1,0,1,1,1,0,0,1,0,0]=>11
[1,0,1,0,1,1,1,0,1,0,0,0]=>12
[1,0,1,0,1,1,1,1,0,0,0,0]=>9
[1,0,1,1,0,0,1,0,1,0,1,0]=>11
[1,0,1,1,0,0,1,0,1,1,0,0]=>10
[1,0,1,1,0,0,1,1,0,0,1,0]=>10
[1,0,1,1,0,0,1,1,0,1,0,0]=>11
[1,0,1,1,0,0,1,1,1,0,0,0]=>9
[1,0,1,1,0,1,0,0,1,0,1,0]=>12
[1,0,1,1,0,1,0,0,1,1,0,0]=>11
[1,0,1,1,0,1,0,1,0,0,1,0]=>13
[1,0,1,1,0,1,0,1,0,1,0,0]=>14
[1,0,1,1,0,1,0,1,1,0,0,0]=>12
[1,0,1,1,0,1,1,0,0,0,1,0]=>11
[1,0,1,1,0,1,1,0,0,1,0,0]=>12
[1,0,1,1,0,1,1,0,1,0,0,0]=>13
[1,0,1,1,0,1,1,1,0,0,0,0]=>10
[1,0,1,1,1,0,0,0,1,0,1,0]=>10
[1,0,1,1,1,0,0,0,1,1,0,0]=>9
[1,0,1,1,1,0,0,1,0,0,1,0]=>11
[1,0,1,1,1,0,0,1,0,1,0,0]=>12
[1,0,1,1,1,0,0,1,1,0,0,0]=>10
[1,0,1,1,1,0,1,0,0,0,1,0]=>12
[1,0,1,1,1,0,1,0,0,1,0,0]=>13
[1,0,1,1,1,0,1,0,1,0,0,0]=>14
[1,0,1,1,1,0,1,1,0,0,0,0]=>11
[1,0,1,1,1,1,0,0,0,0,1,0]=>9
[1,0,1,1,1,1,0,0,0,1,0,0]=>10
[1,0,1,1,1,1,0,0,1,0,0,0]=>11
[1,0,1,1,1,1,0,1,0,0,0,0]=>12
[1,0,1,1,1,1,1,0,0,0,0,0]=>8
[1,1,0,0,1,0,1,0,1,0,1,0]=>11
[1,1,0,0,1,0,1,0,1,1,0,0]=>10
[1,1,0,0,1,0,1,1,0,0,1,0]=>10
[1,1,0,0,1,0,1,1,0,1,0,0]=>11
[1,1,0,0,1,0,1,1,1,0,0,0]=>9
[1,1,0,0,1,1,0,0,1,0,1,0]=>10
[1,1,0,0,1,1,0,0,1,1,0,0]=>9
[1,1,0,0,1,1,0,1,0,0,1,0]=>11
[1,1,0,0,1,1,0,1,0,1,0,0]=>12
[1,1,0,0,1,1,0,1,1,0,0,0]=>10
[1,1,0,0,1,1,1,0,0,0,1,0]=>9
[1,1,0,0,1,1,1,0,0,1,0,0]=>10
[1,1,0,0,1,1,1,0,1,0,0,0]=>11
[1,1,0,0,1,1,1,1,0,0,0,0]=>8
[1,1,0,1,0,0,1,0,1,0,1,0]=>12
[1,1,0,1,0,0,1,0,1,1,0,0]=>11
[1,1,0,1,0,0,1,1,0,0,1,0]=>11
[1,1,0,1,0,0,1,1,0,1,0,0]=>12
[1,1,0,1,0,0,1,1,1,0,0,0]=>10
[1,1,0,1,0,1,0,0,1,0,1,0]=>13
[1,1,0,1,0,1,0,0,1,1,0,0]=>12
[1,1,0,1,0,1,0,1,0,0,1,0]=>14
[1,1,0,1,0,1,0,1,0,1,0,0]=>15
[1,1,0,1,0,1,0,1,1,0,0,0]=>13
[1,1,0,1,0,1,1,0,0,0,1,0]=>12
[1,1,0,1,0,1,1,0,0,1,0,0]=>13
[1,1,0,1,0,1,1,0,1,0,0,0]=>14
[1,1,0,1,0,1,1,1,0,0,0,0]=>11
[1,1,0,1,1,0,0,0,1,0,1,0]=>11
[1,1,0,1,1,0,0,0,1,1,0,0]=>10
[1,1,0,1,1,0,0,1,0,0,1,0]=>12
[1,1,0,1,1,0,0,1,0,1,0,0]=>13
[1,1,0,1,1,0,0,1,1,0,0,0]=>11
[1,1,0,1,1,0,1,0,0,0,1,0]=>13
[1,1,0,1,1,0,1,0,0,1,0,0]=>14
[1,1,0,1,1,0,1,0,1,0,0,0]=>15
[1,1,0,1,1,0,1,1,0,0,0,0]=>12
[1,1,0,1,1,1,0,0,0,0,1,0]=>10
[1,1,0,1,1,1,0,0,0,1,0,0]=>11
[1,1,0,1,1,1,0,0,1,0,0,0]=>12
