searching the database
Your data matches 322 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001934
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
St001934: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 1
[1,1]
=> 1
[3]
=> 2
[2,1]
=> 1
[1,1,1]
=> 1
[4]
=> 5
[3,1]
=> 2
[2,2]
=> 1
[2,1,1]
=> 1
[1,1,1,1]
=> 1
[5]
=> 14
[4,1]
=> 5
[3,2]
=> 2
[3,1,1]
=> 2
[2,2,1]
=> 1
[2,1,1,1]
=> 1
[1,1,1,1,1]
=> 1
[6]
=> 42
[5,1]
=> 14
[4,2]
=> 5
[4,1,1]
=> 5
[3,3]
=> 4
[3,2,1]
=> 2
[3,1,1,1]
=> 2
[2,2,2]
=> 1
[2,2,1,1]
=> 1
[2,1,1,1,1]
=> 1
[1,1,1,1,1,1]
=> 1
[7]
=> 132
[6,1]
=> 42
[5,2]
=> 14
[5,1,1]
=> 14
[4,3]
=> 10
[4,2,1]
=> 5
[4,1,1,1]
=> 5
[3,3,1]
=> 4
[3,2,2]
=> 2
[3,2,1,1]
=> 2
[3,1,1,1,1]
=> 2
[2,2,2,1]
=> 1
[2,2,1,1,1]
=> 1
[2,1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1]
=> 1
Description
The number of monotone factorisations of genus zero of a permutation of given cycle type.
A monotone factorisation of genus zero of a permutation $\pi\in\mathfrak S_n$ with $\ell$ cycles, including fixed points, is a tuple of $r = n - \ell$ transpositions
$$
(a_1, b_1),\dots,(a_r, b_r)
$$
with $b_1 \leq \dots \leq b_r$ and $a_i < b_i$ for all $i$, whose product, in this order, is $\pi$.
For example, the cycle $(2,3,1)$ has the two factorizations $(2,3)(1,3)$ and $(1,2)(2,3)$.
Matching statistic: St000078
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St000078: Permutations ⟶ ℤResult quality: 91% ●values known / values provided: 91%●distinct values known / distinct values provided: 100%
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St000078: Permutations ⟶ ℤResult quality: 91% ●values known / values provided: 91%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0]
=> [1] => [1] => 1
[2]
=> [1,0,1,0]
=> [1,2] => [2,1] => 1
[1,1]
=> [1,1,0,0]
=> [2,1] => [1,2] => 1
[3]
=> [1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => [2,3,1] => 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => 2
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,4,2,1] => 1
[2,2]
=> [1,1,1,0,0,0]
=> [3,1,2] => [2,1,3] => 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,3,1] => 2
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,4,3,2] => 5
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,5,3,2,1] => 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,2,4,1] => 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,4,2,1] => 2
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => 2
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,5,4,3,1] => 5
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,5,4,3,2] => 14
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [6,5,4,3,2,1] => 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [5,6,4,3,2,1] => 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [4,3,5,2,1] => 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [4,6,5,3,2,1] => 2
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,1,4,3] => 4
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,5,2,4,1] => 2
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [3,6,5,4,2,1] => 5
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [3,2,1,4] => 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [2,5,4,1,3] => 5
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => [2,6,5,4,3,1] => 14
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [1,6,5,4,3,2] => 42
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? ∊ {1,1,2,5}
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? ∊ {1,1,2,5}
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [5,4,6,3,2,1] => 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [5,7,6,4,3,2,1] => ? ∊ {1,1,2,5}
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2,5,4,1] => 4
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,3,6,4] => [4,6,3,5,2,1] => 2
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [4,7,6,5,3,2,1] => ? ∊ {1,1,2,5}
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [2,5,1,4,3] => 10
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,3,2,5,1] => 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,6,3] => [3,6,5,2,4,1] => 5
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [3,7,6,5,4,2,1] => 14
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [3,5,2,1,4] => 2
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,4,5,6,2] => [2,6,5,4,1,3] => 14
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => [2,7,6,5,4,3,1] => 42
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => [1,7,6,5,4,3,2] => 132
Description
The number of alternating sign matrices whose left key is the permutation.
The left key of an alternating sign matrix was defined by Lascoux
in [2] and is obtained by successively removing all the `-1`'s until what remains is a permutation matrix. This notion corresponds to the notion of left key for semistandard tableaux.
