searching the database
Your data matches 63 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001650
St001650: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 2
[1,0,1,0]
=> 3
[1,1,0,0]
=> 3
[1,0,1,0,1,0]
=> 4
[1,0,1,1,0,0]
=> 4
[1,1,0,0,1,0]
=> 4
[1,1,0,1,0,0]
=> 4
[1,1,1,0,0,0]
=> 4
[1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,0,0]
=> 5
[1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,0]
=> 5
[1,0,1,1,1,0,0,0]
=> 5
[1,1,0,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,0,0,1,0]
=> 5
[1,1,0,1,0,1,0,0]
=> 6
[1,1,0,1,1,0,0,0]
=> 5
[1,1,1,0,0,0,1,0]
=> 5
[1,1,1,0,0,1,0,0]
=> 5
[1,1,1,0,1,0,0,0]
=> 5
[1,1,1,1,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> 6
[1,0,1,1,1,0,0,0,1,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> 6
[1,0,1,1,1,0,1,0,0,0]
=> 6
[1,0,1,1,1,1,0,0,0,0]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> 6
[1,1,0,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> 6
[1,1,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> 6
Description
The order of Ringel's homological bijection associated to the linear Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000058
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
St000058: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000058: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => 2
[1,0,1,0]
=> [3,1,2] => 3
[1,1,0,0]
=> [2,3,1] => 3
[1,0,1,0,1,0]
=> [4,1,2,3] => 4
[1,0,1,1,0,0]
=> [3,1,4,2] => 4
[1,1,0,0,1,0]
=> [2,4,1,3] => 4
[1,1,0,1,0,0]
=> [4,3,1,2] => 4
[1,1,1,0,0,0]
=> [2,3,4,1] => 4
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 5
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 5
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 5
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 5
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 5
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 5
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 6
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => 5
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 5
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 5
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 5
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 5
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 6
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 6
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 6
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => 6
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 6
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 6
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 6
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => 6
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => 4
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => 6
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 6
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => 6
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 6
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 6
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 6
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 6
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 6
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => 6
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 6
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 6
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => 6
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 4
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => 6
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => 6
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => 6
Description
The order of a permutation.
ord(π) is given by the minimial k for which πk is the identity permutation.
Matching statistic: St000668
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00108: Permutations —cycle type⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [2]
=> 2
[1,0,1,0]
=> [3,1,2] => [3]
=> 3
[1,1,0,0]
=> [2,3,1] => [3]
=> 3
[1,0,1,0,1,0]
=> [4,1,2,3] => [4]
=> 4
[1,0,1,1,0,0]
=> [3,1,4,2] => [4]
=> 4
[1,1,0,0,1,0]
=> [2,4,1,3] => [4]
=> 4
[1,1,0,1,0,0]
=> [4,3,1,2] => [4]
=> 4
[1,1,1,0,0,0]
=> [2,3,4,1] => [4]
=> 4
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5]
=> 5
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5]
=> 5
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5]
=> 5
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [5]
=> 5
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5]
=> 5
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5]
=> 5
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5]
=> 5
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5]
=> 5
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,2]
=> 6
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5]
=> 5
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5]
=> 5
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5]
=> 5
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5]
=> 5
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6]
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [6]
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6]
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [6]
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [4,2]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [6]
=> 6
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [6]
=> 6
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [6]
=> 6
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [6]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [6]
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [6]
=> 6
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,2]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,3]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,2]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [6]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [6]
=> 6
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,3]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6]
=> 6
Description
The least common multiple of the parts of the partition.
