Processing math: 100%

Your data matches 28 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001364
St001364: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 1
[1,1]
=> 1
[3]
=> 0
[2,1]
=> 1
[1,1,1]
=> 3
[4]
=> 1
[3,1]
=> 0
[2,2]
=> 1
[2,1,1]
=> 1
[1,1,1,1]
=> 9
[5]
=> 1
[4,1]
=> 1
[3,2]
=> 0
[3,1,1]
=> 0
[2,2,1]
=> 1
[2,1,1,1]
=> 3
[1,1,1,1,1]
=> 21
[6]
=> 0
[5,1]
=> 1
[4,2]
=> 1
[4,1,1]
=> 1
[3,3]
=> 0
[3,2,1]
=> 0
[3,1,1,1]
=> 0
[2,2,2]
=> 9
[2,2,1,1]
=> 1
[2,1,1,1,1]
=> 9
[1,1,1,1,1,1]
=> 81
[7]
=> 1
[6,1]
=> 0
[5,2]
=> 1
[5,1,1]
=> 1
[4,3]
=> 0
[4,2,1]
=> 1
[4,1,1,1]
=> 3
[3,3,1]
=> 0
[3,2,2]
=> 0
[3,2,1,1]
=> 0
[3,1,1,1,1]
=> 0
[2,2,2,1]
=> 9
[2,2,1,1,1]
=> 3
[2,1,1,1,1,1]
=> 21
[1,1,1,1,1,1,1]
=> 351
[8]
=> 1
[7,1]
=> 1
[6,2]
=> 0
[6,1,1]
=> 0
[5,3]
=> 0
[5,2,1]
=> 1
Description
The number of permutations whose cube equals a fixed permutation of given cycle type. For example, the permutation π=412365 has cycle type (4,2) and 234165 is the unique permutation whose cube is π.
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
St001123: Integer partitions ⟶ ℤResult quality: 17% values known / values provided: 53%distinct values known / distinct values provided: 17%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> ?
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {0,1,3}
[2,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,3}
[1,1,1]
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {0,1,3}
[4]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,9}
[3,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,9}
[2,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,9}
[2,1,1]
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,9}
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,1]
=> 1
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,21}
[4,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,1,1]
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,3,21}
[2,2,1]
=> [2,1]
=> [1]
=> [1]
=> ? ∊ {0,1,1,3,21}
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,1]
=> 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {0,0,1,9,9,81}
[5,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,1,9,9,81}
[4,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1,9,9,81}
[4,1,1]
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {0,0,1,9,9,81}
[3,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,1,9,9,81}
[3,2,1]
=> [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,1,9,9,81}
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,1]
=> 1
[2,2,2]
=> [2,2]
=> [2]
=> [2]
=> 1
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1,1]
=> 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1,1]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,1,3,3,9,21,351}
[6,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,3,3,9,21,351}
[5,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,3,3,9,21,351}
[5,1,1]
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {0,1,3,3,9,21,351}
[4,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,1,3,3,9,21,351}
[4,2,1]
=> [2,1]
=> [1]
=> [1]
=> ? ∊ {0,1,3,3,9,21,351}
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,1]
=> 1
[3,3,1]
=> [3,1]
=> [1]
=> [1]
=> ? ∊ {0,1,3,3,9,21,351}
[3,2,2]
=> [2,2]
=> [2]
=> [2]
=> 1
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1,1]
=> 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [3]
=> 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1,1]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,3,9,9,9,33,81,1233}
[7,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,3,9,9,9,33,81,1233}
[6,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,3,9,9,9,33,81,1233}
[6,1,1]
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {0,3,9,9,9,33,81,1233}
[5,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,3,9,9,9,33,81,1233}
[5,2,1]
=> [2,1]
=> [1]
=> [1]
=> ? ∊ {0,3,9,9,9,33,81,1233}
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,1]
=> 1
[4,4]
=> [4]
=> []
=> ?
