Your data matches 242 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00231: Integer compositions bounce pathDyck paths
St001167: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> 0
[1,1] => [1,0,1,0]
=> 0
[2] => [1,1,0,0]
=> 0
[1,1,1] => [1,0,1,0,1,0]
=> 1
[1,2] => [1,0,1,1,0,0]
=> 0
[2,1] => [1,1,0,0,1,0]
=> 0
[3] => [1,1,1,0,0,0]
=> 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 2
[1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,3] => [1,0,1,1,1,0,0,0]
=> 0
[2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> 0
[3,1] => [1,1,1,0,0,0,1,0]
=> 0
[4] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 3
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 4
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> 3
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 0
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> 0
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 0
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 0
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 3
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 1
Description
The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. The top of a module is the cokernel of the inclusion of the radical of the module into the module. For Nakayama algebras with at most 8 simple modules, the statistic also coincides with the number of simple modules with projective dimension at least 3 in the corresponding Nakayama algebra.
Mp00231: Integer compositions bounce pathDyck paths
St001253: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> 0
[1,1] => [1,0,1,0]
=> 0
[2] => [1,1,0,0]
=> 0
[1,1,1] => [1,0,1,0,1,0]
=> 1
[1,2] => [1,0,1,1,0,0]
=> 0
[2,1] => [1,1,0,0,1,0]
=> 0
[3] => [1,1,1,0,0,0]
=> 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 2
[1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,3] => [1,0,1,1,1,0,0,0]
=> 0
[2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> 0
[3,1] => [1,1,1,0,0,0,1,0]
=> 0
[4] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 3
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 4
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> 3
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 0
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> 0
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 0
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 0
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 3
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 1
Description
The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra.
Mp00231: Integer compositions bounce pathDyck paths
St001066: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> 1 = 0 + 1
[1,1] => [1,0,1,0]
=> 1 = 0 + 1
[2] => [1,1,0,0]
=> 1 = 0 + 1
[1,1,1] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2] => [1,0,1,1,0,0]
=> 1 = 0 + 1
[2,1] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[3] => [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,3] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[4] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
Description
The number of simple reflexive modules in the corresponding Nakayama algebra.
Mp00231: Integer compositions bounce pathDyck paths
St001483: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> 1 = 0 + 1
[1,1] => [1,0,1,0]
=> 1 = 0 + 1
[2] => [1,1,0,0]
=> 1 = 0 + 1
[1,1,1] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2] => [1,0,1,1,0,0]
=> 1 = 0 + 1
[2,1] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[3] => [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,3] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[4] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
Description
The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module.
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St000052: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> 0
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 0
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 0
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> 0
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 0
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 3
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 1
Description
The number of valleys of a Dyck path not on the x-axis. That is, the number of valleys of nonminimal height. This corresponds to the number of -1's in an inclusion of Dyck paths into alternating sign matrices.
Mp00231: Integer compositions bounce pathDyck paths
Mp00029: Dyck paths to binary tree: left tree, up step, right tree, down stepBinary trees
St000118: Binary trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [.,.]
=> 0
[1,1] => [1,0,1,0]
=> [[.,.],.]
=> 0
[2] => [1,1,0,0]
=> [.,[.,.]]
=> 0
[1,1,1] => [1,0,1,0,1,0]
=> [[[.,.],.],.]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> 0
[2,1] => [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> 0
[3] => [1,1,1,0,0,0]
=> [.,[.,[.,.]]]
=> 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> 0
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> 0
[1,3] => [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> 0
[2,2] => [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> 0
[3,1] => [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> 1
[4] => [1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> 2
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[[[[.,.],.],.],.],.]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [[[[.,.],.],.],[.,.]]
=> 0
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [[[[.,.],.],[.,.]],.]
=> 0
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [[[[.,.],[.,.]],.],.]
=> 0
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> 0
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[.,.],[.,[.,[.,.]]]]
=> 2
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [[[[.,[.,.]],.],.],.]
=> 0
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> 0
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [[[.,[.,.]],[.,.]],.]
=> 0
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[.,[.,.]],[.,[.,.]]]
=> 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 2
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> 3
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [[[[[[.,.],.],.],.],.],.]
=> 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [[[[[.,.],.],.],.],[.,.]]