Matching statistic: St000255
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
St000255: Permutations ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 88%
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
St000255: Permutations ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 88%
Values
[1]
=> [[1]]
=> [1] => [1] => 1
[2]
=> [[1,2]]
=> [1,2] => [1,2] => 1
[1,1]
=> [[1],[2]]
=> [2,1] => [2,1] => 1
[3]
=> [[1,2,3]]
=> [1,2,3] => [1,3,2] => 2
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => [3,1,2] => 1
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => [3,2,1] => 1
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => [1,4,3,2] => 5
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => [4,1,3,2] => 2
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => [3,4,1,2] => 1
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => [4,3,1,2] => 1
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => 1
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,5,4,3,2] => 14
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => [5,1,4,3,2] => 5
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => [4,5,1,3,2] => 2
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [5,4,1,3,2] => 2
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [5,3,4,1,2] => 1
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [5,4,3,1,2] => 1
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,3,2,1] => 1
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,6,5,4,3,2] => 42
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [6,1,5,4,3,2] => 14
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [5,6,1,4,3,2] => 5
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [6,5,1,4,3,2] => 5
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [4,6,5,1,3,2] => 4
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [6,4,5,1,3,2] => 2
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => [6,5,4,1,3,2] => 2
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => [5,6,3,4,1,2] => 1
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [6,5,3,4,1,2] => 1
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [6,5,4,3,1,2] => 1
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 1
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [1,7,6,5,4,3,2] => 132
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => [7,1,6,5,4,3,2] => ? ∊ {1,1,1,1,2,2,2,4,5,5,10,14,14,42}
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => [6,7,1,5,4,3,2] => ? ∊ {1,1,1,1,2,2,2,4,5,5,10,14,14,42}
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => [7,6,1,5,4,3,2] => ? ∊ {1,1,1,1,2,2,2,4,5,5,10,14,14,42}
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => [5,7,6,1,4,3,2] => ? ∊ {1,1,1,1,2,2,2,4,5,5,10,14,14,42}
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => [7,5,6,1,4,3,2] => ? ∊ {1,1,1,1,2,2,2,4,5,5,10,14,14,42}
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => [7,6,5,1,4,3,2] => ? ∊ {1,1,1,1,2,2,2,4,5,5,10,14,14,42}
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => [7,4,6,5,1,3,2] => ? ∊ {1,1,1,1,2,2,2,4,5,5,10,14,14,42}
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => [6,7,4,5,1,3,2] => ? ∊ {1,1,1,1,2,2,2,4,5,5,10,14,14,42}
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => [7,6,4,5,1,3,2] => ? ∊ {1,1,1,1,2,2,2,4,5,5,10,14,14,42}
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => [7,6,5,4,1,3,2] => ? ∊ {1,1,1,1,2,2,2,4,5,5,10,14,14,42}
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => [7,5,6,3,4,1,2] => ? ∊ {1,1,1,1,2,2,2,4,5,5,10,14,14,42}
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => [7,6,5,3,4,1,2] => ? ∊ {1,1,1,1,2,2,2,4,5,5,10,14,14,42}
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => [7,6,5,4,3,1,2] => ? ∊ {1,1,1,1,2,2,2,4,5,5,10,14,14,42}
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ? ∊ {1,1,1,1,2,2,2,4,5,5,10,14,14,42}
Description
The number of reduced Kogan faces with the permutation as type.
This is equivalent to finding the number of ways to represent the permutation $\pi \in S_{n+1}$ as a reduced subword of $s_n (s_{n-1} s_n) (s_{n-2} s_{n-1} s_n) \dotsm (s_1 \dotsm s_n)$, or the number of reduced pipe dreams for $\pi$.
Matching statistic: St000100
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000100: Posets ⟶ ℤResult quality: 62% ●values known / values provided: 64%●distinct values known / distinct values provided: 62%
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000100: Posets ⟶ ℤResult quality: 62% ●values known / values provided: 64%●distinct values known / distinct values provided: 62%
Values
[1]
=> [1,0]
=> [1,0]
=> ([],1)
=> ? = 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 1
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1
[3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 5
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 14
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? ∊ {2,4,5,14}
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 5
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? ∊ {2,4,5,14}
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {2,4,5,14}
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {2,4,5,14}
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 42
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8)
=> ? ∊ {2,2,4,5,5,10,14,14,42,132}
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {2,2,4,5,5,10,14,14,42,132}
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? ∊ {2,2,4,5,5,10,14,14,42,132}
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,6),(4,1),(4,7),(5,3),(6,2),(6,4),(7,8)],9)
=> ? ∊ {2,2,4,5,5,10,14,14,42,132}
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {2,2,4,5,5,10,14,14,42,132}
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? ∊ {2,2,4,5,5,10,14,14,42,132}
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,4),(3,7),(4,2),(4,9),(5,6),(6,1),(6,3),(7,9),(9,8)],10)
=> ? ∊ {2,2,4,5,5,10,14,14,42,132}
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {2,2,4,5,5,10,14,14,42,132}
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ? ∊ {2,2,4,5,5,10,14,14,42,132}
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? ∊ {2,2,4,5,5,10,14,14,42,132}
Description
The number of linear extensions of a poset.
