searching the database
Your data matches 20 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001389
Mp00079: Set partitions —shape⟶ Integer partitions
St001389: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001389: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
 => [1]
 => 1
{{1,2}}
 => [2]
 => 2
{{1},{2}}
 => [1,1]
 => 1
{{1,2,3}}
 => [3]
 => 3
{{1,2},{3}}
 => [2,1]
 => 2
{{1,3},{2}}
 => [2,1]
 => 2
{{1},{2,3}}
 => [2,1]
 => 2
{{1},{2},{3}}
 => [1,1,1]
 => 1
{{1,2,3,4}}
 => [4]
 => 4
{{1,2,3},{4}}
 => [3,1]
 => 3
{{1,2,4},{3}}
 => [3,1]
 => 3
{{1,2},{3,4}}
 => [2,2]
 => 3
{{1,2},{3},{4}}
 => [2,1,1]
 => 2
{{1,3,4},{2}}
 => [3,1]
 => 3
{{1,3},{2,4}}
 => [2,2]
 => 3
{{1,3},{2},{4}}
 => [2,1,1]
 => 2
{{1,4},{2,3}}
 => [2,2]
 => 3
{{1},{2,3,4}}
 => [3,1]
 => 3
{{1},{2,3},{4}}
 => [2,1,1]
 => 2
{{1,4},{2},{3}}
 => [2,1,1]
 => 2
{{1},{2,4},{3}}
 => [2,1,1]
 => 2
{{1},{2},{3,4}}
 => [2,1,1]
 => 2
{{1},{2},{3},{4}}
 => [1,1,1,1]
 => 1
{{1,2,3,4,5}}
 => [5]
 => 5
{{1,2,3,4},{5}}
 => [4,1]
 => 4
{{1,2,3,5},{4}}
 => [4,1]
 => 4
{{1,2,3},{4,5}}
 => [3,2]
 => 5
{{1,2,3},{4},{5}}
 => [3,1,1]
 => 3
{{1,2,4,5},{3}}
 => [4,1]
 => 4
{{1,2,4},{3,5}}
 => [3,2]
 => 5
{{1,2,4},{3},{5}}
 => [3,1,1]
 => 3
{{1,2,5},{3,4}}
 => [3,2]
 => 5
{{1,2},{3,4,5}}
 => [3,2]
 => 5
{{1,2},{3,4},{5}}
 => [2,2,1]
 => 3
{{1,2,5},{3},{4}}
 => [3,1,1]
 => 3
{{1,2},{3,5},{4}}
 => [2,2,1]
 => 3
{{1,2},{3},{4,5}}
 => [2,2,1]
 => 3
{{1,2},{3},{4},{5}}
 => [2,1,1,1]
 => 2
{{1,3,4,5},{2}}
 => [4,1]
 => 4
{{1,3,4},{2,5}}
 => [3,2]
 => 5
{{1,3,4},{2},{5}}
 => [3,1,1]
 => 3
{{1,3,5},{2,4}}
 => [3,2]
 => 5
{{1,3},{2,4,5}}
 => [3,2]
 => 5
{{1,3},{2,4},{5}}
 => [2,2,1]
 => 3
{{1,3,5},{2},{4}}
 => [3,1,1]
 => 3
{{1,3},{2,5},{4}}
 => [2,2,1]
 => 3
{{1,3},{2},{4,5}}
 => [2,2,1]
 => 3
{{1,3},{2},{4},{5}}
 => [2,1,1,1]
 => 2
{{1,4,5},{2,3}}
 => [3,2]
 => 5
{{1,4},{2,3,5}}
 => [3,2]
 => 5
Description
The number of partitions of the same length below the given integer partition.
For a partition $\lambda_1 \geq \dots \lambda_k > 0$, this number is
$$ \det\left( \binom{\lambda_{k+1-i}}{j-i+1} \right)_{1 \le i,j \le k}.$$
Matching statistic: St000108
Mp00079: Set partitions —shape⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000108: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000108: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
 => [1]
 => [1]
 => []
 => 1
{{1,2}}
 => [2]
 => [1,1]
 => [1]
 => 2
{{1},{2}}
 => [1,1]
 => [2]
 => []
 => 1
{{1,2,3}}
 => [3]
 => [1,1,1]
 => [1,1]
 => 3
{{1,2},{3}}
 => [2,1]
 => [2,1]
 => [1]
 => 2
{{1,3},{2}}
 => [2,1]
 => [2,1]
 => [1]
 => 2
{{1},{2,3}}
 => [2,1]
 => [2,1]
 => [1]
 => 2
{{1},{2},{3}}
 => [1,1,1]
 => [3]
 => []
 => 1
{{1,2,3,4}}
 => [4]
 => [1,1,1,1]
 => [1,1,1]
 => 4
{{1,2,3},{4}}
 => [3,1]
 => [2,1,1]
 => [1,1]
 => 3
{{1,2,4},{3}}
 => [3,1]
 => [2,1,1]
 => [1,1]
 => 3
{{1,2},{3,4}}
 => [2,2]
 => [2,2]
 => [2]
 => 3
{{1,2},{3},{4}}
 => [2,1,1]
 => [3,1]
 => [1]
 => 2
{{1,3,4},{2}}
 => [3,1]
 => [2,1,1]
 => [1,1]
 => 3
{{1,3},{2,4}}
 => [2,2]
 => [2,2]
 => [2]
 => 3
{{1,3},{2},{4}}
 => [2,1,1]
 => [3,1]
 => [1]
 => 2
{{1,4},{2,3}}
 => [2,2]
 => [2,2]
 => [2]
 => 3
{{1},{2,3,4}}
 => [3,1]
 => [2,1,1]
 => [1,1]
 => 3
{{1},{2,3},{4}}
 => [2,1,1]
 => [3,1]
 => [1]
 => 2
{{1,4},{2},{3}}
 => [2,1,1]
 => [3,1]
 => [1]
 => 2
{{1},{2,4},{3}}
 => [2,1,1]
 => [3,1]
 => [1]
 => 2
{{1},{2},{3,4}}
 => [2,1,1]
 => [3,1]
 => [1]
 => 2
{{1},{2},{3},{4}}
 => [1,1,1,1]
 => [4]
 => []
 => 1
{{1,2,3,4,5}}
 => [5]
 => [1,1,1,1,1]
 => [1,1,1,1]
 => 5
{{1,2,3,4},{5}}
 => [4,1]
 => [2,1,1,1]
 => [1,1,1]
 => 4
{{1,2,3,5},{4}}
 => [4,1]
 => [2,1,1,1]
 => [1,1,1]
 => 4
{{1,2,3},{4,5}}
 => [3,2]
 => [2,2,1]
 => [2,1]
 => 5
{{1,2,3},{4},{5}}
 => [3,1,1]
 => [3,1,1]
 => [1,1]
 => 3
{{1,2,4,5},{3}}
 => [4,1]
 => [2,1,1,1]
 => [1,1,1]
 => 4
{{1,2,4},{3,5}}
 => [3,2]
 => [2,2,1]
 => [2,1]
 => 5
{{1,2,4},{3},{5}}
 => [3,1,1]
 => [3,1,1]
 => [1,1]
 => 3
{{1,2,5},{3,4}}
 => [3,2]
 => [2,2,1]
 => [2,1]
 => 5
{{1,2},{3,4,5}}
 => [3,2]
 => [2,2,1]
 => [2,1]
 => 5
{{1,2},{3,4},{5}}
 => [2,2,1]
 => [3,2]
 => [2]
 => 3
{{1,2,5},{3},{4}}
 => [3,1,1]
 => [3,1,1]
 => [1,1]
 => 3
{{1,2},{3,5},{4}}
 => [2,2,1]
 => [3,2]
 => [2]
 => 3
{{1,2},{3},{4,5}}
 => [2,2,1]
 => [3,2]
 => [2]
 => 3
{{1,2},{3},{4},{5}}
 => [2,1,1,1]
 => [4,1]
 => [1]
 => 2
{{1,3,4,5},{2}}
 => [4,1]
 => [2,1,1,1]
 => [1,1,1]
 => 4
{{1,3,4},{2,5}}
 => [3,2]
 => [2,2,1]
 => [2,1]
 => 5
{{1,3,4},{2},{5}}
 => [3,1,1]
 => [3,1,1]
 => [1,1]
 => 3
{{1,3,5},{2,4}}
 => [3,2]
 => [2,2,1]
 => [2,1]
 => 5
{{1,3},{2,4,5}}
 => [3,2]
 => [2,2,1]
 => [2,1]
 => 5
{{1,3},{2,4},{5}}
 => [2,2,1]
 => [3,2]
 => [2]
 => 3
{{1,3,5},{2},{4}}
 => [3,1,1]
 => [3,1,1]
 => [1,1]
 => 3
{{1,3},{2,5},{4}}
 => [2,2,1]
 => [3,2]
 => [2]
 => 3
{{1,3},{2},{4,5}}
 => [2,2,1]
 => [3,2]
 => [2]
 => 3
{{1,3},{2},{4},{5}}
 => [2,1,1,1]
 => [4,1]
 => [1]
 => 2
{{1,4,5},{2,3}}
 => [3,2]
 => [2,2,1]
 => [2,1]
 => 5
{{1,4},{2,3,5}}
 => [3,2]
 => [2,2,1]
 => [2,1]
 => 5
Description
The number of partitions contained in the given partition.
