Your data matches 323 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001229: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 0
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> 1
Description
The vector space dimension of the first extension group between the Jacobson radical J and J^2. The vector space dimension of $Ext_A^1(J,J^2)$.
Mp00027: Dyck paths to partitionInteger partitions
St000143: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> []
=> 0
[1,0,1,0]
=> [1]
=> 0
[1,1,0,0]
=> []
=> 0
[1,0,1,0,1,0]
=> [2,1]
=> 0
[1,0,1,1,0,0]
=> [1,1]
=> 1
[1,1,0,0,1,0]
=> [2]
=> 0
[1,1,0,1,0,0]
=> [1]
=> 0
[1,1,1,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2]
=> 2
[1,1,0,1,0,0,1,0]
=> [3,1]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,1]
=> 0
[1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [3]
=> 0
[1,1,1,0,0,1,0,0]
=> [2]
=> 0
[1,1,1,0,1,0,0,0]
=> [1]
=> 0
[1,1,1,1,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 1
Description
The largest repeated part of a partition. If the parts of the partition are all distinct, the value of the statistic is defined to be zero.
Mp00023: Dyck paths to non-crossing permutationPermutations
St000371: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 0
[1,1,0,0,1,0]
=> [2,1,3] => 0
[1,1,0,1,0,0]
=> [2,3,1] => 0
[1,1,1,0,0,0]
=> [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
Description
The number of mid points of decreasing subsequences of length 3 in a permutation. For a permutation $\pi$ of $\{1,\ldots,n\}$, this is the number of indices $j$ such that there exist indices $i,k$ with $i < j < k$ and $\pi(i) > \pi(j) > \pi(k)$. In other words, this is the number of indices that are neither left-to-right maxima nor right-to-left minima. This statistic can also be expressed as the number of occurrences of the mesh pattern ([3,2,1], {(0,2),(0,3),(2,0),(3,0)}): the shading fixes the first and the last element of the decreasing subsequence. See also [[St000119]].
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St001682: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [2,1] => 0
[1,1,0,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => 0
[1,0,1,1,0,0]
=> [2,3,1] => 0
[1,1,0,0,1,0]
=> [3,1,2] => 0
[1,1,0,1,0,0]
=> [2,1,3] => 0
[1,1,1,0,0,0]
=> [1,2,3] => 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 0
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 0
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 0
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 0
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 2
Description
The number of distinct positions of the pattern letter 1 in occurrences of 123 in a permutation.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St001683: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 0
[1,1,0,1,0,0]
=> [2,3,1] => 0
[1,1,1,0,0,0]
=> [3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 0
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 0
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 0
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
Description
The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St001685: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 0
[1,1,0,1,0,0]
=> [2,3,1] => 0
[1,1,1,0,0,0]
=> [3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 0
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 0
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 0
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 1
Description
The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St001687: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 0
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 0
[1,1,1,0,0,0]
=> [3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 0
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 0
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 0
Description
The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation.
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St000316: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [1,2] => 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => 0
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => 0
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => 0
[1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => 0
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,4,2,3] => 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,2,5,3,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,2,4,3,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,2,5,3,4] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => 2
Description
The number of non-left-to-right-maxima of a permutation. An integer $\sigma_i$ in the one-line notation of a permutation $\sigma$ is a **non-left-to-right-maximum** if there exists a $j < i$ such that $\sigma_j > \sigma_i$.