Matching statistic: St001398
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St001398: Posets ⟶ ℤResult quality: 38% ●values known / values provided: 57%●distinct values known / distinct values provided: 38%
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St001398: Posets ⟶ ℤResult quality: 38% ●values known / values provided: 57%●distinct values known / distinct values provided: 38%
Values
[1]
=> [1,0]
=> [1,0]
=> ([],1)
=> 0 = 1 - 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 0 = 1 - 1
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 0 = 1 - 1
[3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4 = 5 - 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 2 - 1
[2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {5,14} - 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {5,14} - 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 2 - 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1 = 2 - 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? ∊ {2,4,5,14,42} - 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? ∊ {2,4,5,14,42} - 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {2,4,5,14,42} - 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? ∊ {2,4,5,14,42} - 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1 = 2 - 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? ∊ {2,4,5,14,42} - 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4 = 5 - 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ? ∊ {1,1,2,2,4,5,5,10,14,14,42,132} - 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? ∊ {1,1,2,2,4,5,5,10,14,14,42,132} - 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? ∊ {1,1,2,2,4,5,5,10,14,14,42,132} - 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? ∊ {1,1,2,2,4,5,5,10,14,14,42,132} - 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1 = 2 - 1
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? ∊ {1,1,2,2,4,5,5,10,14,14,42,132} - 1
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? ∊ {1,1,2,2,4,5,5,10,14,14,42,132} - 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {1,1,2,2,4,5,5,10,14,14,42,132} - 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? ∊ {1,1,2,2,4,5,5,10,14,14,42,132} - 1
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? ∊ {1,1,2,2,4,5,5,10,14,14,42,132} - 1
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,1,2,2,4,5,5,10,14,14,42,132} - 1
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,2,2,4,5,5,10,14,14,42,132} - 1
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,2,2,4,5,5,10,14,14,42,132} - 1
Description
Number of subsets of size 3 of elements in a poset that form a "v".
For a finite poset $(P,\leq)$, this is the number of sets $\{x,y,z\} \in \binom{P}{3}$ that form a "v"-subposet (i.e., a subposet consisting of a bottom element covered by two incomparable elements).
Matching statistic: St000633
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000633: Posets ⟶ ℤResult quality: 25% ●values known / values provided: 52%●distinct values known / distinct values provided: 25%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000633: Posets ⟶ ℤResult quality: 25% ●values known / values provided: 52%●distinct values known / distinct values provided: 25%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,5}
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,5}
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? ∊ {2,5,14}
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {2,5,14}
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? ∊ {2,5,14}
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? ∊ {1,1,4,5,5,14,42}
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? ∊ {1,1,4,5,5,14,42}
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,1,4,5,5,14,42}
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {1,1,4,5,5,14,42}
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,1,4,5,5,14,42}
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {1,1,4,5,5,14,42}
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? ∊ {1,1,4,5,5,14,42}
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ([(0,6),(0,7),(2,5),(2,16),(3,4),(3,15),(4,9),(5,10),(6,3),(6,14),(7,2),(7,14),(8,1),(9,11),(10,12),(11,8),(12,8),(13,11),(13,12),(14,15),(14,16),(15,9),(15,13),(16,10),(16,13)],17)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,4),(1,16),(2,5),(2,15),(3,13),(4,12),(5,3),(5,19),(6,1),(6,17),(7,2),(7,17),(9,11),(10,8),(11,8),(12,9),(13,10),(14,9),(14,18),(15,14),(15,19),(16,12),(16,14),(17,15),(17,16),(18,10),(18,11),(19,13),(19,18)],20)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
Description
The size of the automorphism group of a poset.
A poset automorphism is a permutation of the elements of the poset preserving the order relation.