Matching statistic: St000777
Mp00128: Set partitions —to composition⟶ Integer compositions
Mp00173: Integer compositions —rotate front to back⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 24% ●values known / values provided: 24%●distinct values known / distinct values provided: 88%
Mp00173: Integer compositions —rotate front to back⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 24% ●values known / values provided: 24%●distinct values known / distinct values provided: 88%
Values
{{1}}
 => [1] => [1] => ([],1)
 => 1
{{1,2}}
 => [2] => [2] => ([],2)
 => ? = 1
{{1},{2}}
 => [1,1] => [1,1] => ([(0,1)],2)
 => 2
{{1,2,3}}
 => [3] => [3] => ([],3)
 => ? ∊ {1,2,2}
{{1,2},{3}}
 => [2,1] => [1,2] => ([(1,2)],3)
 => ? ∊ {1,2,2}
{{1,3},{2}}
 => [2,1] => [1,2] => ([(1,2)],3)
 => ? ∊ {1,2,2}
{{1},{2,3}}
 => [1,2] => [2,1] => ([(0,2),(1,2)],3)
 => 3
{{1},{2},{3}}
 => [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
 => 2
{{1,2,3,4}}
 => [4] => [4] => ([],4)
 => ? ∊ {1,2,2,2,2,2,3,3,3,3}
{{1,2,3},{4}}
 => [3,1] => [1,3] => ([(2,3)],4)
 => ? ∊ {1,2,2,2,2,2,3,3,3,3}
{{1,2,4},{3}}
 => [3,1] => [1,3] => ([(2,3)],4)
 => ? ∊ {1,2,2,2,2,2,3,3,3,3}
{{1,2},{3,4}}
 => [2,2] => [2,2] => ([(1,3),(2,3)],4)
 => ? ∊ {1,2,2,2,2,2,3,3,3,3}
{{1,2},{3},{4}}
 => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ? ∊ {1,2,2,2,2,2,3,3,3,3}
{{1,3,4},{2}}
 => [3,1] => [1,3] => ([(2,3)],4)
 => ? ∊ {1,2,2,2,2,2,3,3,3,3}
{{1,3},{2,4}}
 => [2,2] => [2,2] => ([(1,3),(2,3)],4)
 => ? ∊ {1,2,2,2,2,2,3,3,3,3}
{{1,3},{2},{4}}
 => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ? ∊ {1,2,2,2,2,2,3,3,3,3}
{{1,4},{2,3}}
 => [2,2] => [2,2] => ([(1,3),(2,3)],4)
 => ? ∊ {1,2,2,2,2,2,3,3,3,3}
{{1},{2,3,4}}
 => [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => 3
{{1},{2,3},{4}}
 => [1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3
{{1,4},{2},{3}}
 => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ? ∊ {1,2,2,2,2,2,3,3,3,3}
{{1},{2,4},{3}}
 => [1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3
{{1},{2},{3,4}}
 => [1,1,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 4
{{1},{2},{3},{4}}
 => [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
{{1,2,3,4,5}}
 => [5] => [5] => ([],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,2,3,4},{5}}
 => [4,1] => [1,4] => ([(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,2,3,5},{4}}
 => [4,1] => [1,4] => ([(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,2,3},{4,5}}
 => [3,2] => [2,3] => ([(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,2,3},{4},{5}}
 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,2,4,5},{3}}
 => [4,1] => [1,4] => ([(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,2,4},{3,5}}
 => [3,2] => [2,3] => ([(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,2,4},{3},{5}}
 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,2,5},{3,4}}
 => [3,2] => [2,3] => ([(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,2},{3,4,5}}
 => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,2},{3,4},{5}}
 => [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,2,5},{3},{4}}
 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,2},{3,5},{4}}
 => [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,2},{3},{4,5}}
 => [2,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,2},{3},{4},{5}}
 => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,3,4,5},{2}}
 => [4,1] => [1,4] => ([(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,3,4},{2,5}}
 => [3,2] => [2,3] => ([(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,3,4},{2},{5}}
 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,3,5},{2,4}}
 => [3,2] => [2,3] => ([(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,3},{2,4,5}}
 => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,3},{2,4},{5}}
 => [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,3,5},{2},{4}}
 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,3},{2,5},{4}}
 => [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,3},{2},{4,5}}
 => [2,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,3},{2},{4},{5}}
 => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,4,5},{2,3}}
 => [3,2] => [2,3] => ([(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,4},{2,3,5}}
 => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,4},{2,3},{5}}
 => [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,5},{2,3,4}}
 => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1},{2,3,4,5}}
 => [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 3
{{1},{2,3,4},{5}}
 => [1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
{{1,5},{2,3},{4}}
 => [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1},{2,3,5},{4}}
 => [1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
{{1},{2,3},{4,5}}
 => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 5
{{1},{2,3},{4},{5}}
 => [1,2,1,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
{{1,4,5},{2},{3}}
 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,4},{2,5},{3}}
 => [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,4},{2},{3,5}}
 => [2,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,4},{2},{3},{5}}
 => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1,5},{2,4},{3}}
 => [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1},{2,4,5},{3}}
 => [1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
{{1},{2,4},{3,5}}
 => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 5
{{1},{2,4},{3},{5}}
 => [1,2,1,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
{{1,5},{2},{3,4}}
 => [2,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5}
{{1},{2,5},{3,4}}
 => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 5
{{1},{2},{3,4,5}}
 => [1,1,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
{{1},{2},{3,4},{5}}
 => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
{{1},{2,5},{3},{4}}
 => [1,2,1,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
{{1},{2},{3,5},{4}}
 => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
{{1},{2},{3},{4,5}}
 => [1,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
{{1},{2},{3},{4},{5}}
 => [1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
{{1},{2,3,4,5,6}}
 => [1,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => 3
{{1},{2,3,4,5},{6}}
 => [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
{{1},{2,3,4,6},{5}}
 => [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
{{1},{2,3,4},{5,6}}
 => [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1},{2,3,4},{5},{6}}
 => [1,3,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
{{1},{2,3,5,6},{4}}
 => [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
{{1},{2,3,5},{4,6}}
 => [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1},{2,3,5},{4},{6}}
 => [1,3,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
{{1},{2,3,6},{4,5}}
 => [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1},{2,3},{4,5,6}}
 => [1,2,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1},{2,3},{4,5},{6}}
 => [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1},{2,3,6},{4},{5}}
 => [1,3,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
{{1},{2,3},{4,6},{5}}
 => [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1},{2,3},{4},{5,6}}
 => [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1},{2,3},{4},{5},{6}}
 => [1,2,1,1,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
{{1},{2,4,5,6},{3}}
 => [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
{{1},{2,4,5},{3,6}}
 => [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1},{2,4,5},{3},{6}}
 => [1,3,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
{{1},{2,4,6},{3,5}}
 => [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1},{2,4},{3,5,6}}
 => [1,2,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1},{2,4},{3,5},{6}}
 => [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1},{2,4,6},{3},{5}}
 => [1,3,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
{{1},{2,4},{3,6},{5}}
 => [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1},{2,4},{3},{5,6}}
 => [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1},{2,4},{3},{5},{6}}
 => [1,2,1,1,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3
{{1},{2,5,6},{3,4}}
 => [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001232
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00079: Set partitions —shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00124: Dyck paths —Adin-Bagno-Roichman transformation⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 100%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00124: Dyck paths —Adin-Bagno-Roichman transformation⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 100%
Values
{{1}}
 => [1]
 => [1,0,1,0]
 => [1,0,1,0]
 => 1
{{1,2}}
 => [2]
 => [1,1,0,0,1,0]
 => [1,1,0,0,1,0]
 => 1
{{1},{2}}
 => [1,1]
 => [1,0,1,1,0,0]
 => [1,1,0,1,0,0]
 => 2
{{1,2,3}}
 => [3]
 => [1,1,1,0,0,0,1,0]
 => [1,1,1,0,0,0,1,0]
 => 1
{{1,2},{3}}
 => [2,1]
 => [1,0,1,0,1,0]
 => [1,0,1,0,1,0]
 => ? ∊ {2,2,2}
{{1,3},{2}}
 => [2,1]
 => [1,0,1,0,1,0]
 => [1,0,1,0,1,0]
 => ? ∊ {2,2,2}
{{1},{2,3}}
 => [2,1]
 => [1,0,1,0,1,0]
 => [1,0,1,0,1,0]
 => ? ∊ {2,2,2}
{{1},{2},{3}}
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => [1,1,1,0,1,0,0,0]
 => 3
{{1,2,3,4}}
 => [4]
 => [1,1,1,1,0,0,0,0,1,0]
 => [1,1,1,1,0,0,0,0,1,0]
 => 1
{{1,2,3},{4}}
 => [3,1]
 => [1,1,0,1,0,0,1,0]
 => [1,0,1,1,0,0,1,0]
 => 3
{{1,2,4},{3}}
 => [3,1]
 => [1,1,0,1,0,0,1,0]
 => [1,0,1,1,0,0,1,0]
 => 3
{{1,2},{3,4}}
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => [1,1,1,0,0,1,0,0]
 => 2
{{1,2},{3},{4}}
 => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? ∊ {2,2,2,3,3,3}
{{1,3,4},{2}}
 => [3,1]
 => [1,1,0,1,0,0,1,0]
 => [1,0,1,1,0,0,1,0]
 => 3
{{1,3},{2,4}}
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => [1,1,1,0,0,1,0,0]
 => 2
{{1,3},{2},{4}}
 => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? ∊ {2,2,2,3,3,3}
{{1,4},{2,3}}
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => [1,1,1,0,0,1,0,0]
 => 2
{{1},{2,3,4}}
 => [3,1]
 => [1,1,0,1,0,0,1,0]
 => [1,0,1,1,0,0,1,0]
 => 3
{{1},{2,3},{4}}
 => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? ∊ {2,2,2,3,3,3}
{{1,4},{2},{3}}
 => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? ∊ {2,2,2,3,3,3}
{{1},{2,4},{3}}
 => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? ∊ {2,2,2,3,3,3}
{{1},{2},{3,4}}
 => [2,1,1]
 => [1,0,1,1,0,1,0,0]
 => [1,0,1,1,0,1,0,0]
 => ? ∊ {2,2,2,3,3,3}
