searching the database
Your data matches 130 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000012
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000012: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000012: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> 0
[1,1] => [1,0,1,0]
=> 0
[2] => [1,1,0,0]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> 0
[1,2] => [1,0,1,1,0,0]
=> 1
[2,1] => [1,1,0,0,1,0]
=> 1
[3] => [1,1,1,0,0,0]
=> 3
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,1] => [1,1,1,0,0,0,1,0]
=> 3
[4] => [1,1,1,1,0,0,0,0]
=> 6
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 6
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 4
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 4
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 6
[5] => [1,1,1,1,1,0,0,0,0,0]
=> 10
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> 6
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 4
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 6
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 10
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 2
Description
The area of a Dyck path.
This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic.
1. Dyck paths are bijection with '''area sequences''' $(a_1,\ldots,a_n)$ such that $a_1 = 0, a_{k+1} \leq a_k + 1$.
2. The generating function $\mathbf{D}_n(q) = \sum_{D \in \mathfrak{D}_n} q^{\operatorname{area}(D)}$ satisfy the recurrence $$\mathbf{D}_{n+1}(q) = \sum q^k \mathbf{D}_k(q) \mathbf{D}_{n-k}(q).$$
3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of $q,t$-Catalan numbers.
Matching statistic: St001295
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001295: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001295: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> 0
[1,1] => [1,0,1,0]
=> 0
[2] => [1,1,0,0]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> 0
[1,2] => [1,0,1,1,0,0]
=> 1
[2,1] => [1,1,0,0,1,0]
=> 1
[3] => [1,1,1,0,0,0]
=> 3
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,1] => [1,1,1,0,0,0,1,0]
=> 3
[4] => [1,1,1,1,0,0,0,0]
=> 6
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 6
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 4
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 4
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 6
[5] => [1,1,1,1,1,0,0,0,0,0]
=> 10
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> 6
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 4
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 6
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 10
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 2
Description
Gives the vector space dimension of the homomorphism space between J^2 and J^2.
Matching statistic: St000005
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000005: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000005: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> 0
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[2] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 3
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 6
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 6
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 6
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 4
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 10
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 3
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 6
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 3
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 6
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 2
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 4
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 4
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 10
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2
Description
The bounce statistic of a Dyck path.
The '''bounce path''' $D'$ of a Dyck path $D$ is the Dyck path obtained from $D$ by starting at the end point $(2n,0)$, traveling north-west until hitting $D$, then bouncing back south-west to the $x$-axis, and repeating this procedure until finally reaching the point $(0,0)$.
The points where $D'$ touches the $x$-axis are called '''bounce points''', and a bounce path is uniquely determined by its bounce points.
This statistic is given by the sum of all $i$ for which the bounce path $D'$ of $D$ touches the $x$-axis at $(2i,0)$.
In particular, the bounce statistics of $D$ and $D'$ coincide.
Matching statistic: St000006
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000006: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000006: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> 0
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[2] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 6
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 6
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 4
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 6
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 10
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 6
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 4
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 6
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 10
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2
Description
The dinv of a Dyck path.
Let $a=(a_1,\ldots,a_n)$ be the area sequence of a Dyck path $D$ (see [[St000012]]).
The dinv statistic of $D$ is
$$ \operatorname{dinv}(D) = \# \big\{ i < j : a_i-a_j \in \{ 0,1 \} \big\}.$$
Equivalently, $\operatorname{dinv}(D)$ is also equal to the number of boxes in the partition above $D$ whose ''arm length'' is one larger or equal to its ''leg length''.
There is a recursive definition of the $(\operatorname{area},\operatorname{dinv})$ pair of statistics, see [2].