Matching statistic: St001399
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St001399: Posets ⟶ ℤResult quality: 25% ●values known / values provided: 52%●distinct values known / distinct values provided: 25%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St001399: Posets ⟶ ℤResult quality: 25% ●values known / values provided: 52%●distinct values known / distinct values provided: 25%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,5}
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,5}
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? ∊ {2,5,14}
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {2,5,14}
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? ∊ {2,5,14}
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? ∊ {1,1,4,5,5,14,42}
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? ∊ {1,1,4,5,5,14,42}
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,1,4,5,5,14,42}
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {1,1,4,5,5,14,42}
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,1,4,5,5,14,42}
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {1,1,4,5,5,14,42}
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? ∊ {1,1,4,5,5,14,42}
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ([(0,6),(0,7),(2,5),(2,16),(3,4),(3,15),(4,9),(5,10),(6,3),(6,14),(7,2),(7,14),(8,1),(9,11),(10,12),(11,8),(12,8),(13,11),(13,12),(14,15),(14,16),(15,9),(15,13),(16,10),(16,13)],17)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,4),(1,16),(2,5),(2,15),(3,13),(4,12),(5,3),(5,19),(6,1),(6,17),(7,2),(7,17),(9,11),(10,8),(11,8),(12,9),(13,10),(14,9),(14,18),(15,14),(15,19),(16,12),(16,14),(17,15),(17,16),(18,10),(18,11),(19,13),(19,18)],20)
=> ? ∊ {1,4,5,5,10,14,14,42,132}
Description
The distinguishing number of a poset.
This is the minimal number of colours needed to colour the vertices of a poset, such that only the trivial automorphism of the poset preserves the colouring.
See also [[St000469]], which is the same concept for graphs.
Matching statistic: St000850
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000850: Posets ⟶ ℤResult quality: 25% ●values known / values provided: 52%●distinct values known / distinct values provided: 25%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000850: Posets ⟶ ℤResult quality: 25% ●values known / values provided: 52%●distinct values known / distinct values provided: 25%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 0 = 1 - 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 2 - 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0 = 1 - 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,5} - 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,5} - 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? ∊ {2,5,14} - 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 2 - 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {2,5,14} - 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? ∊ {2,5,14} - 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? ∊ {1,1,4,5,5,14,42} - 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? ∊ {1,1,4,5,5,14,42} - 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 2 - 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,1,4,5,5,14,42} - 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 2 - 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {1,1,4,5,5,14,42} - 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,1,4,5,5,14,42} - 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {1,1,4,5,5,14,42} - 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? ∊ {1,1,4,5,5,14,42} - 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ([(0,6),(0,7),(2,5),(2,16),(3,4),(3,15),(4,9),(5,10),(6,3),(6,14),(7,2),(7,14),(8,1),(9,11),(10,12),(11,8),(12,8),(13,11),(13,12),(14,15),(14,16),(15,9),(15,13),(16,10),(16,13)],17)
=> ? ∊ {1,4,5,5,10,14,14,42,132} - 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ? ∊ {1,4,5,5,10,14,14,42,132} - 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1 = 2 - 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? ∊ {1,4,5,5,10,14,14,42,132} - 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1 = 2 - 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,4,5,5,10,14,14,42,132} - 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 2 - 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {1,4,5,5,10,14,14,42,132} - 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,4,5,5,10,14,14,42,132} - 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {1,4,5,5,10,14,14,42,132} - 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ? ∊ {1,4,5,5,10,14,14,42,132} - 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,4),(1,16),(2,5),(2,15),(3,13),(4,12),(5,3),(5,19),(6,1),(6,17),(7,2),(7,17),(9,11),(10,8),(11,8),(12,9),(13,10),(14,9),(14,18),(15,14),(15,19),(16,12),(16,14),(17,15),(17,16),(18,10),(18,11),(19,13),(19,18)],20)
=> ? ∊ {1,4,5,5,10,14,14,42,132} - 1
Description
The number of 1/2-balanced pairs in a poset.
A pair of elements $x,y$ of a poset is $\alpha$-balanced if the proportion of linear extensions where $x$ comes before $y$ is between $\alpha$ and $1-\alpha$.
Kislitsyn [1] conjectured that every poset which is not a chain has a $1/3$-balanced pair. Brightwell, Felsner and Trotter [2] show that at least a $(1-\sqrt 5)/10$-balanced pair exists in posets which are not chains.
Olson and Sagan [3] exhibit various posets that have a $1/2$-balanced pair.