=> 0
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [[[[[.,.],.],.],[.,.]],.]
=> 0
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [[[[.,.],.],.],[.,[.,.]]]
=> 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [[[[[.,.],.],[.,.]],.],.]
=> 0
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [[[[.,.],.],[.,.]],[.,.]]
=> 0
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [[[[.,.],.],[.,[.,.]]],.]
=> 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> 2
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [[[[[.,.],[.,.]],.],.],.]
=> 0
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[[[.,.],[.,.]],.],[.,.]]
=> 0
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[[[.,.],[.,.]],[.,.]],.]
=> 0
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[[[.,.],[.,[.,.]]],.],.]
=> 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [[[.,.],[.,[.,.]]],[.,.]]
=> 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,.]]]],.]
=> 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> 3
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[[[[.,[.,.]],.],.],.],.]
=> 0
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[[[.,[.,.]],.],.],[.,.]]
=> 0
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [[[[.,[.,.]],.],[.,.]],.]
=> 0
Description
The number of occurrences of the contiguous pattern {{{[.,[.,[.,.]]]}}} in a binary tree. [[oeis:A001006]] counts binary trees avoiding this pattern.
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000148: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [[1],[]]
=> []
=> 0
[1,1] => [[1,1],[]]
=> []
=> 0
[2] => [[2],[]]
=> []
=> 0
[1,1,1] => [[1,1,1],[]]
=> []
=> 0
[1,2] => [[2,1],[]]
=> []
=> 0
[2,1] => [[2,2],[1]]
=> [1]
=> 1
[3] => [[3],[]]
=> []
=> 0
[1,1,1,1] => [[1,1,1,1],[]]
=> []
=> 0
[1,1,2] => [[2,1,1],[]]
=> []
=> 0
[1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[1,3] => [[3,1],[]]
=> []
=> 0
[2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[2,2] => [[3,2],[1]]
=> [1]
=> 1
[3,1] => [[3,3],[2]]
=> [2]
=> 0
[4] => [[4],[]]
=> []
=> 0
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> 0
[1,1,1,2] => [[2,1,1,1],[]]
=> []
=> 0
[1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
[1,1,3] => [[3,1,1],[]]
=> []
=> 0
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 2
[1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
[1,3,1] => [[3,3,1],[2]]
=> [2]
=> 0
[1,4] => [[4,1],[]]
=> []
=> 0
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 2
[2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
[2,3] => [[4,2],[1]]
=> [1]
=> 1
[3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 0
[3,2] => [[4,3],[2]]
=> [2]
=> 0
[4,1] => [[4,4],[3]]
=> [3]
=> 1
[5] => [[5],[]]
=> []
=> 0
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> 0
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> 0
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 1
[1,1,1,3] => [[3,1,1,1],[]]
=> []
=> 0
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 2
[1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
[1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 0
[1,1,4] => [[4,1,1],[]]
=> []
=> 0
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 3
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 2
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
[1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> 0
[1,3,2] => [[4,3,1],[2]]
=> [2]
=> 0
[1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,5] => [[5,1],[]]
=> []
=> 0
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> 4
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 2
Description
The number of odd parts of a partition.