Let $a=(0,a_2,\ldots,a_r,0,a_{r+2},\ldots,a_n)$ be the area sequence of the Dyck path $D$ with $a_i > 0$ for $2\leq i\leq r$ (so that the path touches the diagonal for the first time after $r$ steps). Assume that $D$ has $v$ entries where $a_i=0$. Let $D'$ be the path with the area sequence $(0,a_{r+2},\ldots,a_n,a_2-1,a_3-1,\ldots,a_r-1)$, then the statistics are related by
$$(\operatorname{area}(D),\operatorname{dinv}(D)) = (\operatorname{area}(D')+r-1,\operatorname{dinv}(D')+v-1).$$
Matching statistic: St000018
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000018: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000018: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => 0
[1,1] => [1,0,1,0]
=> [1,2] => 0
[2] => [1,1,0,0]
=> [2,1] => 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,2] => [1,0,1,1,0,0]
=> [1,3,2] => 1
[2,1] => [1,1,0,0,1,0]
=> [2,1,3] => 1
[3] => [1,1,1,0,0,0]
=> [3,2,1] => 3
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[3,1] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 3
[4] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 6
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 6
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 4
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 4
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 6
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 10
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => 6
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => 4
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => 6
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 10
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => 2
Description
The number of inversions of a permutation.
This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Matching statistic: St000041
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St000041: Perfect matchings ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St000041: Perfect matchings ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [(1,2)]
=> 0
[1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> 0
[2] => [1,1,0,0]
=> [(1,4),(2,3)]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[3] => [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 3
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> 2
[3,1] => [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> 3
[4] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 6
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> 6
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> 4
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> 4
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> 6
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> 10
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> 6
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)]
=> 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)]
=> 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)]
=> 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)]
=> 4
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)]
=> 6
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> 10
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)]
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)]
=> 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9),(11,12)]
=> 2
Description
The number of nestings of a perfect matching.
This is the number of pairs of edges $((a,b), (c,d))$ such that $a\le c\le d\le b$. i.e., the edge $(c,d)$ is nested inside $(a,b)$.
Matching statistic: St000055
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000055: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000055: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => 0
[1,1] => [1,0,1,0]
=> [1,2] => 0
[2] => [1,1,0,0]
=> [2,1] => 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,2] => [1,0,1,1,0,0]
=> [1,3,2] => 1
[2,1] => [1,1,0,0,1,0]
=> [2,1,3] => 1
[3] => [1,1,1,0,0,0]
=> [3,1,2] => 3
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[3,1] => [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 3
[4] => [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 6
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 6
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 4
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => 4
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => 6
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => 10
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => 6
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,4,5] => 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,2,3,5,6] => 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,2,3,6,5] => 4
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,2,3,4,6] => 6
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => 10
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => 2
Description
The inversion sum of a permutation.
A pair $a < b$ is an inversion of a permutation $\pi$ if $\pi(a) > \pi(b)$. The inversion sum is given by $\sum(b-a)$ over all inversions of $\pi$.
This is also half of the metric associated with Spearmans coefficient of association $\rho$, $\sum_i (\pi_i - i)^2$, see [5].
This is also equal to the total number of occurrences of the classical permutation patterns $[2,1], [2, 3, 1], [3, 1, 2]$, and $[3, 2, 1]$, see [2].
This is also equal to the rank of the permutation inside the alternating sign matrix lattice, see references [2] and [3].
This lattice is the MacNeille completion of the strong Bruhat order on the symmetric group [1], which means it is the smallest lattice containing the Bruhat order as a subposet. This is a distributive lattice, so the rank of each element is given by the cardinality of the associated order ideal. The rank is calculated by summing the entries of the corresponding ''monotone triangle'' and subtracting $\binom{n+2}{3}$, which is the sum of the entries of the monotone triangle corresponding to the identity permutation of $n$.
This is also the number of bigrassmannian permutations (that is, permutations with exactly one left descent and one right descent) below a given permutation $\pi$ in Bruhat order, see Theorem 1 of [6].