{{1},{2},{3},{4}}
 => [1,1,1,1]
 => [1,0,1,1,1,1,0,0,0,0]
 => [1,1,1,1,0,1,0,0,0,0]
 => 4
{{1,2,3,4,5}}
 => [5]
 => [1,1,1,1,1,0,0,0,0,0,1,0]
 => [1,1,1,1,1,0,0,0,0,0,1,0]
 => 1
{{1,2,3,4},{5}}
 => [4,1]
 => [1,1,1,0,1,0,0,0,1,0]
 => [1,1,0,1,1,0,0,0,1,0]
 => 5
{{1,2,3,5},{4}}
 => [4,1]
 => [1,1,1,0,1,0,0,0,1,0]
 => [1,1,0,1,1,0,0,0,1,0]
 => 5
{{1,2,3},{4,5}}
 => [3,2]
 => [1,1,0,0,1,0,1,0]
 => [1,1,0,0,1,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,2,3},{4},{5}}
 => [3,1,1]
 => [1,0,1,1,0,0,1,0]
 => [1,1,0,1,0,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,2,4,5},{3}}
 => [4,1]
 => [1,1,1,0,1,0,0,0,1,0]
 => [1,1,0,1,1,0,0,0,1,0]
 => 5
{{1,2,4},{3,5}}
 => [3,2]
 => [1,1,0,0,1,0,1,0]
 => [1,1,0,0,1,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,2,4},{3},{5}}
 => [3,1,1]
 => [1,0,1,1,0,0,1,0]
 => [1,1,0,1,0,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,2,5},{3,4}}
 => [3,2]
 => [1,1,0,0,1,0,1,0]
 => [1,1,0,0,1,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,2},{3,4,5}}
 => [3,2]
 => [1,1,0,0,1,0,1,0]
 => [1,1,0,0,1,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,2},{3,4},{5}}
 => [2,2,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,0,1,0,1,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,2,5},{3},{4}}
 => [3,1,1]
 => [1,0,1,1,0,0,1,0]
 => [1,1,0,1,0,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,2},{3,5},{4}}
 => [2,2,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,0,1,0,1,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,2},{3},{4,5}}
 => [2,2,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,0,1,0,1,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,2},{3},{4},{5}}
 => [2,1,1,1]
 => [1,0,1,1,1,0,1,0,0,0]
 => [1,1,0,1,1,0,1,0,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,3,4,5},{2}}
 => [4,1]
 => [1,1,1,0,1,0,0,0,1,0]
 => [1,1,0,1,1,0,0,0,1,0]
 => 5
{{1,3,4},{2,5}}
 => [3,2]
 => [1,1,0,0,1,0,1,0]
 => [1,1,0,0,1,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,3,4},{2},{5}}
 => [3,1,1]
 => [1,0,1,1,0,0,1,0]
 => [1,1,0,1,0,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,3,5},{2,4}}
 => [3,2]
 => [1,1,0,0,1,0,1,0]
 => [1,1,0,0,1,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,3},{2,4,5}}
 => [3,2]
 => [1,1,0,0,1,0,1,0]
 => [1,1,0,0,1,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,3},{2,4},{5}}
 => [2,2,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,0,1,0,1,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,3,5},{2},{4}}
 => [3,1,1]
 => [1,0,1,1,0,0,1,0]
 => [1,1,0,1,0,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,3},{2,5},{4}}
 => [2,2,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,0,1,0,1,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,3},{2},{4,5}}
 => [2,2,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,0,1,0,1,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,3},{2},{4},{5}}
 => [2,1,1,1]
 => [1,0,1,1,1,0,1,0,0,0]
 => [1,1,0,1,1,0,1,0,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,4,5},{2,3}}
 => [3,2]
 => [1,1,0,0,1,0,1,0]
 => [1,1,0,0,1,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,4},{2,3,5}}
 => [3,2]
 => [1,1,0,0,1,0,1,0]
 => [1,1,0,0,1,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,4},{2,3},{5}}
 => [2,2,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,0,1,0,1,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,5},{2,3,4}}
 => [3,2]
 => [1,1,0,0,1,0,1,0]
 => [1,1,0,0,1,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1},{2,3,4,5}}
 => [4,1]
 => [1,1,1,0,1,0,0,0,1,0]
 => [1,1,0,1,1,0,0,0,1,0]
 => 5
{{1},{2,3,4},{5}}
 => [3,1,1]
 => [1,0,1,1,0,0,1,0]
 => [1,1,0,1,0,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,5},{2,3},{4}}
 => [2,2,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,0,1,0,1,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1},{2,3,5},{4}}
 => [3,1,1]
 => [1,0,1,1,0,0,1,0]
 => [1,1,0,1,0,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1},{2,3},{4,5}}
 => [2,2,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,0,1,0,1,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1},{2,3},{4},{5}}
 => [2,1,1,1]
 => [1,0,1,1,1,0,1,0,0,0]
 => [1,1,0,1,1,0,1,0,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,4,5},{2},{3}}
 => [3,1,1]
 => [1,0,1,1,0,0,1,0]
 => [1,1,0,1,0,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,4},{2,5},{3}}
 => [2,2,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,0,1,0,1,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,4},{2},{3,5}}
 => [2,2,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,0,1,0,1,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,4},{2},{3},{5}}
 => [2,1,1,1]
 => [1,0,1,1,1,0,1,0,0,0]
 => [1,1,0,1,1,0,1,0,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,5},{2,4},{3}}
 => [2,2,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,0,1,0,1,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1},{2,4,5},{3}}
 => [3,1,1]
 => [1,0,1,1,0,0,1,0]
 => [1,1,0,1,0,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1},{2,4},{3,5}}
 => [2,2,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,0,1,0,1,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1},{2,4},{3},{5}}
 => [2,1,1,1]
 => [1,0,1,1,1,0,1,0,0,0]
 => [1,1,0,1,1,0,1,0,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1,5},{2},{3,4}}
 => [2,2,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,0,1,0,1,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1},{2,5},{3,4}}
 => [2,2,1]
 => [1,0,1,0,1,1,0,0]
 => [1,1,0,1,0,1,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1},{2},{3,4,5}}
 => [3,1,1]
 => [1,0,1,1,0,0,1,0]
 => [1,1,0,1,0,0,1,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1},{2},{3,4},{5}}
 => [2,1,1,1]
 => [1,0,1,1,1,0,1,0,0,0]
 => [1,1,0,1,1,0,1,0,0,0]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5}
{{1},{2},{3},{4},{5}}
 => [1,1,1,1,1]
 => [1,0,1,1,1,1,1,0,0,0,0,0]
 => [1,1,1,1,1,0,1,0,0,0,0,0]
 => 5
{{1,2,3,4,5,6}}
 => [6]
 => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
 => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
 => 1
{{1,2,3,4,5},{6}}
 => [5,1]
 => [1,1,1,1,0,1,0,0,0,0,1,0]
 => [1,1,1,0,1,1,0,0,0,0,1,0]
 => 7
{{1,2,3,4,6},{5}}
 => [5,1]
 => [1,1,1,1,0,1,0,0,0,0,1,0]
 => [1,1,1,0,1,1,0,0,0,0,1,0]
 => 7
{{1,2,3,4},{5,6}}
 => [4,2]
 => [1,1,1,0,0,1,0,0,1,0]
 => [1,1,0,0,1,1,0,0,1,0]
 => 3
{{1,2,3,4},{5},{6}}
 => [4,1,1]
 => [1,1,0,1,1,0,0,0,1,0]
 => [1,0,1,1,1,0,0,0,1,0]
 => 4
{{1,2,3,5,6},{4}}
 => [5,1]
 => [1,1,1,1,0,1,0,0,0,0,1,0]
 => [1,1,1,0,1,1,0,0,0,0,1,0]
 => 7
{{1,2,3,5},{4,6}}
 => [4,2]
 => [1,1,1,0,0,1,0,0,1,0]
 => [1,1,0,0,1,1,0,0,1,0]
 => 3
{{1,2,3,5},{4},{6}}
 => [4,1,1]
 => [1,1,0,1,1,0,0,0,1,0]
 => [1,0,1,1,1,0,0,0,1,0]
 => 4
{{1,2,3,6},{4,5}}
 => [4,2]
 => [1,1,1,0,0,1,0,0,1,0]
 => [1,1,0,0,1,1,0,0,1,0]
 => 3
{{1,2,3},{4,5,6}}
 => [3,3]
 => [1,1,1,0,0,0,1,1,0,0]
 => [1,1,1,1,0,0,0,1,0,0]
 => 2
{{1,2,3,6},{4},{5}}
 => [4,1,1]
 => [1,1,0,1,1,0,0,0,1,0]
 => [1,0,1,1,1,0,0,0,1,0]
 => 4
{{1,2,4,5,6},{3}}
 => [5,1]
 => [1,1,1,1,0,1,0,0,0,0,1,0]
 => [1,1,1,0,1,1,0,0,0,0,1,0]
 => 7
{{1,2,4,5},{3,6}}
 => [4,2]
 => [1,1,1,0,0,1,0,0,1,0]
 => [1,1,0,0,1,1,0,0,1,0]
 => 3
{{1,2,4,5},{3},{6}}
 => [4,1,1]
 => [1,1,0,1,1,0,0,0,1,0]
 => [1,0,1,1,1,0,0,0,1,0]
 => 4
{{1,2,4,6},{3,5}}
 => [4,2]
 => [1,1,1,0,0,1,0,0,1,0]
 => [1,1,0,0,1,1,0,0,1,0]
 => 3
{{1,2,4},{3,5,6}}
 => [3,3]
 => [1,1,1,0,0,0,1,1,0,0]
 => [1,1,1,1,0,0,0,1,0,0]
 => 2
{{1,2,4,6},{3},{5}}
 => [4,1,1]
 => [1,1,0,1,1,0,0,0,1,0]
 => [1,0,1,1,1,0,0,0,1,0]
 => 4
{{1,2,5,6},{3,4}}
 => [4,2]
 => [1,1,1,0,0,1,0,0,1,0]
 => [1,1,0,0,1,1,0,0,1,0]
 => 3
{{1,2,5},{3,4,6}}
 => [3,3]
 => [1,1,1,0,0,0,1,1,0,0]
 => [1,1,1,1,0,0,0,1,0,0]
 => 2
{{1,2,6},{3,4,5}}
 => [3,3]
 => [1,1,1,0,0,0,1,1,0,0]
 => [1,1,1,1,0,0,0,1,0,0]
 => 2
{{1,2},{3,4,5,6}}
 => [4,2]
 => [1,1,1,0,0,1,0,0,1,0]
 => [1,1,0,0,1,1,0,0,1,0]
 => 3
{{1,2},{3,4},{5,6}}
 => [2,2,2]
 => [1,1,0,0,1,1,1,0,0,0]
 => [1,1,1,1,0,0,1,0,0,0]
 => 3
{{1,2,5,6},{3},{4}}
 => [4,1,1]
 => [1,1,0,1,1,0,0,0,1,0]
 => [1,0,1,1,1,0,0,0,1,0]
 => 4
{{1,2},{3,5},{4,6}}
 => [2,2,2]
 => [1,1,0,0,1,1,1,0,0,0]
 => [1,1,1,1,0,0,1,0,0,0]
 => 3
{{1,2},{3,6},{4,5}}
 => [2,2,2]
 => [1,1,0,0,1,1,1,0,0,0]
 => [1,1,1,1,0,0,1,0,0,0]
 => 3
{{1,3,4,5,6},{2}}
 => [5,1]
 => [1,1,1,1,0,1,0,0,0,0,1,0]
 => [1,1,1,0,1,1,0,0,0,0,1,0]
 => 7
{{1,3,4,5},{2,6}}
 => [4,2]
 => [1,1,1,0,0,1,0,0,1,0]
 => [1,1,0,0,1,1,0,0,1,0]
 => 3
{{1,3,4,5},{2},{6}}
 => [4,1,1]
 => [1,1,0,1,1,0,0,0,1,0]
 => [1,0,1,1,1,0,0,0,1,0]
 => 4
{{1,3,4,6},{2,5}}
 => [4,2]
 => [1,1,1,0,0,1,0,0,1,0]
 => [1,1,0,0,1,1,0,0,1,0]
 => 3
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000454
(load all 27 compositions to match this statistic)
(load all 27 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00157: Graphs —connected complement⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 88%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00157: Graphs —connected complement⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 88%
Values
{{1}}
 => [1] => ([],1)
 => ([],1)
 => 0 = 1 - 1
{{1,2}}
 => [2,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => 1 = 2 - 1
{{1},{2}}
 => [1,2] => ([],2)
 => ([],2)
 => 0 = 1 - 1
{{1,2,3}}
 => [2,3,1] => ([(0,2),(1,2)],3)
 => ([(0,2),(1,2)],3)
 => ? = 2 - 1
{{1,2},{3}}
 => [2,1,3] => ([(1,2)],3)
 => ([(1,2)],3)
 => 1 = 2 - 1
{{1,3},{2}}
 => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 3 - 1
{{1},{2,3}}
 => [1,3,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => 1 = 2 - 1
{{1},{2},{3}}
 => [1,2,3] => ([],3)
 => ([],3)
 => 0 = 1 - 1
{{1,2,3,4}}
 => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => ? ∊ {2,2,3,3,3,3} - 1
{{1,2,3},{4}}
 => [2,3,1,4] => ([(1,3),(2,3)],4)
 => ([(1,3),(2,3)],4)
 => ? ∊ {2,2,3,3,3,3} - 1
{{1,2,4},{3}}
 => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,3,3,3,3} - 1
{{1,2},{3,4}}
 => [2,1,4,3] => ([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => 1 = 2 - 1
{{1,2},{3},{4}}
 => [2,1,3,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => 1 = 2 - 1
{{1,3,4},{2}}
 => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,3,3,3,3} - 1
{{1,3},{2,4}}
 => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 2 = 3 - 1
{{1,3},{2},{4}}
 => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
{{1,4},{2,3}}
 => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
{{1},{2,3,4}}
 => [1,3,4,2] => ([(1,3),(2,3)],4)
 => ([(1,3),(2,3)],4)
 => ? ∊ {2,2,3,3,3,3} - 1
{{1},{2,3},{4}}
 => [1,3,2,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => 1 = 2 - 1