Matching statistic: St000992
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000992: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [[1],[]]
=> []
=> 0
[1,1] => [[1,1],[]]
=> []
=> 0
[2] => [[2],[]]
=> []
=> 0
[1,1,1] => [[1,1,1],[]]
=> []
=> 0
[1,2] => [[2,1],[]]
=> []
=> 0
[2,1] => [[2,2],[1]]
=> [1]
=> 1
[3] => [[3],[]]
=> []
=> 0
[1,1,1,1] => [[1,1,1,1],[]]
=> []
=> 0
[1,1,2] => [[2,1,1],[]]
=> []
=> 0
[1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[1,3] => [[3,1],[]]
=> []
=> 0
[2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[2,2] => [[3,2],[1]]
=> [1]
=> 1
[3,1] => [[3,3],[2]]
=> [2]
=> 2
[4] => [[4],[]]
=> []
=> 0
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> 0
[1,1,1,2] => [[2,1,1,1],[]]
=> []
=> 0
[1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
[1,1,3] => [[3,1,1],[]]
=> []
=> 0
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
[1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
[1,3,1] => [[3,3,1],[2]]
=> [2]
=> 2
[1,4] => [[4,1],[]]
=> []
=> 0
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
[2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
[2,3] => [[4,2],[1]]
=> [1]
=> 1
[3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 0
[3,2] => [[4,3],[2]]
=> [2]
=> 2
[4,1] => [[4,4],[3]]
=> [3]
=> 3
[5] => [[5],[]]
=> []
=> 0
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> 0
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> 0
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 1
[1,1,1,3] => [[3,1,1,1],[]]
=> []
=> 0
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
[1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
[1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 2
[1,1,4] => [[4,1,1],[]]
=> []
=> 0
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 1
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
[1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> 0
[1,3,2] => [[4,3,1],[2]]
=> [2]
=> 2
[1,4,1] => [[4,4,1],[3]]
=> [3]
=> 3
[1,5] => [[5,1],[]]
=> []
=> 0
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> 0
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 2
Description
The alternating sum of the parts of an integer partition. For a partition $\lambda = (\lambda_1,\ldots,\lambda_k)$, this is $\lambda_1 - \lambda_2 + \cdots \pm \lambda_k$.
Mp00231: Integer compositions bounce pathDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St001172: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> 0
[1,1] => [1,0,1,0]
=> [1,0,1,0]
=> 0
[2] => [1,1,0,0]
=> [1,1,0,0]
=> 0
[1,1,1] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 0
[3] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 0
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> 0
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> 0
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 2
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 0
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 2
Description
The number of 1-rises at odd height of a Dyck path.
Matching statistic: St000776
Mp00184: Integer compositions to threshold graphGraphs
Mp00247: Graphs de-duplicateGraphs
St000776: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[2] => ([],2)
=> ([],1)
=> 1 = 0 + 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 0 + 1
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 0 + 1
[3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> 1 = 0 + 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 1 = 0 + 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1 = 0 + 1
[4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> 1 = 0 + 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1 = 0 + 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1 = 0 + 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 0 + 1
[5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> 1 = 0 + 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
Description
The maximal multiplicity of an eigenvalue in a graph.
The following 232 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000142The number of even parts of a partition. St000496The rcs statistic of a set partition. St000931The number of occurrences of the pattern UUU in a Dyck path. St001033The normalized area of the parallelogram polyomino associated with the Dyck path. St001091The number of parts in an integer partition whose next smaller part has the same size. St001323The independence gap of a graph. St001723The differential of a graph. St001724The 2-packing differential of a graph. St001781The interlacing number of a set partition. St001798The difference of the number of edges in a graph and the number of edges in the complement of the Turán graph. St001841The number of inversions of a set partition. St001843The Z-index of a set partition. St001727The number of invisible inversions of a permutation. St000491The number of inversions of a set partition. St000497The lcb statistic of a set partition. St000555The number of occurrences of the pattern {{1,3},{2}} in a set partition. St000572The dimension exponent of a set partition. St000581The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 2 is maximal. St000582The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 3 is maximal, (1,3) are consecutive in a block. St000585The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block. St000594The number of occurrences of the pattern {{1,3},{2}} such that 1,2 are minimal, (1,3) are consecutive in a block. St000600The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, (1,3) are consecutive in a block. St000602The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal. St000610The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal. St000613The number of occurrences of the pattern {{1,3},{2}} such that 2 is minimal, 3 is maximal, (1,3) are consecutive in a block. St000356The number of occurrences of the pattern 13-2. St000463The number of admissible inversions of a permutation. St001083The number of boxed occurrences of 132 in a permutation. St001331The size of the minimal feedback vertex set. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001489The maximum of the number of descents and the number of inverse descents. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St000470The number of runs in a permutation. St000354The number of recoils of a permutation. St000495The number of inversions of distance at most 2 of a permutation. St000795The mad of a permutation. St000829The Ulam distance of a permutation to the identity permutation. St000831The number of indices that are either descents or recoils. St000957The number of Bruhat lower covers of a permutation. St001061The number of indices that are both descents and recoils of a permutation. St000619The number of cyclic descents of a permutation. St001176The size of a partition minus its first part. St000065The number of entries equal to -1 in an alternating sign matrix. St000534The number of 2-rises of a permutation. St000731The number of double exceedences of a permutation. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St000366The number of double descents of a permutation. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000288The number of ones in a binary word. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001372The length of a longest cyclic run of ones of a binary word. St000019The cardinality of the support of a permutation. St000214The number of adjacencies of a permutation. St001810The number of fixed points of a permutation smaller than its largest moved point. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000538The number of even inversions of a permutation. St000358The number of occurrences of the pattern 31-2. St000365The number of double ascents of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St001411The number of patterns 321 or 3412 in a permutation. St000732The number of double deficiencies of a permutation. St000836The number of descents of distance 2 of a permutation. St001552The number of inversions between excedances and fixed points of a permutation. St001130The number of two successive successions in a permutation. St000648The number of 2-excedences of a permutation. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000932The number of occurrences of the pattern UDU in a Dyck path. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000359The number of occurrences of the pattern 23-1. St000877The depth of the binary word interpreted as a path. St000437The number of occurrences of the pattern 312 or of the pattern 321 in a permutation. St000711The number of big exceedences of a permutation. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001682The number of distinct positions of the pattern letter 1 in occurrences of 123 in a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St000436The number of occurrences of the pattern 231 or of the pattern 321 in a permutation. St000710The number of big deficiencies of a permutation. St000119The number of occurrences of the pattern 321 in a permutation. St000123The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. St000223The number of nestings in the permutation. St001414Half the length of the longest odd length palindromic prefix of a binary word. St000260The radius of a connected graph. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000355The number of occurrences of the pattern 21-3. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001280The number of parts of an integer partition that are at least two. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St000039The number of crossings of a permutation. St000317The cycle descent number of a permutation. St000837The number of ascents of distance 2 of a permutation. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001082The number of boxed occurrences of 123 in a permutation. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St000021The number of descents of a permutation. St000030The sum of the descent differences of a permutations. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000217The number of occurrences of the pattern 312 in a permutation. St000238The number of indices that are not small weak excedances. St000242The number of indices that are not cyclical small weak excedances. St000316The number of non-left-to-right-maxima of a permutation. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St000325The width of the tree associated to a permutation. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000617The number of global maxima of a Dyck path. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St000219The number of occurrences of the pattern 231 in a permutation. St001689The number of celebrities in a graph. St001056The Grundy value for the game of deleting vertices of a graph until it has no edges. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001877Number of indecomposable injective modules with projective dimension 2. St001549The number of restricted non-inversions between exceedances. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001742The difference of the maximal and the minimal degree in a graph. St001871The number of triconnected components of a graph. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000938The number of zeros of the symmetric group character corresponding to the partition. St000941The number of characters of the symmetric group whose value on the partition is even. St000993The multiplicity of the largest part of an integer partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St000137The Grundy value of an integer partition. St000460The hook length of the last cell along the main diagonal of an integer partition. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001525The number of symmetric hooks on the diagonal of a partition. St001571The Cartan determinant of the integer partition. St001587Half of the largest even part of an integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001657The number of twos in an integer partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St001982The number of orbits of the action of a permutation of given cycle type on the set of edges of the complete graph. St000028The number of stack-sorts needed to sort a permutation. St000454The largest eigenvalue of a graph if it is integral. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001570The minimal number of edges to add to make a graph Hamiltonian. St000456The monochromatic index of a connected graph. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St000284The Plancherel distribution on integer partitions. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000668The least common multiple of the parts of the partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000934The 2-degree of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001513The number of nested exceedences of a permutation. St001980The Castelnuovo-Mumford regularity of an alternating sign matrix. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St000455The second largest eigenvalue of a graph if it is integral. St001811The Castelnuovo-Mumford regularity of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St001845The number of join irreducibles minus the rank of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001651The Frankl number of a lattice. St001568The smallest positive integer that does not appear twice in the partition. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001862The number of crossings of a signed permutation. St001866The nesting alignments of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St000031The number of cycles in the cycle decomposition of a permutation. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001621The number of atoms of a lattice. St000982The length of the longest constant subword. St001868The number of alignments of type NE of a signed permutation. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000406The number of occurrences of the pattern 3241 in a permutation. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000757The length of the longest weakly inreasing subsequence of parts of an integer composition. St000765The number of weak records in an integer composition. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.