Matching statistic: St000057
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00033: Dyck paths —to two-row standard tableau⟶ Standard tableaux
St000057: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00033: Dyck paths —to two-row standard tableau⟶ Standard tableaux
St000057: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [[1],[2]]
=> 0
[1,1] => [1,0,1,0]
=> [[1,3],[2,4]]
=> 0
[2] => [1,1,0,0]
=> [[1,2],[3,4]]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 1
[3] => [1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> 3
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> 2
[3,1] => [1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> 3
[4] => [1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> 6
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,6,9],[2,4,7,8,10]]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [[1,3,4,7,8],[2,5,6,9,10]]
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> 6
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [[1,2,5,7,9],[3,4,6,8,10]]
=> 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [[1,2,5,7,8],[3,4,6,9,10]]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [[1,2,5,6,9],[3,4,7,8,10]]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> 4
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> 4
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [[1,2,3,4,9],[5,6,7,8,10]]
=> 6
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> 10
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9,11],[2,4,6,8,10,12]]
=> 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,9,10],[2,4,6,8,11,12]]
=> 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,7,8,11],[2,4,6,9,10,12]]
=> 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,7,8,9],[2,4,6,10,11,12]]
=> 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,3,5,6,9,11],[2,4,7,8,10,12]]
=> 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,3,5,6,9,10],[2,4,7,8,11,12]]
=> 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [[1,3,5,6,7,11],[2,4,8,9,10,12]]
=> 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,3,5,6,7,8],[2,4,9,10,11,12]]
=> 6
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [[1,3,4,7,9,11],[2,5,6,8,10,12]]
=> 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[1,3,4,7,9,10],[2,5,6,8,11,12]]
=> 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,3,4,7,8,11],[2,5,6,9,10,12]]
=> 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,3,4,7,8,9],[2,5,6,10,11,12]]
=> 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[1,3,4,5,9,11],[2,6,7,8,10,12]]
=> 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [[1,3,4,5,9,10],[2,6,7,8,11,12]]
=> 4
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[1,3,4,5,6,11],[2,7,8,9,10,12]]
=> 6
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,3,4,5,6,7],[2,8,9,10,11,12]]
=> 10
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[1,2,5,7,9,11],[3,4,6,8,10,12]]
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[1,2,5,7,9,10],[3,4,6,8,11,12]]
=> 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [[1,2,5,7,8,11],[3,4,6,9,10,12]]
=> 2
Description
The Shynar inversion number of a standard tableau.
Shynar's inversion number is the number of inversion pairs in a standard Young tableau, where an inversion pair is defined as a pair of integers (x,y) such that y > x and y appears strictly southwest of x in the tableau.
Matching statistic: St000067
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
St000067: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
St000067: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [[1]]
=> 0
[1,1] => [1,0,1,0]
=> [[1,0],[0,1]]
=> 0
[2] => [1,1,0,0]
=> [[0,1],[1,0]]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> 1
[3] => [1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> 3
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[3,1] => [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> 3
[4] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> 6
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> 6
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 4
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 4
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> 6
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> 10
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]]
=> 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> 6
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 4
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1]]
=> 6
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0]]
=> 10
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 2
Description
The inversion number of the alternating sign matrix.
If we denote the entries of the alternating sign matrix as $a_{i,j}$, the inversion number is defined as
$$\sum_{i > k}\sum_{j < \ell} a_{i,j}a_{k,\ell}.$$
When restricted to permutation matrices, this gives the usual inversion number of the permutation.
Matching statistic: St000076
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
St000076: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
St000076: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [[1]]
=> 0
[1,1] => [1,0,1,0]
=> [[1,0],[0,1]]
=> 0
[2] => [1,1,0,0]
=> [[0,1],[1,0]]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> 1
[3] => [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> 3
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[3,1] => [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 3
[4] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 6
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 6
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 4
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 4
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 6
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 10
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 6
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 4
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[1,0,0,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 6
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 10
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> 2
Description
The rank of the alternating sign matrix in the alternating sign matrix poset.
This rank is the sum of the entries of the monotone triangle minus $\binom{n+2}{3}$, which is the smallest sum of the entries in the set of all monotone triangles with bottom row $1\dots n$.
Alternatively, $rank(A)=\frac{1}{2} \sum_{i,j=1}^n (i-j)^2 a_{ij}$, see [3, thm.5.1].