{{1,4},{2},{3}}
 => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,3,3,3,3} - 1
{{1},{2,4},{3}}
 => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
{{1},{2},{3,4}}
 => [1,2,4,3] => ([(2,3)],4)
 => ([(2,3)],4)
 => 1 = 2 - 1
{{1},{2},{3},{4}}
 => [1,2,3,4] => ([],4)
 => ([],4)
 => 0 = 1 - 1
{{1,2,3,4,5}}
 => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 2 = 3 - 1
{{1,2,3,4},{5}}
 => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,4),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,3,5},{4}}
 => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,3},{4,5}}
 => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
 => ([(0,1),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,3},{4},{5}}
 => [2,3,1,4,5] => ([(2,4),(3,4)],5)
 => ([(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,4,5},{3}}
 => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,4},{3,5}}
 => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,4},{3},{5}}
 => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,5},{3,4}}
 => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2},{3,4,5}}
 => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
 => ([(0,1),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2},{3,4},{5}}
 => [2,1,4,3,5] => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => 1 = 2 - 1
{{1,2,5},{3},{4}}
 => [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2},{3,5},{4}}
 => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => 2 = 3 - 1
{{1,2},{3},{4,5}}
 => [2,1,3,5,4] => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => 1 = 2 - 1
{{1,2},{3},{4},{5}}
 => [2,1,3,4,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => 1 = 2 - 1
{{1,3,4,5},{2}}
 => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3,4},{2,5}}
 => [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3,4},{2},{5}}
 => [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3,5},{2,4}}
 => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
{{1,3},{2,4,5}}
 => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3},{2,4},{5}}
 => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4)],5)
 => 2 = 3 - 1
{{1,3,5},{2},{4}}
 => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3},{2,5},{4}}
 => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3},{2},{4,5}}
 => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(2,3),(2,4),(3,4)],5)
 => 2 = 3 - 1
{{1,3},{2},{4},{5}}
 => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2 = 3 - 1
{{1,4,5},{2,3}}
 => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4},{2,3,5}}
 => [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4},{2,3},{5}}
 => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
{{1,5},{2,3,4}}
 => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,3,4,5}}
 => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,4),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,3,4},{5}}
 => [1,3,4,2,5] => ([(2,4),(3,4)],5)
 => ([(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,5},{2,3},{4}}
 => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,3,5},{4}}
 => [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,3},{4,5}}
 => [1,3,2,5,4] => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => 1 = 2 - 1
{{1},{2,3},{4},{5}}
 => [1,3,2,4,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => 1 = 2 - 1
{{1,4,5},{2},{3}}
 => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4},{2,5},{3}}
 => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4},{2},{3,5}}
 => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4},{2},{3},{5}}
 => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1,5},{2,4},{3}}
 => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4 = 5 - 1
{{1},{2,4,5},{3}}
 => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,4},{3,5}}
 => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4)],5)
 => 2 = 3 - 1
{{1},{2,4},{3},{5}}
 => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2 = 3 - 1
{{1,5},{2},{3,4}}
 => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,5},{3,4}}
 => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
{{1},{2},{3,4,5}}
 => [1,2,4,5,3] => ([(2,4),(3,4)],5)
 => ([(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2},{3,4},{5}}
 => [1,2,4,3,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => 1 = 2 - 1
{{1,5},{2},{3},{4}}
 => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
{{1},{2,5},{3},{4}}
 => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2},{3,5},{4}}
 => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2 = 3 - 1
{{1},{2},{3},{4,5}}
 => [1,2,3,5,4] => ([(3,4)],5)
 => ([(3,4)],5)
 => 1 = 2 - 1
{{1},{2},{3},{4},{5}}
 => [1,2,3,4,5] => ([],5)
 => ([],5)
 => 0 = 1 - 1
{{1,2,3,4,5,6}}
 => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,4,5},{6}}
 => [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
 => ([(1,5),(2,5),(3,5),(4,5)],6)
 => 2 = 3 - 1
{{1,2,3,4,6},{5}}
 => [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,4},{5,6}}
 => [2,3,4,1,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(2,5),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,4},{5},{6}}
 => [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
 => ([(2,5),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,5,6},{4}}
 => [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,5},{4,6}}
 => [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
 => ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,5},{4},{6}}
 => [2,3,5,4,1,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,6},{4,5}}
 => [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3},{4,5,6}}
 => [2,3,1,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6)
 => ([(0,5),(1,5),(2,4),(3,4)],6)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3},{4,5},{6}}
 => [2,3,1,5,4,6] => ([(1,2),(3,5),(4,5)],6)
 => ([(1,2),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,6},{4},{5}}
 => [2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3},{4,6},{5}}
 => [2,3,1,6,5,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
 => ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
 => 2 = 3 - 1
{{1,2,3},{4},{5,6}}
 => [2,3,1,4,6,5] => ([(1,2),(3,5),(4,5)],6)
 => ([(1,2),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2},{3,4},{5,6}}
 => [2,1,4,3,6,5] => ([(0,5),(1,4),(2,3)],6)
 => ([(0,5),(1,4),(2,3)],6)
 => 1 = 2 - 1
{{1,2},{3,4},{5},{6}}
 => [2,1,4,3,5,6] => ([(2,5),(3,4)],6)
 => ([(2,5),(3,4)],6)
 => 1 = 2 - 1
{{1,2},{3,5},{4,6}}
 => [2,1,5,6,3,4] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
 => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
 => 2 = 3 - 1
{{1,2},{3,5},{4},{6}}
 => [2,1,5,4,3,6] => ([(1,2),(3,4),(3,5),(4,5)],6)
 => ([(1,2),(3,4),(3,5),(4,5)],6)
 => 2 = 3 - 1
{{1,2},{3,6},{4,5}}
 => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3 = 4 - 1
{{1,2},{3},{4,5},{6}}
 => [2,1,3,5,4,6] => ([(2,5),(3,4)],6)
 => ([(2,5),(3,4)],6)
 => 1 = 2 - 1
{{1,2},{3},{4,6},{5}}
 => [2,1,3,6,5,4] => ([(1,2),(3,4),(3,5),(4,5)],6)
 => ([(1,2),(3,4),(3,5),(4,5)],6)
 => 2 = 3 - 1
{{1,2},{3},{4},{5,6}}
 => [2,1,3,4,6,5] => ([(2,5),(3,4)],6)
 => ([(2,5),(3,4)],6)
 => 1 = 2 - 1
{{1,2},{3},{4},{5},{6}}
 => [2,1,3,4,5,6] => ([(4,5)],6)
 => ([(4,5)],6)
 => 1 = 2 - 1
{{1,3,5},{2,4},{6}}
 => [3,4,5,2,1,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3 = 4 - 1
{{1,3},{2,4},{5,6}}
 => [3,4,1,2,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
 => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
 => 2 = 3 - 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$.  One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001645
Mp00128: Set partitions —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 88%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 88%
Values
{{1}}
 => [1] => ([],1)
 => ([],1)
 => 1
{{1,2}}
 => [2] => ([],2)
 => ([],1)
 => 1
{{1},{2}}
 => [1,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => 2
{{1,2,3}}
 => [3] => ([],3)
 => ([],1)
 => 1
{{1,2},{3}}
 => [2,1] => ([(0,2),(1,2)],3)
 => ([(0,1)],2)
 => 2
{{1,3},{2}}
 => [2,1] => ([(0,2),(1,2)],3)
 => ([(0,1)],2)
 => 2
{{1},{2,3}}
 => [1,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => ? = 2
{{1},{2},{3}}
 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,2,3,4}}
 => [4] => ([],4)
 => ([],1)
 => 1
{{1,2,3},{4}}
 => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1)],2)
 => 2
{{1,2,4},{3}}
 => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1)],2)
 => 2
{{1,2},{3,4}}
 => [2,2] => ([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,3,3,3,3}
{{1,2},{3},{4}}
 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,3,4},{2}}
 => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1)],2)
 => 2
{{1,3},{2,4}}
 => [2,2] => ([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,3,3,3,3}
{{1,3},{2},{4}}
 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,4},{2,3}}
 => [2,2] => ([(1,3),(2,3)],4)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,3,3,3,3}
{{1},{2,3,4}}
 => [1,3] => ([(2,3)],4)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,3,3,3,3}
{{1},{2,3},{4}}
 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,3,3,3,3}
{{1,4},{2},{3}}
 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1},{2,4},{3}}
 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,3,3,3,3}
{{1},{2},{3,4}}
 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,3,3,3,3}
{{1},{2},{3},{4}}
 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
{{1,2,3,4,5}}
 => [5] => ([],5)
 => ([],1)
 => 1
{{1,2,3,4},{5}}
 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1)],2)
 => 2
{{1,2,3,5},{4}}
 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1)],2)
 => 2
{{1,2,3},{4,5}}
 => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,2,3},{4},{5}}
 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,2,4,5},{3}}
 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1)],2)
 => 2
{{1,2,4},{3,5}}
 => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,2,4},{3},{5}}
 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,2,5},{3,4}}
 => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,2},{3,4,5}}
 => [2,3] => ([(2,4),(3,4)],5)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,2},{3,4},{5}}
 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,2,5},{3},{4}}
 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,2},{3,5},{4}}
 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,2},{3},{4,5}}
 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,2},{3},{4},{5}}