Matching statistic: St001232
(load all 12 compositions to match this statistic)
(load all 12 compositions to match this statistic)
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 73% ●values known / values provided: 73%●distinct values known / distinct values provided: 75%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 73% ●values known / values provided: 73%●distinct values known / distinct values provided: 75%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ? = 6 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {3,3,3,4,4,4,4,4} - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {3,3,3,4,4,4,4,4} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 6 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {3,3,3,4,4,4,4,4} - 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ? ∊ {3,3,3,4,4,4,4,4} - 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ? ∊ {3,3,3,4,4,4,4,4} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ? ∊ {3,3,3,4,4,4,4,4} - 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> ? ∊ {3,3,3,4,4,4,4,4} - 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ? ∊ {3,3,3,4,4,4,4,4} - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> ? ∊ {7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000718
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000718: Graphs ⟶ ℤResult quality: 63% ●values known / values provided: 63%●distinct values known / distinct values provided: 75%
Mp00239: Permutations —Corteel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000718: Graphs ⟶ ℤResult quality: 63% ●values known / values provided: 63%●distinct values known / distinct values provided: 75%
Values
[1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2
[1,0,1,0]
=> [3,1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 3
[1,1,0,0]
=> [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,0,1,0]
=> [4,1,2,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 4
[1,0,1,1,0,0]
=> [3,1,4,2] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,0,0,1,0]
=> [2,4,1,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,0,1,0,0]
=> [4,3,1,2] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,1,0,0,0]
=> [2,3,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 5
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,1,3,2,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {5,6}
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 5
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {5,6}
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 5
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,1,2,3,5,4] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,1,2,4,3,5] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [5,1,2,6,4,3] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6}
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,1,2,4,5,3] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,1,3,2,4,5] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,1,3,2,5,4] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [4,1,6,3,2,5] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6}
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [5,1,6,3,4,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6}
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [4,1,6,3,5,2] => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6}
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,1,3,4,2,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [5,1,3,6,4,2] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6}
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [4,1,6,5,3,2] => ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6}
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,1,3,4,5,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6,2,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,2,1,3,5,4] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6,2,1,4,3,5] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [5,2,1,6,4,3] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6}
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,2,1,4,5,3] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [3,6,2,1,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6}
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,6,2,1,5,4] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6}
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,6,2,3,1,5] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6}
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [6,5,2,3,4,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,6,2,3,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,6,2,4,1,5] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6}
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,5,2,6,4,1] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 6
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [4,6,2,5,3,1] => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,6,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6,2,3,1,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6,2,3,1,5,4] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [4,2,6,3,1,5] => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6}
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [5,2,6,3,4,1] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [4,2,6,3,5,1] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 6
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [3,6,4,2,1,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6}
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [3,6,5,2,4,1] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [3,6,4,2,5,1] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [6,2,3,4,1,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [5,2,3,6,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [4,2,6,5,3,1] => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [3,6,4,5,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 7
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [6,1,2,3,7,5,4] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [5,1,2,7,4,3,6] => ([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [6,1,2,7,4,5,3] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [5,1,2,7,4,6,3] => ([(0,5),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [6,1,2,4,7,5,3] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => [5,1,2,7,6,4,3] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => [6,1,3,2,7,5,4] => ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => [4,1,7,3,2,5,6] => ([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => [4,1,7,3,2,6,5] => ([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [5,1,7,3,4,2,6] => ([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [5,1,7,3,4,6,2] => ([(0,5),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => [4,1,7,3,5,2,6] => ([(0,5),(1,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => [4,1,6,3,7,5,2] => ([(0,5),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [5,1,7,3,6,4,2] => ([(0,5),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => [4,1,7,3,5,6,2] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => [5,1,3,7,4,2,6] => ([(0,5),(1,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [6,1,3,7,4,5,2] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => [5,1,3,7,4,6,2] => ([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => [4,1,7,5,3,2,6] => ([(0,6),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [4,1,7,6,3,5,2] => ([(0,2),(1,4),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [5,1,6,7,4,3,2] => ([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => [4,1,7,5,3,6,2] => ([(0,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => [6,1,3,4,7,5,2] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => [5,1,3,7,6,4,2] => ([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => [4,1,7,5,6,3,2] => ([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,7,1,3,6,4,5] => [6,2,1,3,7,5,4] => ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,7,1,5,3,4,6] => [5,2,1,7,4,3,6] => ([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => [6,2,1,7,4,5,3] => ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => [5,2,1,7,4,6,3] => ([(0,1),(0,5),(1,5),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,4,1,7,6,3,5] => [6,2,1,4,7,5,3] => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,7,1,5,6,3,4] => [5,2,1,7,6,4,3] => ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,3,1,2,4,5,6] => [3,7,2,1,4,5,6] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [6,3,1,2,4,7,5] => [3,7,2,1,4,6,5] => ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [5,3,1,2,7,4,6] => [3,7,2,1,5,4,6] => ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => [3,6,2,1,7,5,4] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
Description
The largest Laplacian eigenvalue of a graph if it is integral.
This statistic is undefined if the largest Laplacian eigenvalue of the graph is not integral.
