Identifier
- St001934: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[1]=>1
[2]=>1
[1,1]=>1
[3]=>2
[2,1]=>1
[1,1,1]=>1
[4]=>5
[3,1]=>2
[2,2]=>1
[2,1,1]=>1
[1,1,1,1]=>1
[5]=>14
[4,1]=>5
[3,2]=>2
[3,1,1]=>2
[2,2,1]=>1
[2,1,1,1]=>1
[1,1,1,1,1]=>1
[6]=>42
[5,1]=>14
[4,2]=>5
[4,1,1]=>5
[3,3]=>4
[3,2,1]=>2
[3,1,1,1]=>2
[2,2,2]=>1
[2,2,1,1]=>1
[2,1,1,1,1]=>1
[1,1,1,1,1,1]=>1
[7]=>132
[6,1]=>42
[5,2]=>14
[5,1,1]=>14
[4,3]=>10
[4,2,1]=>5
[4,1,1,1]=>5
[3,3,1]=>4
[3,2,2]=>2
[3,2,1,1]=>2
[3,1,1,1,1]=>2
[2,2,2,1]=>1
[2,2,1,1,1]=>1
[2,1,1,1,1,1]=>1
[1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of monotone factorisations of genus zero of a permutation of given cycle type.
A monotone factorisation of genus zero of a permutation $\pi\in\mathfrak S_n$ with $\ell$ cycles, including fixed points, is a tuple of $r = n - \ell$ transpositions
$$ (a_1, b_1),\dots,(a_r, b_r) $$
with $b_1 \leq \dots \leq b_r$ and $a_i < b_i$ for all $i$, whose product, in this order, is $\pi$.
For example, the cycle $(2,3,1)$ has the two factorizations $(2,3)(1,3)$ and $(1,2)(2,3)$.
A monotone factorisation of genus zero of a permutation $\pi\in\mathfrak S_n$ with $\ell$ cycles, including fixed points, is a tuple of $r = n - \ell$ transpositions
$$ (a_1, b_1),\dots,(a_r, b_r) $$
with $b_1 \leq \dots \leq b_r$ and $a_i < b_i$ for all $i$, whose product, in this order, is $\pi$.
For example, the cycle $(2,3,1)$ has the two factorizations $(2,3)(1,3)$ and $(1,2)(2,3)$.
References
[1] Goulden, I. P., Guay-Paquet, M., Novak, J. Monotone Hurwitz numbers in genus zero MathSciNet:3095005
Code
@cached_function def statistic(mu): pi = Permutations(mu.size()).element_in_conjugacy_classes(mu) return len(monotone_factorizations(pi, len(pi)-len(mu))) def monotone_factorizations(pi, m, b=None): if b is None: b = len(pi) return list(monotone_factorizations_iter(pi, m, b)) def monotone_factorizations_iter(pi, m, b=None): n = len(pi) if not m: if pi.number_of_fixed_points() == n: yield [] else: for b1 in range(2, b+1): for a1 in range(1, b1): pi1 = Permutation([(a1, b1)]) * pi for t in monotone_factorizations(pi1, m-1, b1): yield t + [(a1, b1)]
Created
Dec 28, 2023 at 17:31 by Martin Rubey
Updated
Aug 05, 2024 at 22:54 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!