 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
{{1,3,4,5},{2}}
 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,1)],2)
 => 2
{{1,3,4},{2,5}}
 => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,3,4},{2},{5}}
 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,3,5},{2,4}}
 => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2,4,5}}
 => [2,3] => ([(2,4),(3,4)],5)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2,4},{5}}
 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,3,5},{2},{4}}
 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,3},{2,5},{4}}
 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2},{4,5}}
 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2},{4},{5}}
 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
{{1,4,5},{2,3}}
 => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,4},{2,3,5}}
 => [2,3] => ([(2,4),(3,4)],5)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,4},{2,3},{5}}
 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,5},{2,3,4}}
 => [2,3] => ([(2,4),(3,4)],5)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,3,4,5}}
 => [1,4] => ([(3,4)],5)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,3,4},{5}}
 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,5},{2,3},{4}}
 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,3,5},{4}}
 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,3},{4,5}}
 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,3},{4},{5}}
 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,4,5},{2},{3}}
 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,4},{2,5},{3}}
 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,4},{2},{3,5}}
 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,4},{2},{3},{5}}
 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
{{1,5},{2,4},{3}}
 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,4,5},{3}}
 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,4},{3,5}}
 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,4},{3},{5}}
 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,5},{2},{3,4}}
 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,5},{3,4}}
 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2},{3,4,5}}
 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2},{3,4},{5}}
 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,5},{2},{3},{4}}
 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
{{1},{2,5},{3},{4}}
 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2},{3,5},{4}}
 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2},{3},{4,5}}
 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2},{3},{4},{5}}
 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 5
{{1,2,3,4,5,6}}
 => [6] => ([],6)
 => ([],1)
 => 1
{{1,2,3,4,5},{6}}
 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1)],2)
 => 2
{{1,2,3,4,6},{5}}
 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1)],2)
 => 2
{{1,2,3,4},{5,6}}
 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,3,4},{5},{6}}
 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,2,3,5,6},{4}}
 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1)],2)
 => 2
{{1,2,3,5},{4,6}}
 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,3,5},{4},{6}}
 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,2,3,6},{4,5}}
 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,3},{4,5,6}}
 => [3,3] => ([(2,5),(3,5),(4,5)],6)
 => ([(1,2)],3)
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,3},{4,5},{6}}
 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,3,6},{4},{5}}
 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,2,3},{4,6},{5}}
 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,3},{4},{5},{6}}
 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
{{1,2,4,5,6},{3}}
 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1)],2)
 => 2
{{1,2,4,5},{3},{6}}
 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,2,4,6},{3},{5}}
 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,2,4},{3},{5},{6}}
 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
{{1,2,5,6},{3},{4}}
 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,2,5},{3},{4},{6}}
 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
{{1,2,6},{3},{4},{5}}
 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
{{1,2},{3},{4},{5},{6}}
 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 5
{{1,3,4,5,6},{2}}
 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1)],2)
 => 2
{{1,3,4,5},{2},{6}}
 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,3,4,6},{2},{5}}
 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
Description
The pebbling number of a connected graph.
Matching statistic: St001330
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00128: Set partitions —to composition⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 88%
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 88%
Values
{{1}}
 => [1] => [1] => ([],1)
 => 1
{{1,2}}
 => [2] => [1,1] => ([(0,1)],2)
 => 2
{{1},{2}}
 => [1,1] => [2] => ([],2)
 => 1
{{1,2,3}}
 => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
 => 3
{{1,2},{3}}
 => [2,1] => [1,2] => ([(1,2)],3)
 => 2
{{1,3},{2}}
 => [2,1] => [1,2] => ([(1,2)],3)
 => 2
{{1},{2,3}}
 => [1,2] => [2,1] => ([(0,2),(1,2)],3)
 => 2
{{1},{2},{3}}
 => [1,1,1] => [3] => ([],3)
 => 1
{{1,2,3,4}}
 => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
{{1,2,3},{4}}
 => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => 3
{{1,2,4},{3}}
 => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => 3
{{1,2},{3,4}}
 => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {3,3,3,3}
{{1,2},{3},{4}}
 => [2,1,1] => [1,3] => ([(2,3)],4)
 => 2
{{1,3,4},{2}}
 => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
 => 3
{{1,3},{2,4}}
 => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {3,3,3,3}
{{1,3},{2},{4}}
 => [2,1,1] => [1,3] => ([(2,3)],4)
 => 2
{{1,4},{2,3}}
 => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {3,3,3,3}
{{1},{2,3,4}}
 => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {3,3,3,3}
{{1},{2,3},{4}}
 => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
 => 2
{{1,4},{2},{3}}
 => [2,1,1] => [1,3] => ([(2,3)],4)
 => 2
{{1},{2,4},{3}}
 => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
 => 2
{{1},{2},{3,4}}
 => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => 2
{{1},{2},{3},{4}}
 => [1,1,1,1] => [4] => ([],4)
 => 1
{{1,2,3,4,5}}
 => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 5
{{1,2,3,4},{5}}
 => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
{{1,2,3,5},{4}}
 => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
{{1,2,3},{4,5}}
 => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,2,3},{4},{5}}
 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => 3
{{1,2,4,5},{3}}
 => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
{{1,2,4},{3,5}}
 => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,2,4},{3},{5}}
 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => 3
{{1,2,5},{3,4}}
 => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,2},{3,4,5}}
 => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,2},{3,4},{5}}
 => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,2,5},{3},{4}}
 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => 3
{{1,2},{3,5},{4}}
 => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,2},{3},{4,5}}
 => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,2},{3},{4},{5}}
 => [2,1,1,1] => [1,4] => ([(3,4)],5)
 => 2
{{1,3,4,5},{2}}
 => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
{{1,3,4},{2,5}}
 => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,3,4},{2},{5}}
 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => 3
{{1,3,5},{2,4}}
 => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2,4,5}}
 => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2,4},{5}}
 => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,3,5},{2},{4}}
 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => 3
{{1,3},{2,5},{4}}
 => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2},{4,5}}
 => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2},{4},{5}}
 => [2,1,1,1] => [1,4] => ([(3,4)],5)
 => 2
{{1,4,5},{2,3}}
 => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,4},{2,3,5}}
 => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,4},{2,3},{5}}
 => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,5},{2,3,4}}
 => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,3,4,5}}
 => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,3,4},{5}}
 => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,5},{2,3},{4}}
 => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,3,5},{4}}
 => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,3},{4,5}}
 => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,3},{4},{5}}
 => [1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
 => 2
{{1,4,5},{2},{3}}
 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
 => 3
{{1,4},{2,5},{3}}
 => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,4},{2},{3,5}}
 => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1,4},{2},{3},{5}}
 => [2,1,1,1] => [1,4] => ([(3,4)],5)
 => 2
{{1,5},{2,4},{3}}
 => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,4,5},{3}}
 => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,4},{3,5}}
 => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,4},{3},{5}}
 => [1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
 => 2
{{1,5},{2},{3,4}}
 => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2,5},{3,4}}
 => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2},{3,4,5}}
 => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,5,5,5}
{{1},{2},{3,4},{5}}
 => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => 2
{{1,5},{2},{3},{4}}
 => [2,1,1,1] => [1,4] => ([(3,4)],5)
 => 2
{{1},{2,5},{3},{4}}
 => [1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
 => 2
{{1},{2},{3,5},{4}}
 => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => 2
{{1},{2},{3},{4,5}}
 => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 2
{{1},{2},{3},{4},{5}}
 => [1,1,1,1,1] => [5] => ([],5)
 => 1
{{1,2,3,4,5,6}}
 => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 6
{{1,2,3,4,5},{6}}
 => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1,2,3,4,6},{5}}
 => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1,2,3,4},{5,6}}
 => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,3,4},{5},{6}}
 => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