Various results are collected in Section 3.9 of [1]
Matching statistic: St001644
Values
[1,0]
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
[1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 3 - 2
[1,1,0,0]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 3 - 2
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 4 - 2
[1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 4 - 2
[1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 4 - 2
[1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 4 - 2
[1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 5 - 2
[1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 5 - 2
[1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 5 - 2
[1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 5 - 2
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 5 - 2
[1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 5 - 2
[1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 5 - 2
[1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 5 - 2
[1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 5 - 2
[1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 5 - 2
[1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 5 - 2
[1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 5 - 2
[1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {5,6} - 2
[1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {5,6} - 2
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 6 - 2
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 6 - 2
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 6 - 2
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 6 - 2
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 2
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 2
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 6 - 2
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 6 - 2
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 6 - 2
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 6 - 2
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 2
[1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 2
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 6 - 2
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 6 - 2
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 6 - 2
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 6 - 2
[1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 2
[1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 2
[1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 2
[1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 2
[1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 2
[1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 2
[1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 2
[1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 2
[1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 2
[1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(4,7),(5,6)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,5),(0,6),(0,7),(0,8),(1,2),(1,4),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,5),(0,6),(0,7),(0,8),(1,2),(1,4),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ([(0,5),(0,6),(0,7),(0,8),(0,9),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,0,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,0,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(4,7),(5,6)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,0,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,5),(0,6),(0,7),(0,8),(1,2),(1,4),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,5),(0,6),(0,7),(0,8),(1,2),(1,4),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ([(0,5),(0,6),(0,7),(0,8),(0,9),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,1,0,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(4,7),(5,6)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(4,7),(5,6)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,1,0,0,1,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(4,7),(5,6)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,1,0,0,1,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(4,7),(5,6)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(3,4),(5,8),(6,7),(7,8)],9)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
[1,1,1,0,0,1,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(3,4),(5,8),(6,7),(7,8)],9)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 2
Description
The dimension of a graph.
The dimension of a graph is the least integer n such that there exists a representation of the graph in the Euclidean space of dimension n with all vertices distinct and all edges having unit length. Edges are allowed to intersect, however.
Matching statistic: St001645
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 75%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 75%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1 = 2 - 1
[1,0,1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2 = 3 - 1
[1,1,0,0]
=> [1,2] => [1,2] => ([],2)
=> ? = 3 - 1
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,0,1,1,0,0]