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00069: Permutations complementPermutations
St000372: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [2,1] => 0
[1,1,0,0]
=> [2,1] => [1,2] => 0
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => 0
[1,1,0,0,1,0]
=> [2,1,3] => [2,3,1] => 0
[1,1,0,1,0,0]
=> [2,3,1] => [2,1,3] => 0
[1,1,1,0,0,0]
=> [3,2,1] => [1,2,3] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,3,1,2] => 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [4,2,1,3] => 0
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,1,2,3] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [3,4,2,1] => 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,4,1] => 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [3,2,1,4] => 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,1,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,3,4,1] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,3,1,4] => 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,3,2,4] => 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,2,3,4] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,4,3,1,2] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,4,2,3,1] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [5,4,2,1,3] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,3,4,2,1] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [5,3,4,1,2] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,3,2,4,1] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [5,3,2,1,4] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [5,3,1,2,4] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [5,2,3,4,1] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [5,2,3,1,4] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [5,1,3,2,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,1,2,3,4] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [4,5,3,2,1] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [4,5,2,3,1] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [4,5,2,1,3] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [4,5,1,2,3] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [4,3,5,2,1] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,3,5,1,2] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,3,2,5,1] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,3,1,2,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,2,3,5,1] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [4,2,3,1,5] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [4,1,3,2,5] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,1,2,3,5] => 2
Description
The number of mid points of increasing subsequences of length 3 in a permutation. For a permutation $\pi$ of $\{1,\ldots,n\}$, this is the number of indices $j$ such that there exist indices $i,k$ with $i < j < k$ and $\pi(i) < \pi(j) < \pi(k)$. The generating function is given by [1].
Matching statistic: St000019
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00086: Permutations first fundamental transformationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St000019: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [1,2] => 0
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => [1,3,2] => 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => [1,2,3] => 0
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => [1,2,3] => 0
[1,1,0,1,0,0]
=> [3,1,2] => [2,3,1] => [1,2,3] => 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => [1,4,2,3] => 2
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => [1,3,2,4] => 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => [1,2,3,4] => 0
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [3,2,4,1] => [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [1,2,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => [1,2,4,3] => 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => [1,2,3,4] => 0
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [3,4,1,2] => [1,3,2,4] => 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,4,3,1] => [1,2,4,3] => 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [2,3,1,4] => [1,2,3,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,3,4] => 0
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,3,4,2] => [1,2,3,4] => 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => [1,2,3,4] => 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [1,5,2,3,4] => 3
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [1,4,2,3,5] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [1,3,2,4,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [4,2,3,5,1] => [1,4,5,2,3] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [1,2,3,5,4] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [1,4,2,3,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [3,2,5,4,1] => [1,3,5,2,4] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [3,2,4,1,5] => [1,3,4,2,5] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,2,3,4,5] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,4,5,3] => [1,2,3,4,5] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [3,2,4,5,1] => [1,3,4,5,2] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,2,5,3,4] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,2,4,3,5] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,4,3,5,2] => [1,2,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [3,5,1,4,2] => [1,3,2,5,4] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [3,4,1,2,5] => [1,3,2,4,5] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [4,5,3,1,2] => [1,4,2,5,3] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [2,5,3,4,1] => [1,2,5,3,4] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [2,4,3,1,5] => [1,2,4,3,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [2,3,1,5,4] => [1,2,3,4,5] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [3,4,1,5,2] => [1,3,2,4,5] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [2,4,3,5,1] => [1,2,4,5,3] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [2,3,1,4,5] => [1,2,3,4,5] => 0
Description
The cardinality of the support of a permutation. A permutation $\sigma$ may be written as a product $\sigma = s_{i_1}\dots s_{i_k}$ with $k$ minimal, where $s_i = (i,i+1)$ denotes the simple transposition swapping the entries in positions $i$ and $i+1$. The set of indices $\{i_1,\dots,i_k\}$ is the '''support''' of $\sigma$ and independent of the chosen way to write $\sigma$ as such a product. See [2], Definition 1 and Proposition 10. The '''connectivity set''' of $\sigma$ of length $n$ is the set of indices $1 \leq i < n$ such that $\sigma(k) < i$ for all $k < i$. Thus, the connectivity set is the complement of the support.