{{1,2,3,5,6},{4}}
 => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1,2,3,5},{4,6}}
 => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,3,5},{4},{6}}
 => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
{{1,2,3,6},{4,5}}
 => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,3},{4,5,6}}
 => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,3},{4,5},{6}}
 => [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,3,6},{4},{5}}
 => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 4
{{1,2,3},{4,6},{5}}
 => [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,3},{4},{5,6}}
 => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,3},{4},{5},{6}}
 => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
 => 3
{{1,2,4,5,6},{3}}
 => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 5
{{1,2,4,5},{3,6}}
 => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,4,6},{3,5}}
 => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,4},{3,5,6}}
 => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,4},{3,5},{6}}
 => [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,4},{3,6},{5}}
 => [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,4},{3},{5,6}}
 => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,5,6},{3,4}}
 => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,5},{3,4,6}}
 => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
{{1,2,5},{3,4},{6}}
 => [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000455
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Values
{{1}}
 => [1] => ([],1)
 => ([(0,1)],2)
 => -1 = 1 - 2
{{1,2}}
 => [2,1] => ([(0,1)],2)
 => ([(0,1),(0,2),(1,2)],3)
 => -1 = 1 - 2
{{1},{2}}
 => [1,2] => ([],2)
 => ([(0,2),(1,2)],3)
 => 0 = 2 - 2
{{1,2,3}}
 => [2,3,1] => ([(0,2),(1,2)],3)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 0 = 2 - 2
{{1,2},{3}}
 => [2,1,3] => ([(1,2)],3)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,3} - 2
{{1,3},{2}}
 => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => -1 = 1 - 2
{{1},{2,3}}
 => [1,3,2] => ([(1,2)],3)
 => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ? ∊ {2,3} - 2
{{1},{2},{3}}
 => [1,2,3] => ([],3)
 => ([(0,3),(1,3),(2,3)],4)
 => 0 = 2 - 2
{{1,2,3,4}}
 => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 0 = 2 - 2
{{1,2,3},{4}}
 => [2,3,1,4] => ([(1,3),(2,3)],4)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,3,3,3,3,3,3,4} - 2
{{1,2,4},{3}}
 => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,3,3,3,3,3,3,4} - 2
{{1,2},{3,4}}
 => [2,1,4,3] => ([(0,3),(1,2)],4)
 => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => 1 = 3 - 2
{{1,2},{3},{4}}
 => [2,1,3,4] => ([(2,3)],4)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,3,3,3,3,3,3,4} - 2
{{1,3,4},{2}}
 => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,3,3,3,3,3,3,4} - 2
{{1,3},{2,4}}
 => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => 0 = 2 - 2
{{1,3},{2},{4}}
 => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,3,3,3,3,3,3,4} - 2
{{1,4},{2,3}}
 => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => -1 = 1 - 2
{{1},{2,3,4}}
 => [1,3,4,2] => ([(1,3),(2,3)],4)
 => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,3,3,3,3,3,3,4} - 2
{{1},{2,3},{4}}
 => [1,3,2,4] => ([(2,3)],4)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,3,3,3,3,3,3,4} - 2
{{1,4},{2},{3}}
 => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 0 = 2 - 2
{{1},{2,4},{3}}
 => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,3,3,3,3,3,3,4} - 2
{{1},{2},{3,4}}
 => [1,2,4,3] => ([(2,3)],4)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {2,2,3,3,3,3,3,3,4} - 2
{{1},{2},{3},{4}}
 => [1,2,3,4] => ([],4)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 0 = 2 - 2
{{1,2,3,4,5}}
 => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 0 = 2 - 2
{{1,2,3,4},{5}}
 => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,2,3,5},{4}}
 => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,2,3},{4,5}}
 => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
 => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,2,3},{4},{5}}
 => [2,3,1,4,5] => ([(2,4),(3,4)],5)
 => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,2,4,5},{3}}
 => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,2,4},{3,5}}
 => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,2,4},{3},{5}}
 => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,2,5},{3,4}}
 => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,2},{3,4,5}}
 => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
 => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,2},{3,4},{5}}
 => [2,1,4,3,5] => ([(1,4),(2,3)],5)
 => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
 => 1 = 3 - 2
{{1,2,5},{3},{4}}
 => [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,2},{3,5},{4}}
 => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,2},{3},{4,5}}
 => [2,1,3,5,4] => ([(1,4),(2,3)],5)
 => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
 => 1 = 3 - 2
{{1,2},{3},{4},{5}}
 => [2,1,3,4,5] => ([(3,4)],5)
 => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,3,4,5},{2}}
 => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,3,4},{2,5}}
 => [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,3,4},{2},{5}}
 => [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,3,5},{2,4}}
 => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 0 = 2 - 2
{{1,3},{2,4,5}}
 => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,3},{2,4},{5}}
 => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,3,5},{2},{4}}
 => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 3 - 2
{{1,3},{2,5},{4}}
 => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,3},{2},{4,5}}
 => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,3},{2},{4},{5}}
 => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
 => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,4,5},{2,3}}
 => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,4},{2,3,5}}
 => [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,4},{2,3},{5}}
 => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,5},{2,3,4}}
 => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 0 = 2 - 2
{{1},{2,3,4,5}}
 => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1},{2,3,4},{5}}
 => [1,3,4,2,5] => ([(2,4),(3,4)],5)
 => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,5},{2,3},{4}}
 => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1},{2,3,5},{4}}
 => [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1},{2,3},{4,5}}
 => [1,3,2,5,4] => ([(1,4),(2,3)],5)
 => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
 => 1 = 3 - 2
{{1},{2,3},{4},{5}}
 => [1,3,2,4,5] => ([(3,4)],5)
 => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,4,5},{2},{3}}
 => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,4},{2,5},{3}}
 => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 0 = 2 - 2
{{1,4},{2},{3,5}}
 => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,4},{2},{3},{5}}
 => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,5},{2,4},{3}}
 => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => -1 = 1 - 2
{{1},{2,4,5},{3}}
 => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1},{2,4},{3,5}}
 => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1},{2,4},{3},{5}}
 => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
 => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,5},{2},{3,4}}
 => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1},{2,5},{3,4}}
 => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1},{2},{3,4,5}}
 => [1,2,4,5,3] => ([(2,4),(3,4)],5)
 => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1},{2},{3,4},{5}}
 => [1,2,4,3,5] => ([(3,4)],5)
 => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1,5},{2},{3},{4}}
 => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 0 = 2 - 2
{{1},{2,5},{3},{4}}
 => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 2
{{1},{2},{3},{4},{5}}
 => [1,2,3,4,5] => ([],5)
 => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => 0 = 2 - 2
{{1,2,3,4,5,6}}
 => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => 0 = 2 - 2
{{1,2,4},{3,5,6}}
 => [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
 => ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1,2,4,6},{3},{5}}
 => [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
 => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1,2},{3,4},{5,6}}
 => [2,1,4,3,6,5] => ([(0,5),(1,4),(2,3)],6)
 => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1,2},{3,4},{5},{6}}
 => [2,1,4,3,5,6] => ([(2,5),(3,4)],6)
 => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1,2},{3},{4,5},{6}}
 => [2,1,3,5,4,6] => ([(2,5),(3,4)],6)
 => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1,2},{3},{4},{5,6}}
 => [2,1,3,4,6,5] => ([(2,5),(3,4)],6)
 => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1,3,4,6},{2},{5}}
 => [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
 => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1,3,5},{2,4,6}}
 => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
 => 0 = 2 - 2
{{1,3,5,6},{2},{4}}
 => [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
 => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1,3,5},{2},{4},{6}}
 => [3,2,5,4,1,6] => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
 => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1,3},{2,5},{4,6}}
 => [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,3),(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1,3},{2},{4,6},{5}}
 => [3,2,1,6,5,4] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
 => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
 => 2 = 4 - 2
{{1,4,5},{2,3,6}}
 => [4,3,6,5,1,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1,6},{2,3,4,5}}
 => [6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => 0 = 2 - 2
{{1,6},{2,3},{4,5}}
 => [6,3,2,5,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1},{2,3},{4,5},{6}}
 => [1,3,2,5,4,6] => ([(2,5),(3,4)],6)
 => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1},{2,3},{4},{5,6}}
 => [1,3,2,4,6,5] => ([(2,5),(3,4)],6)
 => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1,4},{2,5},{3,6}}
 => [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
 => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
 => 0 = 2 - 2
{{1,6},{2,4},{3,5}}
 => [6,4,5,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => 0 = 2 - 2
{{1},{2,4,6},{3},{5}}
 => [1,4,3,6,5,2] => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
 => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1,5},{2,6},{3,4}}
 => [5,6,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => 0 = 2 - 2
{{1,6},{2,5},{3,4}}
 => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => -1 = 1 - 2
{{1},{2},{3,4},{5,6}}
 => [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
 => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
 => 1 = 3 - 2
{{1,5},{2,6},{3},{4}}
 => [5,6,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
 => 0 = 2 - 2
{{1,6},{2,5},{3},{4}}
 => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => 0 = 2 - 2
{{1,6},{2},{3},{4},{5}}
 => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => 0 = 2 - 2
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St001896
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00254: Permutations —Inverse fireworks map⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001896: Signed permutations ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Mp00254: Permutations —Inverse fireworks map⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001896: Signed permutations ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Values
{{1}}
 => [1] => [1] => [1] => 0 = 1 - 1
{{1,2}}
 => [2,1] => [2,1] => [2,1] => 1 = 2 - 1
{{1},{2}}
 => [1,2] => [1,2] => [1,2] => 0 = 1 - 1
{{1,2,3}}
 => [2,3,1] => [1,3,2] => [1,3,2] => 1 = 2 - 1
{{1,2},{3}}
 => [2,1,3] => [2,1,3] => [2,1,3] => 1 = 2 - 1
{{1,3},{2}}
 => [3,2,1] => [3,2,1] => [3,2,1] => 2 = 3 - 1
{{1},{2,3}}
 => [1,3,2] => [1,3,2] => [1,3,2] => 1 = 2 - 1
{{1},{2},{3}}
 => [1,2,3] => [1,2,3] => [1,2,3] => 0 = 1 - 1
{{1,2,3,4}}
 => [2,3,4,1] => [1,2,4,3] => [1,2,4,3] => 1 = 2 - 1
{{1,2,3},{4}}
 => [2,3,1,4] => [1,3,2,4] => [1,3,2,4] => 1 = 2 - 1
{{1,2,4},{3}}
 => [2,4,3,1] => [1,4,3,2] => [1,4,3,2] => 2 = 3 - 1
{{1,2},{3,4}}
 => [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2 = 3 - 1
{{1,2},{3},{4}}
 => [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1 = 2 - 1
{{1,3,4},{2}}
 => [3,2,4,1] => [2,1,4,3] => [2,1,4,3] => 2 = 3 - 1
{{1,3},{2,4}}
 => [3,4,1,2] => [2,4,1,3] => [2,4,1,3] => 2 = 3 - 1
{{1,3},{2},{4}}
 => [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 2 = 3 - 1
{{1,4},{2,3}}
 => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 3 = 4 - 1
{{1},{2,3,4}}
 => [1,3,4,2] => [1,2,4,3] => [1,2,4,3] => 1 = 2 - 1
{{1},{2,3},{4}}
 => [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1 = 2 - 1
{{1,4},{2},{3}}
 => [4,2,3,1] => [4,1,3,2] => [4,1,3,2] => 2 = 3 - 1
{{1},{2,4},{3}}
 => [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 2 = 3 - 1
{{1},{2},{3,4}}
 => [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 1 = 2 - 1
{{1},{2},{3},{4}}
 => [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
{{1,2,3,4,5}}
 => [2,3,4,5,1] => [1,2,3,5,4] => [1,2,3,5,4] => 1 = 2 - 1
{{1,2,3,4},{5}}
 => [2,3,4,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1 = 2 - 1
{{1,2,3,5},{4}}
 => [2,3,5,4,1] => [1,2,5,4,3] => [1,2,5,4,3] => 2 = 3 - 1
{{1,2,3},{4,5}}
 => [2,3,1,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2 = 3 - 1
{{1,2,3},{4},{5}}
 => [2,3,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1 = 2 - 1
{{1,2,4,5},{3}}
 => [2,4,3,5,1] => [1,3,2,5,4] => [1,3,2,5,4] => 2 = 3 - 1
{{1,2,4},{3,5}}
 => [2,4,5,1,3] => [1,3,5,2,4] => [1,3,5,2,4] => 2 = 3 - 1
{{1,2,4},{3},{5}}
 => [2,4,3,1,5] => [1,4,3,2,5] => [1,4,3,2,5] => 2 = 3 - 1
{{1,2,5},{3,4}}
 => [2,5,4,3,1] => [1,5,4,3,2] => [1,5,4,3,2] => 3 = 4 - 1
{{1,2},{3,4,5}}
 => [2,1,4,5,3] => [2,1,3,5,4] => [2,1,3,5,4] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2},{3,4},{5}}
 => [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,5},{3},{4}}
 => [2,5,3,4,1] => [1,5,2,4,3] => [1,5,2,4,3] => 2 = 3 - 1
{{1,2},{3,5},{4}}
 => [2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2},{3},{4,5}}
 => [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2},{3},{4},{5}}
 => [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3,4,5},{2}}
 => [3,2,4,5,1] => [2,1,3,5,4] => [2,1,3,5,4] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3,4},{2,5}}
 => [3,5,4,1,2] => [2,5,4,1,3] => [2,5,4,1,3] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3,4},{2},{5}}
 => [3,2,4,1,5] => [2,1,4,3,5] => [2,1,4,3,5] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3,5},{2,4}}
 => [3,4,5,2,1] => [1,2,5,4,3] => [1,2,5,4,3] => 2 = 3 - 1
{{1,3},{2,4,5}}
 => [3,4,1,5,2] => [1,3,2,5,4] => [1,3,2,5,4] => 2 = 3 - 1
{{1,3},{2,4},{5}}
 => [3,4,1,2,5] => [2,4,1,3,5] => [2,4,1,3,5] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3,5},{2},{4}}
 => [3,2,5,4,1] => [2,1,5,4,3] => [2,1,5,4,3] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3},{2,5},{4}}
 => [3,5,1,4,2] => [2,5,1,4,3] => [2,5,1,4,3] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3},{2},{4,5}}
 => [3,2,1,5,4] => [3,2,1,5,4] => [3,2,1,5,4] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3},{2},{4},{5}}
 => [3,2,1,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4,5},{2,3}}
 => [4,3,2,5,1] => [3,2,1,5,4] => [3,2,1,5,4] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4},{2,3,5}}
 => [4,3,5,1,2] => [3,2,5,1,4] => [3,2,5,1,4] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4},{2,3},{5}}
 => [4,3,2,1,5] => [4,3,2,1,5] => [4,3,2,1,5] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,5},{2,3,4}}
 => [5,3,4,2,1] => [5,1,4,3,2] => [5,1,4,3,2] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,3,4,5}}
 => [1,3,4,5,2] => [1,2,3,5,4] => [1,2,3,5,4] => 1 = 2 - 1
{{1},{2,3,4},{5}}
 => [1,3,4,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1 = 2 - 1
{{1,5},{2,3},{4}}
 => [5,3,2,4,1] => [5,2,1,4,3] => [5,2,1,4,3] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,3,5},{4}}
 => [1,3,5,4,2] => [1,2,5,4,3] => [1,2,5,4,3] => 2 = 3 - 1
{{1},{2,3},{4,5}}
 => [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2 = 3 - 1
{{1},{2,3},{4},{5}}
 => [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1 = 2 - 1
{{1,4,5},{2},{3}}
 => [4,2,3,5,1] => [3,1,2,5,4] => [3,1,2,5,4] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4},{2,5},{3}}
 => [4,5,3,1,2] => [2,5,4,1,3] => [2,5,4,1,3] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4},{2},{3,5}}
 => [4,2,5,1,3] => [3,2,5,1,4] => [3,2,5,1,4] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4},{2},{3},{5}}
 => [4,2,3,1,5] => [4,1,3,2,5] => [4,1,3,2,5] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,5},{2,4},{3}}
 => [5,4,3,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,4,5},{3}}
 => [1,4,3,5,2] => [1,3,2,5,4] => [1,3,2,5,4] => 2 = 3 - 1
{{1},{2,4},{3,5}}
 => [1,4,5,2,3] => [1,3,5,2,4] => [1,3,5,2,4] => 2 = 3 - 1
{{1},{2,4},{3},{5}}
 => [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 2 = 3 - 1
{{1,5},{2},{3,4}}
 => [5,2,4,3,1] => [5,1,4,3,2] => [5,1,4,3,2] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,5},{3,4}}
 => [1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => 3 = 4 - 1
{{1},{2},{3,4,5}}
 => [1,2,4,5,3] => [1,2,3,5,4] => [1,2,3,5,4] => 1 = 2 - 1
{{1},{2},{3,4},{5}}
 => [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1 = 2 - 1
{{1,5},{2},{3},{4}}
 => [5,2,3,4,1] => [5,1,2,4,3] => [5,1,2,4,3] => ? ∊ {2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,5},{3},{4}}
 => [1,5,3,4,2] => [1,5,2,4,3] => [1,5,2,4,3] => 2 = 3 - 1
{{1},{2},{3,5},{4}}
 => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 2 = 3 - 1
{{1},{2},{3},{4,5}}
 => [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 1 = 2 - 1
{{1},{2},{3},{4},{5}}
 => [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0 = 1 - 1
{{1,2,3,4,5,6}}
 => [2,3,4,5,6,1] => [1,2,3,4,6,5] => [1,2,3,4,6,5] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,4,5},{6}}
 => [2,3,4,5,1,6] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,4,6},{5}}
 => [2,3,4,6,5,1] => [1,2,3,6,5,4] => [1,2,3,6,5,4] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,4},{5,6}}
 => [2,3,4,1,6,5] => [1,2,4,3,6,5] => [1,2,4,3,6,5] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,4},{5},{6}}
 => [2,3,4,1,5,6] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,5,6},{4}}
 => [2,3,5,4,6,1] => [1,2,4,3,6,5] => [1,2,4,3,6,5] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,5},{4,6}}
 => [2,3,5,6,1,4] => [1,2,4,6,3,5] => [1,2,4,6,3,5] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,5},{4},{6}}
 => [2,3,5,4,1,6] => [1,2,5,4,3,6] => [1,2,5,4,3,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,6},{4,5}}
 => [2,3,6,5,4,1] => [1,2,6,5,4,3] => [1,2,6,5,4,3] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3},{4,5,6}}
 => [2,3,1,5,6,4] => [1,3,2,4,6,5] => [1,3,2,4,6,5] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3},{4,5},{6}}
 => [2,3,1,5,4,6] => [1,3,2,5,4,6] => [1,3,2,5,4,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,6},{4},{5}}
 => [2,3,6,4,5,1] => [1,2,6,3,5,4] => [1,2,6,3,5,4] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3},{4,6},{5}}
 => [2,3,1,6,5,4] => [1,3,2,6,5,4] => [1,3,2,6,5,4] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3},{4},{5,6}}
 => [2,3,1,4,6,5] => [1,3,2,4,6,5] => [1,3,2,4,6,5] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3},{4},{5},{6}}
 => [2,3,1,4,5,6] => [1,3,2,4,5,6] => [1,3,2,4,5,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,4,5,6},{3}}
 => [2,4,3,5,6,1] => [1,3,2,4,6,5] => [1,3,2,4,6,5] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,4,5},{3,6}}
 => [2,4,6,5,1,3] => [1,3,6,5,2,4] => [1,3,6,5,2,4] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,4,5},{3},{6}}
 => [2,4,3,5,1,6] => [1,3,2,5,4,6] => [1,3,2,5,4,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,4,6},{3,5}}
 => [2,4,5,6,3,1] => [1,2,3,6,5,4] => [1,2,3,6,5,4] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,4},{3,5,6}}
 => [2,4,5,1,6,3] => [1,2,4,3,6,5] => [1,2,4,3,6,5] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,4},{3,5},{6}}
 => [2,4,5,1,3,6] => [1,3,5,2,4,6] => [1,3,5,2,4,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,4,6},{3},{5}}
 => [2,4,3,6,5,1] => [1,3,2,6,5,4] => [1,3,2,6,5,4] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,4},{3,6},{5}}
 => [2,4,6,1,5,3] => [1,3,6,2,5,4] => [1,3,6,2,5,4] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,4},{3},{5,6}}
 => [2,4,3,1,6,5] => [1,4,3,2,6,5] => [1,4,3,2,6,5] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,4},{3},{5},{6}}
 => [2,4,3,1,5,6] => [1,4,3,2,5,6] => [1,4,3,2,5,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
Description
The number of right descents of a signed permutations.