=> ? ∊ {0,3,9,9,9,33,81,1233}
[4,3,1]
=> [3,1]
=> [1]
=> [1]
=> ? ∊ {0,3,9,9,9,33,81,1233}
[4,2,2]
=> [2,2]
=> [2]
=> [2]
=> 1
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1,1]
=> 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> [2]
=> 1
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [3]
=> 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1,1]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [4]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {3,9,18,21,21,27,33,351,5769}
[8,1]
=> [1]
=> []
=> ?
=> ? ∊ {3,9,18,21,21,27,33,351,5769}
[7,2]
=> [2]
=> []
=> ?
=> ? ∊ {3,9,18,21,21,27,33,351,5769}
[7,1,1]
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {3,9,18,21,21,27,33,351,5769}
[6,3]
=> [3]
=> []
=> ?
=> ? ∊ {3,9,18,21,21,27,33,351,5769}
[6,2,1]
=> [2,1]
=> [1]
=> [1]
=> ? ∊ {3,9,18,21,21,27,33,351,5769}
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,1]
=> 1
[5,4]
=> [4]
=> []
=> ?
=> ? ∊ {3,9,18,21,21,27,33,351,5769}
[5,3,1]
=> [3,1]
=> [1]
=> [1]
=> ? ∊ {3,9,18,21,21,27,33,351,5769}
[5,2,2]
=> [2,2]
=> [2]
=> [2]
=> 1
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1,1]
=> 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {3,9,18,21,21,27,33,351,5769}
[4,3,2]
=> [3,2]
=> [2]
=> [2]
=> 1
[4,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[4,2,2,1]
=> [2,2,1]
=> [2,1]
=> [3]
=> 0
[4,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1,1]
=> 0
[3,3,3]
=> [3,3]
=> [3]
=> [2,1]
=> 1
[3,3,2,1]
=> [3,2,1]
=> [2,1]
=> [3]
=> 0
[3,3,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[3,2,2,2]
=> [2,2,2]
=> [2,2]
=> [4]
=> 0
[3,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1,1]
=> 0
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[2,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> [5]
=> 0
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [3,1,1]
=> 1
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
Description
The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. The Kronecker coefficient is the multiplicity gλμ,ν of the Specht module Sλ in SμSν: SμSν=λgλμ,νSλ This statistic records the Kronecker coefficient g21n2λ,λ, for λn.
Matching statistic: St000506
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000506: Integer partitions ⟶ ℤResult quality: 17% values known / values provided: 46%distinct values known / distinct values provided: 17%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> ?
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {0,1,3}
[2,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,3}
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,3}
[4]
=> []
=> ?
=> ?
=> ? ∊ {1,1,1,9}
[3,1]
=> [1]
=> []
=> ?
=> ? ∊ {1,1,1,9}
[2,2]
=> [2]
=> []
=> ?
=> ? ∊ {1,1,1,9}
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {1,1,1,9}
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,21}
[4,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,21}
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,21}
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[6]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,1,9,9,81}
[5,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,1,9,9,81}
[4,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,1,9,9,81}
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,9,9,81}
[3,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,1,9,9,81}
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,9,9,81}
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,9,9,81}
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[6,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[5,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[7,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[6,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[5,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0
[4,4]
=> [4]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[4,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,3,9,18,21,21,27,33,351,5769}
[8,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,0,3,9,18,21,21,27,33,351,5769}
[7,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,0,3,9,18,21,21,27,33,351,5769}
[7,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,0,3,9,18,21,21,27,33,351,5769}
[6,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,3,9,18,21,21,27,33,351,5769}
[6,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,3,9,18,21,21,27,33,351,5769}
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0
[5,4]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,3,9,18,21,21,27,33,351,5769}
[5,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,3,9,18,21,21,27,33,351,5769}
[5,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,3,9,18,21,21,27,33,351,5769}
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,4,1]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,3,9,18,21,21,27,33,351,5769}
[4,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[3,3,2,1]
=> [3,2,1]
=> [2,1]
=> [1]
=> 0
[3,3,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
[3,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[2,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1
Description
The number of standard desarrangement tableaux of shape equal to the given partition. A '''standard desarrangement tableau''' is a standard tableau whose first ascent is even. Here, an ascent of a standard tableau is an entry i such that i+1 appears to the right or above i in the tableau (with respect to English tableau notation). This is also the nullity of the random-to-random operator (and the random-to-top) operator acting on the simple module of the symmetric group indexed by the given partition. See also: * [[St000046]]: The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition * [[St000500]]: Eigenvalues of the random-to-random operator acting on the regular representation.
