Your data matches 18 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001747
St001747: Finite Cartan types ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> 0
['A',2]
=> 1
['B',2]
=> 3
['G',2]
=> 4
Description
The number of zeros in the character table of the Weyl group of a Cartan type.
Matching statistic: St000856
St000856: Finite Cartan types ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> 2 = 0 + 2
['A',2]
=> 3 = 1 + 2
['B',2]
=> 5 = 3 + 2
['G',2]
=> 6 = 4 + 2
Description
The number of conjugacy classes in the Weyl group of a finite Cartan type.
Matching statistic: St001646
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
St001646: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
Description
The number of edges that can be added without increasing the maximal degree of a graph. This statistic is (except for the degenerate case of two vertices) maximized by the star-graph on $n$ vertices, which has maximal degree $n-1$ and therefore has statistic $\binom{n-1}{2}$.
Matching statistic: St001350
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00157: Graphs connected complementGraphs
St001350: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 4
Description
Half of the Albertson index of a graph. This is $\frac{1}{2}\sum_{\{u,v\}\in E}|d(u)-d(v)|$, where $E$ is the set of edges and $d_v$ is the degree of vertex $v$, see [1]. In particular, this statistic vanishes on graphs whose components are all regular, see [2].
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
St000718: Graphs ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 75%
Values
['A',1]
=> ([],1)
=> ([],1)
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 4
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 1
Description
The largest Laplacian eigenvalue of a graph if it is integral. This statistic is undefined if the largest Laplacian eigenvalue of the graph is not integral. Various results are collected in Section 3.9 of [1]
Mp00148: Finite Cartan types to root posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000698: Integer partitions ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 75%
Values
['A',1]
=> ([],1)
=> [1]
=> ? = 0 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 0 = 1 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 2 = 3 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> 3 = 4 - 1
Description
The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. For any positive integer $k$, one associates a $k$-core to a partition by repeatedly removing all rim hooks of size $k$. This statistic counts the $2$-rim hooks that are removed in this process to obtain a $2$-core.
Matching statistic: St001934
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St001934: Integer partitions ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 75%
Values
['A',1]
=> ([],1)
=> [2]
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 2 = 1 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 5 = 4 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> ? = 3 + 1
Description
The number of monotone factorisations of genus zero of a permutation of given cycle type. A monotone factorisation of genus zero of a permutation $\pi\in\mathfrak S_n$ with $\ell$ cycles, including fixed points, is a tuple of $r = n - \ell$ transpositions $$ (a_1, b_1),\dots,(a_r, b_r) $$ with $b_1 \leq \dots \leq b_r$ and $a_i < b_i$ for all $i$, whose product, in this order, is $\pi$. For example, the cycle $(2,3,1)$ has the two factorizations $(2,3)(1,3)$ and $(1,2)(2,3)$.
Matching statistic: St001574
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00203: Graphs coneGraphs
St001574: Graphs ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 75%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
Description
The minimal number of edges to add or remove to make a graph regular.
Matching statistic: St001576
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00203: Graphs coneGraphs
St001576: Graphs ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 75%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
Description
The minimal number of edges to add or remove to make a graph vertex transitive. A graph is vertex transitive if for any two edges there is an automorphism that maps one vertex to the other.
Matching statistic: St000550
Mp00148: Finite Cartan types to root posetPosets
Mp00205: Posets maximal antichainsLattices
Mp00197: Lattices lattice of congruencesLattices
St000550: Lattices ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 75%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4 + 1
Description
The number of modular elements of a lattice. A pair $(x, y)$ of elements of a lattice $L$ is a modular pair if for every $z\geq y$ we have that $(y\vee x) \wedge z = y \vee (x \wedge z)$. An element $x$ is left-modular if $(x, y)$ is a modular pair for every $y\in L$, and is modular if both $(x, y)$ and $(y, x)$ are modular pairs for every $y\in L$.
The following 8 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000551The number of left modular elements of a lattice. St001616The number of neutral elements in a lattice. St001649The length of a longest trail in a graph. St001754The number of tolerances of a finite lattice. St001619The number of non-isomorphic sublattices of a lattice. St001666The number of non-isomorphic subposets of a lattice which are lattices. St000997The even-odd crank of an integer partition. St001003The number of indecomposable modules with projective dimension at most 1 in the Nakayama algebra corresponding to the Dyck path.