The following 313 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000024The number of double up and double down steps of a Dyck path. St000204The number of internal nodes of a binary tree. St000356The number of occurrences of the pattern 13-2. St000358The number of occurrences of the pattern 31-2. St001083The number of boxed occurrences of 132 in a permutation. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001251The number of parts of a partition that are not congruent 1 modulo 3. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001280The number of parts of an integer partition that are at least two. St001841The number of inversions of a set partition. St000443The number of long tunnels of a Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St001082The number of boxed occurrences of 123 in a permutation. St000216The absolute length of a permutation. St000497The lcb statistic of a set partition. St000572The dimension exponent of a set partition. St000600The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, (1,3) are consecutive in a block. St000809The reduced reflection length of the permutation. St000727The largest label of a leaf in the binary search tree associated with the permutation. St001587Half of the largest even part of an integer partition. St001091The number of parts in an integer partition whose next smaller part has the same size. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000362The size of a minimal vertex cover of a graph. St000387The matching number of a graph. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001305The number of induced cycles on four vertices in a graph. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St000363The number of minimal vertex covers of a graph. St001304The number of maximally independent sets of vertices of a graph. St001725The harmonious chromatic number of a graph. St000145The Dyson rank of a partition. St000456The monochromatic index of a connected graph. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000454The largest eigenvalue of a graph if it is integral. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000478Another weight of a partition according to Alladi. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001964The interval resolution global dimension of a poset. St000137The Grundy value of an integer partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000667The greatest common divisor of the parts of the partition. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001571The Cartan determinant of the integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000693The modular (standard) major index of a standard tableau. St000946The sum of the skew hook positions in a Dyck path. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001480The number of simple summands of the module J^2/J^3. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St000089The absolute variation of a composition. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000941The number of characters of the symmetric group whose value on the partition is even. St001117The game chromatic index of a graph. St001574The minimal number of edges to add or remove to make a graph regular. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001742The difference of the maximal and the minimal degree in a graph. St001812The biclique partition number of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001510The number of self-evacuating linear extensions of a finite poset. St000589The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal, (2,3) are consecutive in a block. St000590The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal, 1 is maximal, (2,3) are consecutive in a block. St000601The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal, (2,3) are consecutive in a block. St000606The number of occurrences of the pattern {{1},{2,3}} such that 1,3 are maximal, (2,3) are consecutive in a block. St000609The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal. St000612The number of occurrences of the pattern {{1},{2,3}} such that 1 is minimal, (2,3) are consecutive in a block. St000614The number of occurrences of the pattern {{1},{2,3}} such that 1 is minimal, 3 is maximal, (2,3) are consecutive in a block. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St000718The largest Laplacian eigenvalue of a graph if it is integral. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000940The number of characters of the symmetric group whose value on the partition is zero. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000028The number of stack-sorts needed to sort a permutation. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St000141The maximum drop size of a permutation. St000632The jump number of the poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001520The number of strict 3-descents. St001556The number of inversions of the third entry of a permutation. St001557The number of inversions of the second entry of a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000850The number of 1/2-balanced pairs in a poset. St001624The breadth of a lattice. St001470The cyclic holeyness of a permutation. St000100The number of linear extensions of a poset. St000307The number of rowmotion orbits of a poset. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001877Number of indecomposable injective modules with projective dimension 2. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000740The last entry of a permutation. St000005The bounce statistic of a Dyck path. St000133The "bounce" of a permutation. St000441The number of successions of a permutation. St000665The number of rafts of a permutation. St000731The number of double exceedences of a permutation. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000451The length of the longest pattern of the form k 1 2. St001330The hat guessing number of a graph. St000624The normalized sum of the minimal distances to a greater element. St000650The number of 3-rises of a permutation. St000732The number of double deficiencies of a permutation. St000779The tier of a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000872The number of very big descents of a permutation. St001061The number of indices that are both descents and recoils of a permutation. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001731The factorization defect of a permutation. St000527The width of the poset. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001525The number of symmetric hooks on the diagonal of a partition. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001397Number of pairs of incomparable elements in a finite poset. St001902The number of potential covers of a poset. St000908The length of the shortest maximal antichain in a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001472The permanent of the Coxeter matrix of the poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001651The Frankl number of a lattice. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000769The major index of a composition regarded as a word. St000455The second largest eigenvalue of a graph if it is integral. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001095The number of non-isomorphic posets with precisely one further covering relation. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001498The normalised height of a Nakayama algebra with magnitude 1. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000225Difference between largest and smallest parts in a partition. St000474Dyson's crank of a partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000929The constant term of the character polynomial of an integer partition. St000993The multiplicity of the largest part of an integer partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001175The size of a partition minus the hook length of the base cell. St001176The size of a partition minus its first part. St001248Sum of the even parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001383The BG-rank of an integer partition. St001432The order dimension of the partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001568The smallest positive integer that does not appear twice in the partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001657The number of twos in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St001084The number of occurrences of the vincular pattern |1-23 in a permutation. St001435The number of missing boxes in the first row. St000477The weight of a partition according to Alladi. St000509The diagonal index (content) of a partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000770The major index of an integer partition when read from bottom to top. St000928The sum of the coefficients of the character polynomial of an integer partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000944The 3-degree of an integer partition. St001279The sum of the parts of an integer partition that are at least two. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001389The number of partitions of the same length below the given integer partition. St001527The cyclic permutation representation number of an integer partition. St001541The Gini index of an integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001763The Hurwitz number of an integer partition. St001868The number of alignments of type NE of a signed permutation. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St000181The number of connected components of the Hasse diagram for the poset. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St001423The number of distinct cubes in a binary word. St001948The number of augmented double ascents of a permutation. St001846The number of elements which do not have a complement in the lattice. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001720The minimal length of a chain of small intervals in a lattice. St001875The number of simple modules with projective dimension at most 1. St000741The Colin de Verdière graph invariant. St000260The radius of a connected graph. St001398Number of subsets of size 3 of elements in a poset that form a "v". St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St001779The order of promotion on the set of linear extensions of a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000058The order of a permutation. St000352The Elizalde-Pak rank of a permutation. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001820The size of the image of the pop stack sorting operator. St001862The number of crossings of a signed permutation. St001866The nesting alignments of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001867The number of alignments of type EN of a signed permutation. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St001864The number of excedances of a signed permutation. St000768The number of peaks in an integer composition. St001438The number of missing boxes of a skew partition. St001060The distinguishing index of a graph. St000355The number of occurrences of the pattern 21-3. St001816Eigenvalues of the top-to-random operator acting on a simple module. St001487The number of inner corners of a skew partition. St001115The number of even descents of a permutation. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St000284The Plancherel distribution on integer partitions. St000567The sum of the products of all pairs of parts. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000934The 2-degree of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001128The exponens consonantiae of a partition. St000920The logarithmic height of a Dyck path. St000091The descent variation of a composition. St000988The orbit size of a permutation under Foata's bijection. St000516The number of stretching pairs of a permutation. St000039The number of crossings of a permutation. St000074The number of special entries. St000237The number of small exceedances. St000264The girth of a graph, which is not a tree. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000807The sum of the heights of the valleys of the associated bargraph. St000866The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. St000873The aix statistic of a permutation. St000884The number of isolated descents of a permutation. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001394The genus of a permutation. St001569The maximal modular displacement of a permutation. St001745The number of occurrences of the arrow pattern 13 with an arrow from 1 to 2 in a permutation. St001821The sorting index of a signed permutation. St001905The number of preferred parking spots in a parking function less than the index of the car. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000711The number of big exceedences of a permutation. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001860The number of factors of the Stanley symmetric function associated with a signed permutation. St000764The number of strong records in an integer composition. St000214The number of adjacencies of a permutation. St000215The number of adjacencies of a permutation, zero appended. St000534The number of 2-rises of a permutation. St001465The number of adjacent transpositions in the cycle decomposition of a permutation. St000883The number of longest increasing subsequences of a permutation. St000031The number of cycles in the cycle decomposition of a permutation.