[1,1,0,1,1,1,0,1,0,0,0,0]=>13
[1,1,0,1,1,1,1,0,0,0,0,0]=>9
[1,1,1,0,0,0,1,0,1,0,1,0]=>10
[1,1,1,0,0,0,1,0,1,1,0,0]=>9
[1,1,1,0,0,0,1,1,0,0,1,0]=>9
[1,1,1,0,0,0,1,1,0,1,0,0]=>10
[1,1,1,0,0,0,1,1,1,0,0,0]=>8
[1,1,1,0,0,1,0,0,1,0,1,0]=>11
[1,1,1,0,0,1,0,0,1,1,0,0]=>10
[1,1,1,0,0,1,0,1,0,0,1,0]=>12
[1,1,1,0,0,1,0,1,0,1,0,0]=>13
[1,1,1,0,0,1,0,1,1,0,0,0]=>11
[1,1,1,0,0,1,1,0,0,0,1,0]=>10
[1,1,1,0,0,1,1,0,0,1,0,0]=>11
[1,1,1,0,0,1,1,0,1,0,0,0]=>12
[1,1,1,0,0,1,1,1,0,0,0,0]=>9
[1,1,1,0,1,0,0,0,1,0,1,0]=>12
[1,1,1,0,1,0,0,0,1,1,0,0]=>11
[1,1,1,0,1,0,0,1,0,0,1,0]=>13
[1,1,1,0,1,0,0,1,0,1,0,0]=>14
[1,1,1,0,1,0,0,1,1,0,0,0]=>12
[1,1,1,0,1,0,1,0,0,0,1,0]=>14
[1,1,1,0,1,0,1,0,0,1,0,0]=>15
[1,1,1,0,1,0,1,0,1,0,0,0]=>16
[1,1,1,0,1,0,1,1,0,0,0,0]=>13
[1,1,1,0,1,1,0,0,0,0,1,0]=>11
[1,1,1,0,1,1,0,0,0,1,0,0]=>12
[1,1,1,0,1,1,0,0,1,0,0,0]=>13
[1,1,1,0,1,1,0,1,0,0,0,0]=>14
[1,1,1,0,1,1,1,0,0,0,0,0]=>10
[1,1,1,1,0,0,0,0,1,0,1,0]=>9
[1,1,1,1,0,0,0,0,1,1,0,0]=>8
[1,1,1,1,0,0,0,1,0,0,1,0]=>10
[1,1,1,1,0,0,0,1,0,1,0,0]=>11
[1,1,1,1,0,0,0,1,1,0,0,0]=>9
[1,1,1,1,0,0,1,0,0,0,1,0]=>11
[1,1,1,1,0,0,1,0,0,1,0,0]=>12
[1,1,1,1,0,0,1,0,1,0,0,0]=>13
[1,1,1,1,0,0,1,1,0,0,0,0]=>10
[1,1,1,1,0,1,0,0,0,0,1,0]=>12
[1,1,1,1,0,1,0,0,0,1,0,0]=>13
[1,1,1,1,0,1,0,0,1,0,0,0]=>14
[1,1,1,1,0,1,0,1,0,0,0,0]=>15
[1,1,1,1,0,1,1,0,0,0,0,0]=>11
[1,1,1,1,1,0,0,0,0,0,1,0]=>8
[1,1,1,1,1,0,0,0,0,1,0,0]=>9
[1,1,1,1,1,0,0,0,1,0,0,0]=>10
[1,1,1,1,1,0,0,1,0,0,0,0]=>11
[1,1,1,1,1,0,1,0,0,0,0,0]=>12
[1,1,1,1,1,1,0,0,0,0,0,0]=>7
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable modules in the corresponding Nakayama algebra that have vanishing first Ext-group with the regular module.
Code
DeclareOperation("Ext1countall",[IsList]); InstallMethod(Ext1countall, "for a representation of a quiver", [IsList],0,function(LIST) local A,simA,RegA,U,L; A:=LIST[1]; L:=ARQuiver([A,1000])[2]; RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A)); U:=Filtered(L,x->Size(ExtOverAlgebra(NthSyzygy(x,0),RegA)[2])=0); return(Size(U)); end);
Created
Jun 20, 2018 at 16:24 by Rene Marczinzik
Updated
Jun 20, 2018 at 16:24 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!