=> [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,1,0,0,1,0]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {4,4} - 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {4,4} - 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {5,5,5,5,5,5,5,6} - 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {5,5,5,5,5,5,5,6} - 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {5,5,5,5,5,5,5,6} - 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {5,5,5,5,5,5,5,6} - 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {5,5,5,5,5,5,5,6} - 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {5,5,5,5,5,5,5,6} - 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {5,5,5,5,5,5,5,6} - 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,6,1] => [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,1,6] => [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,1,6] => [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
Description
The pebbling number of a connected graph.
Matching statistic: St000337
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00058: Perfect matchings —to permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000337: Permutations ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 75%
Mp00058: Perfect matchings —to permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000337: Permutations ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 75%
Values
[1,0]
=> [(1,2)]
=> [2,1] => [2,1] => 1 = 2 - 1
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,1,4,3] => 2 = 3 - 1
[1,1,0,0]
=> [(1,4),(2,3)]
=> [4,3,2,1] => [4,3,2,1] => 2 = 3 - 1
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 3 = 4 - 1
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,6,5,4,3] => [2,1,6,5,4,3] => 3 = 4 - 1
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => [4,3,2,1,6,5] => 3 = 4 - 1
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => [6,5,3,4,2,1] => 3 = 4 - 1
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [2,1,4,3,8,7,6,5] => 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [2,1,6,5,4,3,8,7] => 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [2,1,8,7,5,6,4,3] => ? ∊ {5,5,5,5,6} - 1
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => [2,1,8,7,6,5,4,3] => 4 = 5 - 1
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => [4,3,2,1,8,7,6,5] => 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [6,5,3,4,2,1,8,7] => ? ∊ {5,5,5,5,6} - 1
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,7,3,5,4,6,2,1] => ? ∊ {5,5,5,5,6} - 1
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [8,7,3,6,5,4,2,1] => ? ∊ {5,5,5,5,6} - 1
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [8,7,5,4,3,6,2,1] => ? ∊ {5,5,5,5,6} - 1
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [8,7,6,5,4,3,2,1] => 4 = 5 - 1
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,10,9,8,7] => [2,1,4,3,6,5,10,9,8,7] => 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,8,7,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,10,7,6,9,8,5] => [2,1,4,3,10,9,7,8,6,5] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,10,9,8,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 5 = 6 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,6,5,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,6,5,4,3,10,9,8,7] => [2,1,6,5,4,3,10,9,8,7] => 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,8,5,4,7,6,3,10,9] => [2,1,8,7,5,6,4,3,10,9] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,10,5,4,7,6,9,8,3] => [2,1,10,9,5,7,6,8,4,3] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,10,5,4,9,8,7,6,3] => [2,1,10,9,5,8,7,6,4,3] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,8,7,6,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 5 = 6 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,10,7,6,5,4,9,8,3] => [2,1,10,9,7,6,5,8,4,3] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,10,9,6,5,8,7,4,3] => [2,1,10,9,8,7,6,5,4,3] => 5 = 6 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,10,9,8,7,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 5 = 6 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [4,3,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [4,3,2,1,6,5,10,9,8,7] => [4,3,2,1,6,5,10,9,8,7] => 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [4,3,2,1,8,7,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [4,3,2,1,10,7,6,9,8,5] => [4,3,2,1,10,9,7,8,6,5] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [4,3,2,1,10,9,8,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 5 = 6 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [6,3,2,5,4,1,8,7,10,9] => [6,5,3,4,2,1,8,7,10,9] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [6,3,2,5,4,1,10,9,8,7] => [6,5,3,4,2,1,10,9,8,7] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [8,3,2,5,4,7,6,1,10,9] => [8,7,3,5,4,6,2,1,10,9] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [10,3,2,5,4,7,6,9,8,1] => [10,9,3,5,4,7,6,8,2,1] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [10,3,2,5,4,9,8,7,6,1] => [10,9,3,5,4,8,7,6,2,1] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [8,3,2,7,6,5,4,1,10,9] => [8,7,3,6,5,4,2,1,10,9] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [10,3,2,7,6,5,4,9,8,1] => [10,9,3,7,6,5,4,8,2,1] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [10,3,2,9,6,5,8,7,4,1] => [10,9,3,8,7,6,5,4,2,1] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [10,3,2,9,8,7,6,5,4,1] => [10,9,3,8,7,6,5,4,2,1] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [6,5,4,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 5 = 6 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [6,5,4,3,2,1,10,9,8,7] => [6,5,4,3,2,1,10,9,8,7] => 5 = 6 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [8,5,4,3,2,7,6,1,10,9] => [8,7,5,4,3,6,2,1,10,9] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [10,5,4,3,2,7,6,9,8,1] => [10,9,5,4,3,7,6,8,2,1] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [10,5,4,3,2,9,8,7,6,1] => [10,9,5,4,3,8,7,6,2,1] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [8,7,4,3,6,5,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 