Matching statistic: St001122
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001122: Integer partitions ⟶ ℤResult quality: 17% values known / values provided: 46%distinct values known / distinct values provided: 17%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> ?
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {0,1,3}
[2,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,3}
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,3}
[4]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,9}
[3,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,9}
[2,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,9}
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,9}
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,21}
[4,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,21}
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,21}
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[5,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[4,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1,1,9,9,81}
[3,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,1,1,9,9,81}
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,1,1,9,9,81}
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[6,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[5,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[7,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[6,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[5,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[4,4]
=> [4]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[4,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[8,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[7,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[7,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[6,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[6,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[5,4]
=> [4]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[5,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[5,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[4,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[3,3,2,1]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
[3,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
Description
The multiplicity of the sign representation in the Kronecker square corresponding to a partition. The Kronecker coefficient is the multiplicity gλμ,ν of the Specht module Sλ in SμSν: SμSν=λgλμ,νSλ This statistic records the Kronecker coefficient g1nλ,λ, for λn. It equals 1 if and only if λ is self-conjugate.
Matching statistic: St001440
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001440: Integer partitions ⟶ ℤResult quality: 17% values known / values provided: 46%distinct values known / distinct values provided: 17%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> ?
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {0,1,3}
[2,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,3}
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,3}
[4]
=> []
=> ?
=> ?
=> ? ∊ {1,1,1,9}
[3,1]
=> [1]
=> []
=> ?
=> ? ∊ {1,1,1,9}
[2,2]
=> [2]
=> []
=> ?
=> ? ∊ {1,1,1,9}
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {1,1,1,9}
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,21}
[4,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,21}
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,21}
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[6]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,1,9,9,81}
[5,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,1,9,9,81}
[4,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,1,9,9,81}
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,9,9,81}
[3,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,1,9,9,81}
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,9,9,81}
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,9,9,81}
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,3,9,21,351}
[6,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,3,9,21,351}
[5,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,3,9,21,351}
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,3,9,21,351}
[4,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,3,3,9,21,351}
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,3,9,21,351}
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,3,9,21,351}
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,3,3,9,21,351}
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {1,1,1,3,9,9,9,33,81,1233}
[7,1]
=> [1]
=> []
=> ?
=> ? ∊ {1,1,1,3,9,9,9,33,81,1233}
[6,2]
=> [2]
=> []
=> ?
=> ? ∊ {1,1,1,3,9,9,9,33,81,1233}
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {1,1,1,3,9,9,9,33,81,1233}
[5,3]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,3,9,9,9,33,81,1233}
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,3,9,9,9,33,81,1233}
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0
[4,4]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,3,9,9,9,33,81,1233}
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,3,9,9,9,33,81,1233}
[4,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,3,9,9,9,33,81,1233}
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,3,9,9,9,33,81,1233}
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {1,1,1,3,9,18,21,21,27,33,351,5769}
[8,1]
=> [1]
=> []
=> ?
=> ? ∊ {1,1,1,3,9,18,21,21,27,33,351,5769}
[7,2]
=> [2]
=> []
=> ?
=> ? ∊ {1,1,1,3,9,18,21,21,27,33,351,5769}
[7,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {1,1,1,3,9,18,21,21,27,33,351,5769}
[6,3]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,3,9,18,21,21,27,33,351,5769}
[6,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,3,9,18,21,21,27,33,351,5769}
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 0
[5,4]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,3,9,18,21,21,27,33,351,5769}
[5,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,3,9,18,21,21,27,33,351,5769}
[5,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,3,9,18,21,21,27,33,351,5769}
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,4,1]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,3,9,18,21,21,27,33,351,5769}
[4,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[3,3,2,1]
=> [3,2,1]
=> [2,1]
=> [1]
=> 0
[3,3,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
[3,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
Description
The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition.