Matching statistic: St001330
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 43%●distinct values known / distinct values provided: 12%
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 43%●distinct values known / distinct values provided: 12%
Values
[1]
=> [1,0]
=> [2,1] => ([(0,1)],2)
=> 2 = 1 + 1
[2]
=> [1,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1]
=> [1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[2,2]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,5} + 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,5} + 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,5,14} + 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,5,14} + 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,5,14} + 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,5,14} + 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 1 + 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,4,5,5,14,42} + 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,5,5,14,42} + 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,4,5,5,14,42} + 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,4,5,5,14,42} + 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,4,5,5,14,42} + 1
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {2,2,4,5,5,14,42} + 1
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,4,5,5,14,42} + 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,1,2,3,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 1 + 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [7,1,2,3,4,5,8,6] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> 2 = 1 + 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 1 + 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [8,1,2,3,4,7,5,6] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,4,5,5,10,14,14,42,132} + 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,4,5,5,10,14,14,42,132} + 1
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7)
=> ? ∊ {2,2,2,4,5,5,10,14,14,42,132} + 1
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [8,1,2,3,7,4,5,6] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,4,5,5,10,14,14,42,132} + 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,4,5,5,10,14,14,42,132} + 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => ([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,4,5,5,10,14,14,42,132} + 1
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [7,1,2,8,3,4,5,6] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? ∊ {2,2,2,4,5,5,10,14,14,42,132} + 1
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,4,5,5,10,14,14,42,132} + 1
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,6,7,1,3,4,5] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {2,2,2,4,5,5,10,14,14,42,132} + 1
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [8,1,7,2,3,4,5,6] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,4,5,5,10,14,14,42,132} + 1
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [8,7,1,2,3,4,5,6] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,4,5,5,10,14,14,42,132} + 1
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St001487
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
St001487: Skew partitions ⟶ ℤResult quality: 25% ●values known / values provided: 41%●distinct values known / distinct values provided: 25%
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
St001487: Skew partitions ⟶ ℤResult quality: 25% ●values known / values provided: 41%●distinct values known / distinct values provided: 25%
Values
[1]
=> [1,0]
=> [1,0]
=> [[1],[]]
=> 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> [[2],[]]
=> 1
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [[1,1],[]]
=> 1
[3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> 2
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> ? = 5
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> 1
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> 2
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? ∊ {1,5,14}
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> ? ∊ {1,5,14}
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> ? ∊ {1,5,14}
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> 2
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> 2
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[4,4,4],[]]
=> ? ∊ {1,1,1,2,4,5,5,14,42}
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3,1],[]]
=> ? ∊ {1,1,1,2,4,5,5,14,42}
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> ? ∊ {1,1,1,2,4,5,5,14,42}
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[4,4,1],[]]
=> ? ∊ {1,1,1,2,4,5,5,14,42}
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> 2
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> ? ∊ {1,1,1,2,4,5,5,14,42}
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,1],[]]
=> ? ∊ {1,1,1,2,4,5,5,14,42}
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ? ∊ {1,1,1,2,4,5,5,14,42}
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [[5,1],[]]
=> ? ∊ {1,1,1,2,4,5,5,14,42}
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [[5,5],[4]]
=> ? ∊ {1,1,1,2,4,5,5,14,42}
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[4,4,4,4],[]]
=> ? ∊ {1,1,2,2,2,4,5,5,10,14,14,42,132}
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[4,4,4,1],[]]
=> ? ∊ {1,1,2,2,2,4,5,5,10,14,14,42,132}
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> ? ∊ {1,1,2,2,2,4,5,5,10,14,14,42,132}
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[3,3,3,3,1],[]]
=> ? ∊ {1,1,2,2,2,4,5,5,10,14,14,42,132}
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> 1
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3,1],[1]]
=> ? ∊ {1,1,2,2,2,4,5,5,10,14,14,42,132}
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [[5,5,1],[]]
=> ? ∊ {1,1,2,2,2,4,5,5,10,14,14,42,132}
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ? ∊ {1,1,2,2,2,4,5,5,10,14,14,42,132}
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [[4,2,1],[]]
=> ? ∊ {1,1,2,2,2,4,5,5,10,14,14,42,132}
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,2,1],[]]
=> ? ∊ {1,1,2,2,2,4,5,5,10,14,14,42,132}
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ? ∊ {1,1,2,2,2,4,5,5,10,14,14,42,132}
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [[4,4,2],[3]]
=> ? ∊ {1,1,2,2,2,4,5,5,10,14,14,42,132}
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [[6,1],[]]
=> ? ∊ {1,1,2,2,2,4,5,5,10,14,14,42,132}
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [[6,6],[5]]
=> ? ∊ {1,1,2,2,2,4,5,5,10,14,14,42,132}
Description
The number of inner corners of a skew partition.