5 = 6 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [10,7,4,3,6,5,2,9,8,1] => [10,9,7,6,5,4,3,8,2,1] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [10,9,4,3,6,5,8,7,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5 = 6 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [10,9,4,3,8,7,6,5,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5 = 6 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [8,7,6,5,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 5 = 6 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> [10,7,6,5,4,3,2,9,8,1] => [10,9,7,6,5,4,3,8,2,1] => ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> [10,9,6,5,4,3,8,7,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5 = 6 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [10,9,8,5,4,7,6,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5 = 6 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [10,9,8,7,6,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5 = 6 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 6 = 7 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> [2,1,4,3,6,5,8,7,12,11,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> [2,1,4,3,6,5,10,9,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> [2,1,4,3,6,5,12,9,8,11,10,7] => [2,1,4,3,6,5,12,11,9,10,8,7] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> [2,1,4,3,6,5,12,11,10,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> [2,1,4,3,8,7,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> [2,1,4,3,8,7,6,5,12,11,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 6 = 7 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]
=> [2,1,4,3,10,7,6,9,8,5,12,11] => [2,1,4,3,10,9,7,8,6,5,12,11] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> [2,1,4,3,12,7,6,9,8,11,10,5] => [2,1,4,3,12,11,7,9,8,10,6,5] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]
=> [2,1,4,3,12,7,6,11,10,9,8,5] => [2,1,4,3,12,11,7,10,9,8,6,5] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> [2,1,4,3,10,9,8,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 6 = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> [2,1,4,3,12,9,8,7,6,11,10,5] => [2,1,4,3,12,11,9,8,7,10,6,5] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,4,3,12,11,8,7,10,9,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 6 = 7 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,4,3,12,11,10,9,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> [2,1,6,5,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> [2,1,6,5,4,3,8,7,12,11,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]
=> [2,1,6,5,4,3,12,9,8,11,10,7] => [2,1,6,5,4,3,12,11,9,10,8,7] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]
=> [2,1,8,5,4,7,6,3,10,9,12,11] => [2,1,8,7,5,6,4,3,10,9,12,11] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]
=> [2,1,8,5,4,7,6,3,12,11,10,9] => [2,1,8,7,5,6,4,3,12,11,10,9] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]
=> [2,1,10,5,4,7,6,9,8,3,12,11] => [2,1,10,9,5,7,6,8,4,3,12,11] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> [2,1,12,5,4,7,6,9,8,11,10,3] => [2,1,12,11,5,7,6,9,8,10,4,3] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]
=> [2,1,12,5,4,7,6,11,10,9,8,3] => [2,1,12,11,5,7,6,10,9,8,4,3] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]
=> [2,1,10,5,4,9,8,7,6,3,12,11] => [2,1,10,9,5,8,7,6,4,3,12,11] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]
=> [2,1,12,5,4,9,8,7,6,11,10,3] => [2,1,12,11,5,9,8,7,6,10,4,3] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]
=> [2,1,12,5,4,11,8,7,10,9,6,3] => [2,1,12,11,5,10,9,8,7,6,4,3] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> [2,1,12,5,4,11,10,9,8,7,6,3] => [2,1,12,11,5,10,9,8,7,6,4,3] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]
=> [2,1,10,7,6,5,4,9,8,3,12,11] => [2,1,10,9,7,6,5,8,4,3,12,11] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> [2,1,12,7,6,5,4,9,8,11,10,3] => [2,1,12,11,7,6,5,9,8,10,4,3] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,11),(9,10)]
=> [2,1,12,7,6,5,4,11,10,9,8,3] => [2,1,12,11,7,6,5,10,9,8,4,3] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,9),(5,6),(7,8),(10,11)]
=> [2,1,12,9,6,5,8,7,4,11,10,3] => [2,1,12,11,9,8,7,6,5,10,4,3] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [(1,2),(3,12),(4,9),(5,8),(6,7),(10,11)]
=> [2,1,12,9,8,7,6,5,4,11,10,3] => [2,1,12,11,9,8,7,6,5,10,4,3] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,6),(7,12),(8,9),(10,11)]
=> [4,3,2,1,6,5,12,9,8,11,10,7] => [4,3,2,1,6,5,12,11,9,10,8,7] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9),(11,12)]
=> [4,3,2,1,10,7,6,9,8,5,12,11] => [4,3,2,1,10,9,7,8,6,5,12,11] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [(1,4),(2,3),(5,12),(6,7),(8,9),(10,11)]
=> [4,3,2,1,12,7,6,9,8,11,10,5] => [4,3,2,1,12,11,7,9,8,10,6,5] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [(1,4),(2,3),(5,12),(6,7),(8,11),(9,10)]
=> [4,3,2,1,12,7,6,11,10,9,8,5] => [4,3,2,1,12,11,7,10,9,8,6,5] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [(1,4),(2,3),(5,12),(6,9),(7,8),(10,11)]
=> [4,3,2,1,12,9,8,7,6,11,10,5] => [4,3,2,1,12,11,9,8,7,10,6,5] => ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
Description
The lec statistic, the sum of the inversion numbers of the hook factors of a permutation.
For a permutation σ=pτ1τ2⋯τk in its hook factorization, [1] defines lecσ=∑1≤i≤kinvτi, where invτi is the number of inversions of τi.