Matching statistic: St001525
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001525: Integer partitions ⟶ ℤResult quality: 17% values known / values provided: 46%distinct values known / distinct values provided: 17%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> ?
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {0,1,3}
[2,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,3}
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,3}
[4]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,9}
[3,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,9}
[2,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,9}
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,9}
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,21}
[4,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,21}
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,21}
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[5,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[4,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1,1,9,9,81}
[3,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,1,1,9,9,81}
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,1,1,9,9,81}
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[6,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[5,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[7,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[6,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[5,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[4,4]
=> [4]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[4,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[8,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[7,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[7,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[6,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[6,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[5,4]
=> [4]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[5,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[5,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[4,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[3,3,2,1]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
[3,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
Description
The number of symmetric hooks on the diagonal of a partition.
Matching statistic: St001593
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001593: Integer partitions ⟶ ℤResult quality: 17% values known / values provided: 46%distinct values known / distinct values provided: 17%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> ?
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {0,1,3}
[2,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,3}
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,3}
[4]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,9}
[3,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,9}
[2,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,9}
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,9}
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,21}
[4,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,21}
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,21}
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[5,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[4,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1,1,9,9,81}
[3,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,1,1,9,9,81}
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,1,1,9,9,81}
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[6,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[5,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,0,1,3,9,9,9,33,81,1233}
[7,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,1,3,9,9,9,33,81,1233}
[6,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1,3,9,9,9,33,81,1233}
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,9,9,9,33,81,1233}
[5,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,1,3,9,9,9,33,81,1233}
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,9,9,9,33,81,1233}
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[4,4]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,1,3,9,9,9,33,81,1233}
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,9,9,9,33,81,1233}
[4,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,1,3,9,9,9,33,81,1233}
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,1,3,9,9,9,33,81,1233}
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,0,1,3,9,18,21,21,27,33,351,5769}
[8,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,1,3,9,18,21,21,27,33,351,5769}
[7,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1,3,9,18,21,21,27,33,351,5769}
[7,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,9,18,21,21,27,33,351,5769}
[6,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,1,3,9,18,21,21,27,33,351,5769}
[6,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,9,18,21,21,27,33,351,5769}
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[5,4]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,1,3,9,18,21,21,27,33,351,5769}
[5,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,9,18,21,21,27,33,351,5769}
[5,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,1,3,9,18,21,21,27,33,351,5769}
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,9,18,21,21,27,33,351,5769}
[4,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[3,3,2,1]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[3,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
Description
This is the number of standard Young tableaux of the given shifted shape. For an integer partition λ=(λ1,,λk), the shifted diagram is obtained by moving the i-th row in the diagram i1 boxes to the right, i.e., λ={(i,j)|1ik,ijλi+i1}. In particular, this statistic is zero if and only if λi+1=λi for some i.
Matching statistic: St001939
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001939: Integer partitions ⟶ ℤResult quality: 17% values known / values provided: 46%distinct values known / distinct values provided: 17%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> ?
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {0,1,3}
[2,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,3}
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,3}
[4]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,9}
[3,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,9}
[2,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,9}
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,9}
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,21}
[4,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,21}
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,21}
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[5,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[4,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1,1,9,9,81}
[3,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,1,1,9,9,81}
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,1,1,9,9,81}
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[6,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[5,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[7,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[6,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[5,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[4,4]
=> [4]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[4,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[8,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[7,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[7,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[6,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[6,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[5,4]
=> [4]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[5,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[5,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[4,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[3,3,2,1]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
[3,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
Description
The number of parts that are equal to their multiplicity in the integer partition.
Matching statistic: St001940
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001940: Integer partitions ⟶ ℤResult quality: 17% values known / values provided: 46%distinct values known / distinct values provided: 17%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> ?
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {0,1,3}
[2,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,3}
[1,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,3}
[4]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,9}
[3,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,9}
[2,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,9}
[2,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,9}
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,21}
[4,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,21}
[3,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,21}
[2,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,21}
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[5,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[4,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[4,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1,1,9,9,81}
[3,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,1,1,9,9,81}
[3,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,1,1,9,9,81}
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[2,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,1,1,9,9,81}
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[6,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[5,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[5,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[3,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[3,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,1,3,3,9,21,351}
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[7,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[6,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[6,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[5,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[5,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[4,4]
=> [4]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[4,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[4,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,3,9,9,9,33,81,1233}
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[8,1]
=> [1]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[7,2]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[7,1,1]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[6,3]
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[6,2,1]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[5,4]
=> [4]
=> []
=> ?
