Identifier
- St001229: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>0
[1,0,1,0]=>0
[1,1,0,0]=>0
[1,0,1,0,1,0]=>0
[1,0,1,1,0,0]=>0
[1,1,0,0,1,0]=>0
[1,1,0,1,0,0]=>1
[1,1,1,0,0,0]=>0
[1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0]=>0
[1,0,1,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,0]=>1
[1,0,1,1,1,0,0,0]=>0
[1,1,0,0,1,0,1,0]=>0
[1,1,0,0,1,1,0,0]=>0
[1,1,0,1,0,0,1,0]=>1
[1,1,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,0]=>1
[1,1,1,0,0,0,1,0]=>0
[1,1,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,1,0,0]=>0
[1,0,1,0,1,1,0,0,1,0]=>0
[1,0,1,0,1,1,0,1,0,0]=>1
[1,0,1,0,1,1,1,0,0,0]=>0
[1,0,1,1,0,0,1,0,1,0]=>0
[1,0,1,1,0,0,1,1,0,0]=>0
[1,0,1,1,0,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,1,0,0]=>2
[1,0,1,1,0,1,1,0,0,0]=>1
[1,0,1,1,1,0,0,0,1,0]=>0
[1,0,1,1,1,0,0,1,0,0]=>1
[1,0,1,1,1,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0]=>0
[1,1,0,0,1,0,1,0,1,0]=>0
[1,1,0,0,1,0,1,1,0,0]=>0
[1,1,0,0,1,1,0,0,1,0]=>0
[1,1,0,0,1,1,0,1,0,0]=>1
[1,1,0,0,1,1,1,0,0,0]=>0
[1,1,0,1,0,0,1,0,1,0]=>1
[1,1,0,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,1,0,0]=>3
[1,1,0,1,0,1,1,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0]=>1
[1,1,0,1,1,0,0,1,0,0]=>2
[1,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0]=>0
[1,1,1,0,0,0,1,1,0,0]=>0
[1,1,1,0,0,1,0,0,1,0]=>1
[1,1,1,0,0,1,0,1,0,0]=>2
[1,1,1,0,0,1,1,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0]=>0
[1,1,1,1,0,0,0,1,0,0]=>1
[1,1,1,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0]=>3
[1,1,1,1,1,0,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,0,1,1,0,0]=>0
[1,0,1,0,1,0,1,1,0,0,1,0]=>0
[1,0,1,0,1,0,1,1,0,1,0,0]=>1
[1,0,1,0,1,0,1,1,1,0,0,0]=>0
[1,0,1,0,1,1,0,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0,1,1,0,0]=>0
[1,0,1,0,1,1,0,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,1,0,0]=>2
[1,0,1,0,1,1,0,1,1,0,0,0]=>1
[1,0,1,0,1,1,1,0,0,0,1,0]=>0
[1,0,1,0,1,1,1,0,0,1,0,0]=>1
[1,0,1,0,1,1,1,0,1,0,0,0]=>2
[1,0,1,0,1,1,1,1,0,0,0,0]=>0
[1,0,1,1,0,0,1,0,1,0,1,0]=>0
[1,0,1,1,0,0,1,0,1,1,0,0]=>0
[1,0,1,1,0,0,1,1,0,0,1,0]=>0
[1,0,1,1,0,0,1,1,0,1,0,0]=>1
[1,0,1,1,0,0,1,1,1,0,0,0]=>0
[1,0,1,1,0,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,1,0,0,1,1,0,0]=>1
[1,0,1,1,0,1,0,1,0,0,1,0]=>2
[1,0,1,1,0,1,0,1,0,1,0,0]=>3
[1,0,1,1,0,1,0,1,1,0,0,0]=>2
[1,0,1,1,0,1,1,0,0,0,1,0]=>1
[1,0,1,1,0,1,1,0,0,1,0,0]=>2
[1,0,1,1,0,1,1,0,1,0,0,0]=>3
[1,0,1,1,0,1,1,1,0,0,0,0]=>1
[1,0,1,1,1,0,0,0,1,0,1,0]=>0
[1,0,1,1,1,0,0,0,1,1,0,0]=>0
[1,0,1,1,1,0,0,1,0,0,1,0]=>1
[1,0,1,1,1,0,0,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,1,1,0,0,0]=>1
[1,0,1,1,1,0,1,0,0,0,1,0]=>2
[1,0,1,1,1,0,1,0,0,1,0,0]=>3
[1,0,1,1,1,0,1,0,1,0,0,0]=>3
[1,0,1,1,1,0,1,1,0,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0,1,0]=>0
[1,0,1,1,1,1,0,0,0,1,0,0]=>1
[1,0,1,1,1,1,0,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,1,0,0,0,0]=>3
[1,0,1,1,1,1,1,0,0,0,0,0]=>0
[1,1,0,0,1,0,1,0,1,0,1,0]=>0
[1,1,0,0,1,0,1,0,1,1,0,0]=>0
[1,1,0,0,1,0,1,1,0,0,1,0]=>0
[1,1,0,0,1,0,1,1,0,1,0,0]=>1
[1,1,0,0,1,0,1,1,1,0,0,0]=>0
[1,1,0,0,1,1,0,0,1,0,1,0]=>0
[1,1,0,0,1,1,0,0,1,1,0,0]=>0
[1,1,0,0,1,1,0,1,0,0,1,0]=>1
[1,1,0,0,1,1,0,1,0,1,0,0]=>2
[1,1,0,0,1,1,0,1,1,0,0,0]=>1