The following 312 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000422The energy of a graph, if it is integral. St001846The number of elements which do not have a complement in the lattice. St000181The number of connected components of the Hasse diagram for the poset. St000454The largest eigenvalue of a graph if it is integral. St001490The number of connected components of a skew partition. St001890The maximum magnitude of the Möbius function of a poset. St001435The number of missing boxes in the first row. St001964The interval resolution global dimension of a poset. St000741The Colin de Verdière graph invariant. St000456The monochromatic index of a connected graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000902 The minimal number of repetitions of an integer composition. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001884The number of borders of a binary word. St000297The number of leading ones in a binary word. St000392The length of the longest run of ones in a binary word. St000488The number of cycles of a permutation of length at most 2. St000664The number of right ropes of a permutation. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000758The length of the longest staircase fitting into an integer composition. St000760The length of the longest strictly decreasing subsequence of parts of an integer composition. St000982The length of the longest constant subword. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001423The number of distinct cubes in a binary word. St001520The number of strict 3-descents. St001530The depth of a Dyck path. St001556The number of inversions of the third entry of a permutation. St001730The number of times the path corresponding to a binary word crosses the base line. St001372The length of a longest cyclic run of ones of a binary word. St000527The width of the poset. St000668The least common multiple of the parts of the partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000782The indicator function of whether a given perfect matching is an L & P matching. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001568The smallest positive integer that does not appear twice in the partition. St000058The order of a permutation. St000455The second largest eigenvalue of a graph if it is integral. St000068The number of minimal elements in a poset. St000706The product of the factorials of the multiplicities of an integer partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St000451The length of the longest pattern of the form k 1 2. St000534The number of 2-rises of a permutation. St000842The breadth of a permutation. St000036The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation. St000408The number of occurrences of the pattern 4231 in a permutation. St000440The number of occurrences of the pattern 4132 or of the pattern 4231 in a permutation. St000679The pruning number of an ordered tree. St001084The number of occurrences of the vincular pattern |1-23 in a permutation. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St000284The Plancherel distribution on integer partitions. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St001128The exponens consonantiae of a partition. St001162The minimum jump of a permutation. St001344The neighbouring number of a permutation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001896The number of right descents of a signed permutations. St000090The variation of a composition. St000091The descent variation of a composition. St000217The number of occurrences of the pattern 312 in a permutation. St000233The number of nestings of a set partition. St000260The radius of a connected graph. St000338The number of pixed points of a permutation. St000358The number of occurrences of the pattern 31-2. St000365The number of double ascents of a permutation. St000622The number of occurrences of the patterns 2143 or 4231 in a permutation. St000650The number of 3-rises of a permutation. St000709The number of occurrences of 14-2-3 or 14-3-2. St000779The tier of a permutation. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001438The number of missing boxes of a skew partition. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001705The number of occurrences of the pattern 2413 in a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001857The number of edges in the reduced word graph of a signed permutation. St001866The nesting alignments of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000022The number of fixed points of a permutation. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000404The number of occurrences of the pattern 3241 or of the pattern 4231 in a permutation. St000546The number of global descents of a permutation. St000731The number of double exceedences of a permutation. St000862The number of parts of the shifted shape of a permutation. St001488The number of corners of a skew partition. St001624The breadth of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001713The difference of the first and last value in the first row of the Gelfand-Tsetlin pattern. St001875The number of simple modules with projective dimension at most 1. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000021The number of descents of a permutation. St000023The number of inner peaks of a permutation. St000056The decomposition (or block) number of a permutation. St000154The sum of the descent bottoms of a permutation. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000210Minimum over maximum difference of elements in cycles. St000234The number of global ascents of a permutation. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000253The crossing number of a set partition. St000333The dez statistic, the number of descents of a permutation after replacing fixed points by zeros. St000353The number of inner valleys of a permutation. St000486The number of cycles of length at least 3 of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000563The number of overlapping pairs of blocks of a set partition. St000570The Edelman-Greene number of a permutation. St000585The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block. St000601The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal, (2,3) are consecutive in a block. St000646The number of big ascents of a permutation. St000654The first descent of a permutation. St000663The number of right floats of a permutation. St000694The number of affine bounded permutations that project to a given permutation. St000729The minimal arc length of a set partition. St000732The number of double deficiencies of a permutation. St000832The number of permutations obtained by reversing blocks of three consecutive numbers. St000864The number of circled entries of the shifted recording tableau of a permutation. St000872The number of very big descents of a permutation. St000886The number of permutations with the same antidiagonal sums. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St000925The number of topologically connected components of a set partition. St000990The first ascent of a permutation. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St001388The number of non-attacking neighbors of a permutation. St001413Half the length of the longest even length palindromic prefix of a binary word. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001461The number of topologically connected components of the chord diagram of a permutation. St001462The number of factors of a standard tableaux under concatenation. St001469The holeyness of a permutation. St001470The cyclic holeyness of a permutation. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001652The length of a longest interval of consecutive numbers. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001662The length of the longest factor of consecutive numbers in a permutation. St001665The number of pure excedances of a permutation. St001712The number of natural descents of a standard Young tableau. St001729The number of visible descents of a permutation. St001737The number of descents of type 2 in a permutation. St001781The interlacing number of a set partition. St001805The maximal overlap of a cylindrical tableau associated with a semistandard tableau. St001806The upper middle entry of a permutation. St001816Eigenvalues of the top-to-random operator acting on a simple module. St001839The number of excedances of a set partition. St001840The number of descents of a set partition. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001889The size of the connectivity set of a signed permutation. St001928The number of non-overlapping descents in a permutation. St000039The number of crossings of a permutation. St000062The length of the longest increasing subsequence of the permutation. St000075The orbit size of a standard tableau under promotion. St000084The number of subtrees. St000092The number of outer peaks of a permutation. St000099The number of valleys of a permutation, including the boundary. St000105The number of blocks in the set partition. St000188The area of the Dyck path corresponding to a parking function and the total displacement of a parking function. St000195The number of secondary dinversion pairs of the dyck path corresponding to a parking function. St000219The number of occurrences of the pattern 231 in a permutation. St000221The number of strong fixed points of a permutation. St000236The number of cyclical small weak excedances. St000239The number of small weak excedances. St000241The number of cyclical small excedances. St000247The number of singleton blocks of a set partition. St000248The number of anti-singletons of a set partition. St000249The number of singletons (St000247) plus the number of antisingletons (St000248) of a set partition. St000251The number of nonsingleton blocks of a set partition. St000279The size of the preimage of the map 'cycle-as-one-line notation' from Permutations to Permutations. St000295The length of the border of a binary word. St000308The height of the tree associated to a permutation. St000314The number of left-to-right-maxima of a permutation. St000317The cycle descent number of a permutation. St000325The width of the tree associated to a permutation. St000328The maximum number of child nodes in a tree. St000354The number of recoils of a permutation. St000355The number of occurrences of the pattern 21-3. St000360The number of occurrences of the pattern 32-1. St000367The number of simsun double descents of a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000406The number of occurrences of the pattern 3241 in a permutation. St000407The number of occurrences of the pattern 2143 in a permutation. St000432The number of occurrences of the pattern 231 or of the pattern 312 in a permutation. St000462The major index minus the number of excedences of a permutation. St000470The number of runs in a permutation. St000485The length of the longest cycle of a permutation. St000487The length of the shortest cycle of a permutation. St000496The rcs statistic of a set partition. St000500Eigenvalues of the random-to-random operator acting on the regular representation. St000502The number of successions of a set partitions. St000504The cardinality of the first block of a set partition. St000516The number of stretching pairs of a permutation. St000542The number of left-to-right-minima of a permutation. St000557The number of occurrences of the pattern {{1},{2},{3}} in a set partition. St000559The number of occurrences of the pattern {{1,3},{2,4}} in a set partition. St000561The number of occurrences of the pattern {{1,2,3}} in a set partition. St000573The number of occurrences of the pattern {{1},{2}} such that 1 is a singleton and 2 a maximal element. St000574The number of occurrences of the pattern {{1},{2}} such that 1 is a minimal and 2 a maximal element. St000575The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal element and 2 a singleton. St000576The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal and 2 a minimal element. St000578The number of occurrences of the pattern {{1},{2}} such that 1 is a singleton. St000580The