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[5,3,1]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[5,2,2]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,3,9,18,21,21,27,33,351,5769}
[4,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[3,3,2,1]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,2,2,2]
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
[3,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,2,2,2,1]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
Description
The number of distinct parts that are equal to their multiplicity in the integer partition.
Mp00202: Integer partitions first row removalInteger partitions
Mp00312: Integer partitions Glaisher-FranklinInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000566: Integer partitions ⟶ ℤResult quality: 17% values known / values provided: 44%distinct values known / distinct values provided: 17%
Values
[1]
=> []
=> ?
=> ?
=> ? = 1
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> [1]
=> []
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {0,1,3}
[2,1]
=> [1]
=> [1]
=> []
=> ? ∊ {0,1,3}
[1,1,1]
=> [1,1]
=> [2]
=> []
=> ? ∊ {0,1,3}
[4]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,1,9}
[3,1]
=> [1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,9}
[2,2]
=> [2]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,9}
[2,1,1]
=> [1,1]
=> [2]
=> []
=> ? ∊ {0,1,1,1,9}
[1,1,1,1]
=> [1,1,1]
=> [2,1]
=> [1]
=> ? ∊ {0,1,1,1,9}
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,1,3,21}
[4,1]
=> [1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3,21}
[3,2]
=> [2]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,3,21}
[3,1,1]
=> [1,1]
=> [2]
=> []
=> ? ∊ {0,1,1,1,3,21}
[2,2,1]
=> [2,1]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,1,1]
=> [1,1,1]
=> [2,1]
=> [1]
=> ? ∊ {0,1,1,1,3,21}
[1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> []
=> ? ∊ {0,1,1,1,3,21}
[6]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,1,1,9,9,81}
[5,1]
=> [1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,9,9,81}
[4,2]
=> [2]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,9,9,81}
[4,1,1]
=> [1,1]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,9,9,81}
[3,3]
=> [3]
=> [3]
=> []
=> ? ∊ {0,1,1,1,1,9,9,81}
[3,2,1]
=> [2,1]
=> [1,1,1]
=> [1,1]
=> 0
[3,1,1,1]
=> [1,1,1]
=> [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,9,9,81}
[2,2,2]
=> [2,2]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,2,1,1]
=> [2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> []
=> ? ∊ {0,1,1,1,1,9,9,81}
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,9,9,81}
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,1,1,1,3,3,9,21,351}
[6,1]
=> [1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,3,3,9,21,351}
[5,2]
=> [2]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,3,3,9,21,351}
[5,1,1]
=> [1,1]
=> [2]
=> []
=> ? ∊ {0,1,1,1,3,3,9,21,351}
[4,3]
=> [3]
=> [3]
=> []
=> ? ∊ {0,1,1,1,3,3,9,21,351}
[4,2,1]
=> [2,1]
=> [1,1,1]
=> [1,1]
=> 0
[4,1,1,1]
=> [1,1,1]
=> [2,1]
=> [1]
=> ? ∊ {0,1,1,1,3,3,9,21,351}
[3,3,1]
=> [3,1]
=> [3,1]
=> [1]
=> ? ∊ {0,1,1,1,3,3,9,21,351}
[3,2,2]
=> [2,2]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[3,2,1,1]
=> [2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> []
=> ? ∊ {0,1,1,1,3,3,9,21,351}
[2,2,2,1]
=> [2,2,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [4,1]
=> [1]
=> ? ∊ {0,1,1,1,3,3,9,21,351}
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [4,2]
=> [2]
=> 1
[8]
=> []
=> ?
=> ?