[1,1,0,0,1,1,1,0,0,0,1,0]=>0
[1,1,0,0,1,1,1,0,0,1,0,0]=>1
[1,1,0,0,1,1,1,0,1,0,0,0]=>2
[1,1,0,0,1,1,1,1,0,0,0,0]=>0
[1,1,0,1,0,0,1,0,1,0,1,0]=>1
[1,1,0,1,0,0,1,0,1,1,0,0]=>1
[1,1,0,1,0,0,1,1,0,0,1,0]=>1
[1,1,0,1,0,0,1,1,0,1,0,0]=>2
[1,1,0,1,0,0,1,1,1,0,0,0]=>1
[1,1,0,1,0,1,0,0,1,0,1,0]=>2
[1,1,0,1,0,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,1,0,1,0,0,1,0]=>3
[1,1,0,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,0,1,1,0,0,0]=>3
[1,1,0,1,0,1,1,0,0,0,1,0]=>2
[1,1,0,1,0,1,1,0,0,1,0,0]=>3
[1,1,0,1,0,1,1,0,1,0,0,0]=>4
[1,1,0,1,0,1,1,1,0,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0,1,0]=>1
[1,1,0,1,1,0,0,0,1,1,0,0]=>1
[1,1,0,1,1,0,0,1,0,0,1,0]=>2
[1,1,0,1,1,0,0,1,0,1,0,0]=>3
[1,1,0,1,1,0,0,1,1,0,0,0]=>2
[1,1,0,1,1,0,1,0,0,0,1,0]=>3
[1,1,0,1,1,0,1,0,0,1,0,0]=>4
[1,1,0,1,1,0,1,0,1,0,0,0]=>4
[1,1,0,1,1,0,1,1,0,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0,1,0]=>1
[1,1,0,1,1,1,0,0,0,1,0,0]=>2
[1,1,0,1,1,1,0,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,1,0,0,0,0]=>4
[1,1,0,1,1,1,1,0,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0,1,0]=>0
[1,1,1,0,0,0,1,0,1,1,0,0]=>0
[1,1,1,0,0,0,1,1,0,0,1,0]=>0
[1,1,1,0,0,0,1,1,0,1,0,0]=>1
[1,1,1,0,0,0,1,1,1,0,0,0]=>0
[1,1,1,0,0,1,0,0,1,0,1,0]=>1
[1,1,1,0,0,1,0,0,1,1,0,0]=>1
[1,1,1,0,0,1,0,1,0,0,1,0]=>2
[1,1,1,0,0,1,0,1,0,1,0,0]=>3
[1,1,1,0,0,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,1,0,0,1,0,0]=>2
[1,1,1,0,0,1,1,0,1,0,0,0]=>3
[1,1,1,0,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0,1,0]=>2
[1,1,1,0,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,1,0,0,1,0,1,0,0]=>4
[1,1,1,0,1,0,0,1,1,0,0,0]=>3
[1,1,1,0,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,0,1,0,0,1,0,0]=>4
[1,1,1,0,1,0,1,0,1,0,0,0]=>4
[1,1,1,0,1,0,1,1,0,0,0,0]=>3
[1,1,1,0,1,1,0,0,0,0,1,0]=>2
[1,1,1,0,1,1,0,0,0,1,0,0]=>3
[1,1,1,0,1,1,0,0,1,0,0,0]=>4
[1,1,1,0,1,1,0,1,0,0,0,0]=>4
[1,1,1,0,1,1,1,0,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0,1,0]=>0
[1,1,1,1,0,0,0,0,1,1,0,0]=>0
[1,1,1,1,0,0,0,1,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,0,1,0,0]=>2
[1,1,1,1,0,0,0,1,1,0,0,0]=>1
[1,1,1,1,0,0,1,0,0,0,1,0]=>2
[1,1,1,1,0,0,1,0,0,1,0,0]=>3
[1,1,1,1,0,0,1,0,1,0,0,0]=>3
[1,1,1,1,0,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0,1,0]=>3
[1,1,1,1,0,1,0,0,0,1,0,0]=>4
[1,1,1,1,0,1,0,0,1,0,0,0]=>4
[1,1,1,1,0,1,0,1,0,0,0,0]=>4
[1,1,1,1,0,1,1,0,0,0,0,0]=>3
[1,1,1,1,1,0,0,0,0,0,1,0]=>0
[1,1,1,1,1,0,0,0,0,1,0,0]=>1
[1,1,1,1,1,0,0,0,1,0,0,0]=>2
[1,1,1,1,1,0,0,1,0,0,0,0]=>3
[1,1,1,1,1,0,1,0,0,0,0,0]=>4
[1,1,1,1,1,1,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The vector space dimension of the first extension group between the Jacobson radical J and J^2.
The vector space dimension of $Ext_A^1(J,J^2)$.
The vector space dimension of $Ext_A^1(J,J^2)$.
Code
DeclareOperation("ext1rads", [IsList]); InstallMethod(ext1rads, "for a representation of a quiver", [IsList],0,function(L) local A,RegA,J1,J2; A:=L[1]; RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A)); J1:=RadicalOfModule(RegA); J2:=RadicalOfModule(J1); return(Size(ExtOverAlgebra(J1,J2)[2])); end );
Created
Jul 20, 2018 at 18:14 by Rene Marczinzik
Updated
Jul 20, 2018 at 18:14 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!