number of occurrences of the pattern {{1},{2},{3}} such that 2 is minimal, 3 is maximal. St000583The number of occurrences of the pattern {{1},{2},{3}} such that 3 is minimal, 1, 2 are maximal. St000584The number of occurrences of the pattern {{1},{2},{3}} such that 1 is minimal, 3 is maximal. St000587The number of occurrences of the pattern {{1},{2},{3}} such that 1 is minimal. St000588The number of occurrences of the pattern {{1},{2},{3}} such that 1,3 are minimal, 2 is maximal. St000590The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal, 1 is maximal, (2,3) are consecutive in a block. St000591The number of occurrences of the pattern {{1},{2},{3}} such that 2 is maximal. St000592The number of occurrences of the pattern {{1},{2},{3}} such that 1 is maximal. St000593The number of occurrences of the pattern {{1},{2},{3}} such that 1,2 are minimal. St000596The number of occurrences of the pattern {{1},{2},{3}} such that 3 is minimal, 1 is maximal. St000603The number of occurrences of the pattern {{1},{2},{3}} such that 2,3 are minimal. St000604The number of occurrences of the pattern {{1},{2},{3}} such that 3 is minimal, 2 is maximal. St000608The number of occurrences of the pattern {{1},{2},{3}} such that 1,2 are minimal, 3 is maximal. St000615The number of occurrences of the pattern {{1},{2},{3}} such that 1,3 are maximal. St000619The number of cyclic descents of a permutation. St000623The number of occurrences of the pattern 52341 in a permutation. St000649The number of 3-excedences of a permutation. St000666The number of right tethers of a permutation. St000695The number of blocks in the first part of the atomic decomposition of a set partition. St000750The number of occurrences of the pattern 4213 in a permutation. St000751The number of occurrences of either of the pattern 2143 or 2143 in a permutation. St000793The length of the longest partition in the vacillating tableau corresponding to a set partition. St000800The number of occurrences of the vincular pattern |231 in a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000836The number of descents of distance 2 of a permutation. St000879The number of long braid edges in the graph of braid moves of a permutation. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000943The number of spots the most unlucky car had to go further in a parking function. St000961The shifted major index of a permutation. St000962The 3-shifted major index of a permutation. St000963The 2-shifted major index of a permutation. St000989The number of final rises of a permutation. St000991The number of right-to-left minima of a permutation. St001051The depth of the label 1 in the decreasing labelled unordered tree associated with the set partition. St001059Number of occurrences of the patterns 41352,42351,51342,52341 in a permutation. St001061The number of indices that are both descents and recoils of a permutation. St001062The maximal size of a block of a set partition. St001075The minimal size of a block of a set partition. St001082The number of boxed occurrences of 123 in a permutation. St001114The number of odd descents of a permutation. St001130The number of two successive successions in a permutation. St001151The number of blocks with odd minimum. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001301The first Betti number of the order complex associated with the poset. St001332The number of steps on the non-negative side of the walk associated with the permutation. St001371The length of the longest Yamanouchi prefix of a binary word. St001381The fertility of a permutation. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001396Number of triples of incomparable elements in a finite poset. St001402The number of separators in a permutation. St001403The number of vertical separators in a permutation. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001489The maximum of the number of descents and the number of inverse descents. St001513The number of nested exceedences of a permutation. St001537The number of cyclic crossings of a permutation. St001549The number of restricted non-inversions between exceedances. St001550The number of inversions between exceedances where the greater exceedance is linked. St001552The number of inversions between excedances and fixed points of a permutation. St001569The maximal modular displacement of a permutation. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St001693The excess length of a longest path consisting of elements and blocks of a set partition. St001715The number of non-records in a permutation. St001728The number of invisible descents of a permutation. St001735The number of permutations with the same set of runs. St001741The largest integer such that all patterns of this size are contained in the permutation. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001801Half the number of preimage-image pairs of different parity in a permutation. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001810The number of fixed points of a permutation smaller than its largest moved point. St001847The number of occurrences of the pattern 1432 in a permutation. St001850The number of Hecke atoms of a permutation. St001851The number of Hecke atoms of a signed permutation. St001870The number of positive entries followed by a negative entry in a signed permutation. St001895The oddness of a signed permutation. St001903The number of fixed points of a parking function. St001905The number of preferred parking spots in a parking function less than the index of the car. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000495The number of inversions of distance at most 2 of a permutation. St000638The number of up-down runs of a permutation. St000824The sum of the number of descents and the number of recoils of a permutation. St000831The number of indices that are either descents or recoils. St001424The number of distinct squares in a binary word. St001472The permanent of the Coxeter matrix of the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!