An index is a right descent if it is a left descent of the inverse signed permutation.
Matching statistic: St001769
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001769: Signed permutations ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 50%
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001769: Signed permutations ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 50%
Values
{{1}}
 => [1] => [1] => 0 = 1 - 1
{{1,2}}
 => [2,1] => [2,1] => 1 = 2 - 1
{{1},{2}}
 => [1,2] => [1,2] => 0 = 1 - 1
{{1,2,3}}
 => [2,3,1] => [2,3,1] => 2 = 3 - 1
{{1,2},{3}}
 => [2,1,3] => [2,1,3] => 1 = 2 - 1
{{1,3},{2}}
 => [3,2,1] => [3,2,1] => 1 = 2 - 1
{{1},{2,3}}
 => [1,3,2] => [1,3,2] => 1 = 2 - 1
{{1},{2},{3}}
 => [1,2,3] => [1,2,3] => 0 = 1 - 1
{{1,2,3,4}}
 => [2,3,4,1] => [2,3,4,1] => 3 = 4 - 1
{{1,2,3},{4}}
 => [2,3,1,4] => [2,3,1,4] => 2 = 3 - 1
{{1,2,4},{3}}
 => [2,4,3,1] => [2,4,3,1] => 2 = 3 - 1
{{1,2},{3,4}}
 => [2,1,4,3] => [2,1,4,3] => 2 = 3 - 1
{{1,2},{3},{4}}
 => [2,1,3,4] => [2,1,3,4] => 1 = 2 - 1
{{1,3,4},{2}}
 => [3,2,4,1] => [3,2,4,1] => 2 = 3 - 1
{{1,3},{2,4}}
 => [3,4,1,2] => [3,4,1,2] => 2 = 3 - 1
{{1,3},{2},{4}}
 => [3,2,1,4] => [3,2,1,4] => 1 = 2 - 1
{{1,4},{2,3}}
 => [4,3,2,1] => [4,3,2,1] => 2 = 3 - 1
{{1},{2,3,4}}
 => [1,3,4,2] => [1,3,4,2] => 2 = 3 - 1
{{1},{2,3},{4}}
 => [1,3,2,4] => [1,3,2,4] => 1 = 2 - 1
{{1,4},{2},{3}}
 => [4,2,3,1] => [4,2,3,1] => 1 = 2 - 1
{{1},{2,4},{3}}
 => [1,4,3,2] => [1,4,3,2] => 1 = 2 - 1
{{1},{2},{3,4}}
 => [1,2,4,3] => [1,2,4,3] => 1 = 2 - 1
{{1},{2},{3},{4}}
 => [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
{{1,2,3,4,5}}
 => [2,3,4,5,1] => [2,3,4,5,1] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,3,4},{5}}
 => [2,3,4,1,5] => [2,3,4,1,5] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,3,5},{4}}
 => [2,3,5,4,1] => [2,3,5,4,1] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,3},{4,5}}
 => [2,3,1,5,4] => [2,3,1,5,4] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,3},{4},{5}}
 => [2,3,1,4,5] => [2,3,1,4,5] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,4,5},{3}}
 => [2,4,3,5,1] => [2,4,3,5,1] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,4},{3,5}}
 => [2,4,5,1,3] => [2,4,5,1,3] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,4},{3},{5}}
 => [2,4,3,1,5] => [2,4,3,1,5] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,5},{3,4}}
 => [2,5,4,3,1] => [2,5,4,3,1] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2},{3,4,5}}
 => [2,1,4,5,3] => [2,1,4,5,3] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2},{3,4},{5}}
 => [2,1,4,3,5] => [2,1,4,3,5] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2,5},{3},{4}}
 => [2,5,3,4,1] => [2,5,3,4,1] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2},{3,5},{4}}
 => [2,1,5,4,3] => [2,1,5,4,3] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2},{3},{4,5}}
 => [2,1,3,5,4] => [2,1,3,5,4] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,2},{3},{4},{5}}
 => [2,1,3,4,5] => [2,1,3,4,5] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3,4,5},{2}}
 => [3,2,4,5,1] => [3,2,4,5,1] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3,4},{2,5}}
 => [3,5,4,1,2] => [3,5,4,1,2] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3,4},{2},{5}}
 => [3,2,4,1,5] => [3,2,4,1,5] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3,5},{2,4}}
 => [3,4,5,2,1] => [3,4,5,2,1] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3},{2,4,5}}
 => [3,4,1,5,2] => [3,4,1,5,2] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3},{2,4},{5}}
 => [3,4,1,2,5] => [3,4,1,2,5] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3,5},{2},{4}}
 => [3,2,5,4,1] => [3,2,5,4,1] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3},{2,5},{4}}
 => [3,5,1,4,2] => [3,5,1,4,2] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3},{2},{4,5}}
 => [3,2,1,5,4] => [3,2,1,5,4] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,3},{2},{4},{5}}
 => [3,2,1,4,5] => [3,2,1,4,5] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4,5},{2,3}}
 => [4,3,2,5,1] => [4,3,2,5,1] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4},{2,3,5}}
 => [4,3,5,1,2] => [4,3,5,1,2] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4},{2,3},{5}}
 => [4,3,2,1,5] => [4,3,2,1,5] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,5},{2,3,4}}
 => [5,3,4,2,1] => [5,3,4,2,1] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,3,4,5}}
 => [1,3,4,5,2] => [1,3,4,5,2] => 3 = 4 - 1
{{1},{2,3,4},{5}}
 => [1,3,4,2,5] => [1,3,4,2,5] => 2 = 3 - 1
{{1,5},{2,3},{4}}
 => [5,3,2,4,1] => [5,3,2,4,1] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,3,5},{4}}
 => [1,3,5,4,2] => [1,3,5,4,2] => 2 = 3 - 1
{{1},{2,3},{4,5}}
 => [1,3,2,5,4] => [1,3,2,5,4] => 2 = 3 - 1
{{1},{2,3},{4},{5}}
 => [1,3,2,4,5] => [1,3,2,4,5] => 1 = 2 - 1
{{1,4,5},{2},{3}}
 => [4,2,3,5,1] => [4,2,3,5,1] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4},{2,5},{3}}
 => [4,5,3,1,2] => [4,5,3,1,2] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4},{2},{3,5}}
 => [4,2,5,1,3] => [4,2,5,1,3] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,4},{2},{3},{5}}
 => [4,2,3,1,5] => [4,2,3,1,5] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1,5},{2,4},{3}}
 => [5,4,3,2,1] => [5,4,3,2,1] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,4,5},{3}}
 => [1,4,3,5,2] => [1,4,3,5,2] => 2 = 3 - 1
{{1},{2,4},{3,5}}
 => [1,4,5,2,3] => [1,4,5,2,3] => 2 = 3 - 1
{{1},{2,4},{3},{5}}
 => [1,4,3,2,5] => [1,4,3,2,5] => 1 = 2 - 1
{{1,5},{2},{3,4}}
 => [5,2,4,3,1] => [5,2,4,3,1] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,5},{3,4}}
 => [1,5,4,3,2] => [1,5,4,3,2] => 2 = 3 - 1
{{1},{2},{3,4,5}}
 => [1,2,4,5,3] => [1,2,4,5,3] => 2 = 3 - 1
{{1},{2},{3,4},{5}}
 => [1,2,4,3,5] => [1,2,4,3,5] => 1 = 2 - 1
{{1,5},{2},{3},{4}}
 => [5,2,3,4,1] => [5,2,3,4,1] => ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5} - 1
{{1},{2,5},{3},{4}}
 => [1,5,3,4,2] => [1,5,3,4,2] => 1 = 2 - 1
{{1},{2},{3,5},{4}}
 => [1,2,5,4,3] => [1,2,5,4,3] => 1 = 2 - 1
{{1},{2},{3},{4,5}}
 => [1,2,3,5,4] => [1,2,3,5,4] => 1 = 2 - 1
{{1},{2},{3},{4},{5}}
 => [1,2,3,4,5] => [1,2,3,4,5] => 0 = 1 - 1
{{1,2,3,4,5,6}}
 => [2,3,4,5,6,1] => [2,3,4,5,6,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,4,5},{6}}
 => [2,3,4,5,1,6] => [2,3,4,5,1,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,4,6},{5}}
 => [2,3,4,6,5,1] => [2,3,4,6,5,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,4},{5,6}}
 => [2,3,4,1,6,5] => [2,3,4,1,6,5] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,4},{5},{6}}
 => [2,3,4,1,5,6] => [2,3,4,1,5,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,5,6},{4}}
 => [2,3,5,4,6,1] => [2,3,5,4,6,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,5},{4,6}}
 => [2,3,5,6,1,4] => [2,3,5,6,1,4] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,5},{4},{6}}
 => [2,3,5,4,1,6] => [2,3,5,4,1,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,6},{4,5}}
 => [2,3,6,5,4,1] => [2,3,6,5,4,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3},{4,5,6}}
 => [2,3,1,5,6,4] => [2,3,1,5,6,4] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3},{4,5},{6}}
 => [2,3,1,5,4,6] => [2,3,1,5,4,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3,6},{4},{5}}
 => [2,3,6,4,5,1] => [2,3,6,4,5,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
{{1,2,3},{4,6},{5}}
 => [2,3,1,6,5,4] => [2,3,1,6,5,4] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7} - 1
Description
The reflection length of a signed permutation.
This is the minimal numbers of reflections needed to express a signed permutation.
The following 10 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001864The number of excedances of a signed permutation. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001863The number of weak excedances of a signed permutation. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St001935The number of ascents in a parking function. St001905The number of preferred parking spots in a parking function less than the index of the car. St001946The number of descents in a parking function. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001624The breadth of a lattice. St001626The number of maximal proper sublattices of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!