Matching statistic: St001720
Values
[1,0]
=> ([],1)
=> ([(0,1)],2)
=> 2
[1,0,1,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 5
[1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 5
[1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 5
[1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 5
[1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? ∊ {5,6}
[1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? ∊ {5,6}
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 6
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 6
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6}
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6}
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 6
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6}
[1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6}
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 6
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 6
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 6
[1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6}
[1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6}
[1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6}
[1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6}
[1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6}
[1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6}
[1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6}
[1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6}
[1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6}
[1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,6),(1,10),(2,10),(4,9),(5,9),(6,7),(7,4),(7,5),(8,1),(8,2),(9,8),(10,3)],11)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,15),(3,14),(4,13),(5,12),(6,7),(6,13),(7,5),(7,10),(8,9),(9,4),(9,6),(10,12),(10,14),(11,15),(12,11),(13,3),(13,10),(14,1),(14,11),(15,2)],16)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,15),(3,14),(4,13),(5,12),(6,7),(6,13),(7,5),(7,10),(8,9),(9,4),(9,6),(10,12),(10,14),(11,15),(12,11),(13,3),(13,10),(14,1),(14,11),(15,2)],16)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ?
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
Description
The minimal length of a chain of small intervals in a lattice.
An interval [a,b] is small if b is a join of elements covering a.
Matching statistic: St001820
Values
[1,0]
=> ([],1)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,1,0,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 4 = 5 - 1
[1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 4 = 5 - 1
[1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 4 = 5 - 1
[1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? ∊ {5,6} - 1
[1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? ∊ {5,6} - 1
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 5 = 6 - 1
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 5 = 6 - 1
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 5 = 6 - 1
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 5 = 6 - 1
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 1
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 1
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 5 = 6 - 1
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 5 = 6 - 1
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 5 = 6 - 1
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 5 = 6 - 1
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 1
[1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 1
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 5 = 6 - 1
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 5 = 6 - 1
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 5 = 6 - 1
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 5 = 6 - 1
[1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 1
[1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 1
[1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 1
[1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 1
[1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 1
[1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 1
[1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 1
[1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 1
[1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 1
[1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? ∊ {3,3,3,4,4,4,4,4,6,6,6,6,6,6} - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,6),(1,10),(2,10),(4,9),(5,9),(6,7),(7,4),(7,5),(8,1),(8,2),(9,8),(10,3)],11)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,15),(3,14),(4,13),(5,12),(6,7),(6,13),(7,5),(7,10),(8,9),(9,4),(9,6),(10,12),(10,14),(11,15),(12,11),(13,3),(13,10),(14,1),(14,11),(15,2)],16)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,15),(3,14),(4,13),(5,12),(6,7),(6,13),(7,5),(7,10),(8,9),(9,4),(9,6),(10,12),(10,14),(11,15),(12,11),(13,3),(13,10),(14,1),(14,11),(15,2)],16)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ?
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? ∊ {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12} - 1
Description
The size of the image of the pop stack sorting operator.
The pop stack sorting operator is defined by Pop↓L(x)=x∧⋀{y∈L∣y⋖. This statistic returns the size of Pop_L^\downarrow(L)\}.
The following 53 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000912The number of maximal antichains in a poset. St000680The Grundy value for Hackendot on posets. St000528The height of a poset. St000703The number of deficiencies of a permutation. St001626The number of maximal proper sublattices of a lattice. St001623The number of doubly irreducible elements of a lattice. St000451The length of the longest pattern of the form k 1 2. St000028The number of stack-sorts needed to sort a permutation. St000141The maximum drop size of a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000996The number of exclusive left-to-right maxima of a permutation. St001052The length of the exterior of a permutation. St001096The size of the overlap set of a permutation. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001845The number of join irreducibles minus the rank of a lattice. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St000643The size of the largest orbit of antichains under Panyushev complementation. St000080The rank of the poset. St001812The biclique partition number of a graph. St001782The order of rowmotion on the set of order ideals of a poset. St000393The number of strictly increasing runs in a binary word. St001417The length of a longest palindromic subword of a binary word. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001003The number of indecomposable modules with projective dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St000013The height of a Dyck path. St000809The reduced reflection length of the permutation. St001077The prefix exchange distance of a permutation. St001555The order of a signed permutation. St001875The number of simple modules with projective dimension at most 1. St000327The number of cover relations in a poset. St000519The largest length of a factor maximising the subword complexity. St000922The minimal number such that all substrings of this length are unique. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001415The length of the longest palindromic prefix of a binary word. St001416The length of a longest palindromic factor of a binary word. St001419The length of the longest palindromic factor beginning with a one of a binary word. St001424The number of distinct squares in a binary word. St001861The number of Bruhat lower covers of a permutation. St001684The reduced word complexity of a permutation. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001207The Lowey length of the algebra A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra of K[x]/(x^n). St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St000019The cardinality of the support of a permutation. St000031The number of cycles in the cycle decomposition of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!