The following 120 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000161The sum of the sizes of the right subtrees of a binary tree. St000185The weighted size of a partition. St000224The sorting index of a permutation. St000246The number of non-inversions of a permutation. St000332The positive inversions of an alternating sign matrix. St001397Number of pairs of incomparable elements in a finite poset. St001412Number of minimal entries in the Bruhat order matrix of a permutation. St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St001874Lusztig's a-function for the symmetric group. St000004The major index of a permutation. St000042The number of crossings of a perfect matching. St000059The inversion number of a standard tableau as defined by Haglund and Stevens. St000081The number of edges of a graph. St000133The "bounce" of a permutation. St000169The cocharge of a standard tableau. St000233The number of nestings of a set partition. St000263The Szeged index of a graph. St000265The Wiener index of a graph. St000330The (standard) major index of a standard tableau. St000336The leg major index of a standard tableau. St000341The non-inversion sum of a permutation. St000378The diagonal inversion number of an integer partition. St000496The rcs statistic of a set partition. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000683The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps. St000984The number of boxes below precisely one peak. St001161The major index north count of a Dyck path. St001341The number of edges in the center of a graph. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001428The number of B-inversions of a signed permutation. St001697The shifted natural comajor index of a standard Young tableau. St000558The number of occurrences of the pattern {{1,2}} in a set partition. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St000795The mad of a permutation. St000947The major index east count of a Dyck path. St000428The number of occurrences of the pattern 123 or of the pattern 213 in a permutation. St000437The number of occurrences of the pattern 312 or of the pattern 321 in a permutation. St001924The number of cells in an integer partition whose arm and leg length coincide. St001718The number of non-empty open intervals in a poset. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000123The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. St000218The number of occurrences of the pattern 213 in a permutation. St000220The number of occurrences of the pattern 132 in a permutation. St001645The pebbling number of a connected graph. St000357The number of occurrences of the pattern 12-3. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000217The number of occurrences of the pattern 312 in a permutation. St000436The number of occurrences of the pattern 231 or of the pattern 321 in a permutation. St001978The codimension of the alternating sign matrix variety. St000360The number of occurrences of the pattern 32-1. St000423The number of occurrences of the pattern 123 or of the pattern 132 in a permutation. St000219The number of occurrences of the pattern 231 in a permutation. St000454The largest eigenvalue of a graph if it is integral. St001848The atomic length of a signed permutation. St000455The second largest eigenvalue of a graph if it is integral. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001754The number of tolerances of a finite lattice. St001118The acyclic chromatic index of a graph. St001772The number of occurrences of the signed pattern 12 in a signed permutation. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St000567The sum of the products of all pairs of parts. St000681The Grundy value of Chomp on Ferrers diagrams. St000870The product of the hook lengths of the diagonal cells in an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001821The sorting index of a signed permutation. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001985The sum of the greatest common divisors of all subsets of the parts of an integer partition. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St000668The least common multiple of the parts of the partition. St000706The product of the factorials of the multiplicities of an integer partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St000223The number of nestings in the permutation. St001268The size of the largest ordinal summand in the poset. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000039The number of crossings of a permutation. St000043The number of crossings plus two-nestings of a perfect matching. St000173The segment statistic of a semistandard tableau. St000174The flush statistic of a semistandard tableau. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000284The Plancherel distribution on integer partitions. St000491The number of inversions of a set partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000581The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 2 is maximal. St000585The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block. St000594The number of occurrences of the pattern {{1,3},{2}} such that 1,2 are minimal, (1,3) are consecutive in a block. St000610The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal. St000613The number of occurrences of the pattern {{1,3},{2}} such that 2 is minimal, 3 is maximal, (1,3) are consecutive in a block. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001128The exponens consonantiae of a partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001513The number of nested exceedences of a permutation. St001549The number of restricted non-inversions between exceedances. St001568The smallest positive integer that does not appear twice in the partition. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001727The number of invisible inversions of a permutation. St001843The Z-index of a set partition. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St001760The number of prefix or suffix reversals needed to sort a permutation. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001060The distinguishing index of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!