=> ? ∊ {1,1,3,9,9,9,33,81,1233}
[7,1]
=> [1]
=> [1]
=> []
=> ? ∊ {1,1,3,9,9,9,33,81,1233}
[6,2]
=> [2]
=> [1,1]
=> [1]
=> ? ∊ {1,1,3,9,9,9,33,81,1233}
[6,1,1]
=> [1,1]
=> [2]
=> []
=> ? ∊ {1,1,3,9,9,9,33,81,1233}
[5,3]
=> [3]
=> [3]
=> []
=> ? ∊ {1,1,3,9,9,9,33,81,1233}
[5,2,1]
=> [2,1]
=> [1,1,1]
=> [1,1]
=> 0
[5,1,1,1]
=> [1,1,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,3,9,9,9,33,81,1233}
[4,4]
=> [4]
=> [2,2]
=> [2]
=> 1
[4,3,1]
=> [3,1]
=> [3,1]
=> [1]
=> ? ∊ {1,1,3,9,9,9,33,81,1233}
[4,2,2]
=> [2,2]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[4,2,1,1]
=> [2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> []
=> ? ∊ {1,1,3,9,9,9,33,81,1233}
[3,3,2]
=> [3,2]
=> [3,1,1]
=> [1,1]
=> 0
[3,3,1,1]
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
[3,2,2,1]
=> [2,2,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [4,1]
=> [1]
=> ? ∊ {1,1,3,9,9,9,33,81,1233}
[2,2,2,2]
=> [2,2,2]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [4,1,1]
=> [1,1]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [4,2]
=> [2]
=> 1
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [4,2,1]
=> [2,1]
=> 1
[9]
=> []
=> ?
=> ?
=> ? ∊ {1,1,3,9,18,21,21,27,33,351,5769}
[8,1]
=> [1]
=> [1]
=> []
=> ? ∊ {1,1,3,9,18,21,21,27,33,351,5769}
[7,2]
=> [2]
=> [1,1]
=> [1]
=> ? ∊ {1,1,3,9,18,21,21,27,33,351,5769}
[7,1,1]
=> [1,1]
=> [2]
=> []
=> ? ∊ {1,1,3,9,18,21,21,27,33,351,5769}
[6,3]
=> [3]
=> [3]
=> []
=> ? ∊ {1,1,3,9,18,21,21,27,33,351,5769}
[6,2,1]
=> [2,1]
=> [1,1,1]
=> [1,1]
=> 0
[6,1,1,1]
=> [1,1,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,3,9,18,21,21,27,33,351,5769}
[5,4]
=> [4]
=> [2,2]
=> [2]
=> 1
[5,3,1]
=> [3,1]
=> [3,1]
=> [1]
=> ? ∊ {1,1,3,9,18,21,21,27,33,351,5769}
[5,2,2]
=> [2,2]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[5,2,1,1]
=> [2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
[4,4,1]
=> [4,1]
=> [2,2,1]
=> [2,1]
=> 1
[4,3,2]
=> [3,2]
=> [3,1,1]
=> [1,1]
=> 0
[4,3,1,1]
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
[4,2,2,1]
=> [2,2,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[4,2,1,1,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[3,3,2,1]
=> [3,2,1]
=> [3,1,1,1]
=> [1,1,1]
=> 0
[3,3,1,1,1]
=> [3,1,1,1]
=> [3,2,1]
=> [2,1]
=> 1
[3,2,2,2]
=> [2,2,2]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[3,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [4,1,1]
=> [1,1]
=> 0
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [4,2]
=> [2]
=> 1
[2,2,2,2,1]
=> [2,2,2,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [4,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [4,2,1]
=> [2,1]
=> 1
Description
The number of ways to select a row of a Ferrers shape and two cells in this row. Equivalently, if λ=(λ0λ1λm) is an integer partition, then the statistic is 12mi=0λi(λi1).
The following 18 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000929The constant term of the character polynomial of an integer partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St001651The Frankl number of a lattice. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St000478Another weight of a partition according to Alladi. St000934The 2-degree of an integer partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001632The number of indecomposable injective modules I with dimExt1(I,A)=1 for the incidence algebra A of a poset. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000782The indicator function of whether a given perfect matching is an L & P matching. St000455The second largest eigenvalue of a graph if it is integral. St000068The number of minimal elements in a poset. St001058The breadth of the ordered tree.