searching the database
Your data matches 158 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001668
Values
([],2)
=> 0
([(0,1)],2)
=> 1
([],3)
=> 0
([(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> 1
([(0,2),(2,1)],3)
=> 2
([(0,2),(1,2)],3)
=> 1
([],4)
=> 0
([(2,3)],4)
=> 1
([(1,2),(1,3)],4)
=> 1
([(0,1),(0,2),(0,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> 2
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(1,2),(2,3)],4)
=> 2
([],5)
=> 0
([(3,4)],5)
=> 1
([(2,3),(2,4)],5)
=> 1
([(1,2),(1,3),(1,4)],5)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(4,2)],5)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
([(0,3),(0,4),(3,2),(4,1)],5)
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(2,3),(3,4)],5)
=> 2
([(1,4),(4,2),(4,3)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> 2
([(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(4,3)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> 3
([(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
Description
The number of points of the poset minus the width of the poset.
Matching statistic: St000362
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
([],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> 0
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> 1
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
Description
The size of a minimal vertex cover of a graph.
A '''vertex cover''' of a graph $G$ is a subset $S$ of the vertices of $G$ such that each edge of $G$ contains at least one vertex of $S$. Finding a minimal vertex cover is an NP-hard optimization problem.
Matching statistic: St000377
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000377: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000377: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],2)
=> [1,1]
=> [2]
=> 0
([(0,1)],2)
=> [2]
=> [1,1]
=> 1
([],3)
=> [1,1,1]
=> [2,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [3]
=> 1
([(0,1),(0,2)],3)
=> [2,1]
=> [3]
=> 1
([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 2
([(0,2),(1,2)],3)
=> [2,1]
=> [3]
=> 1
([],4)
=> [1,1,1,1]
=> [3,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [2,2]
=> 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [2,2]
=> 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [2,2]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(1,3),(2,3)],4)
=> [2,1,1]
=> [2,2]
=> 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [2,2]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [4]
=> 2
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [4]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [4]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 3
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
([],5)
=> [1,1,1,1,1]
=> [3,2]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [3,1,1]
=> 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [3,1,1]
=> 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [3,1,1]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [3,1,1]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [4,1]
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [4,1]
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [4,1]
=> 2
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [4,1]
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [4,1]
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [4,1]
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [2,1,1,1]
=> 3
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [5]
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [5]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [5]
=> 3
([(2,3),(3,4)],5)
=> [3,1,1]
=> [4,1]
=> 2
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [4,1]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [4,1]
=> 2
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [3,1,1]
=> 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [4,1]
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [5]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [3,1,1]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [4,1]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [3,1,1]
=> 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [2,2,1]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,2,1]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,2,1]
=> 2
Description
The dinv defect of an integer partition.
This is the number of cells $c$ in the diagram of an integer partition $\lambda$ for which $\operatorname{arm}(c)-\operatorname{leg}(c) \not\in \{0,1\}$.
Matching statistic: St001176
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001176: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001176: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],2)
=> [1,1]
=> [2]
=> 0
([(0,1)],2)
=> [2]
=> [1,1]
=> 1
([],3)
=> [1,1,1]
=> [3]
=> 0
([(1,2)],3)
=> [2,1]
=> [2,1]
=> 1
([(0,1),(0,2)],3)
=> [2,1]
=> [2,1]
=> 1
([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 2
([(0,2),(1,2)],3)
=> [2,1]
=> [2,1]
=> 1
([],4)
=> [1,1,1,1]
=> [4]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [3,1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [3,1]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(1,3),(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> 2
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2,2]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2,2]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 3
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
([],5)
=> [1,1,1,1,1]
=> [5]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [3,1,1]
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 2
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [3,1,1]
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [3,1,1]
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [2,1,1,1]
=> 3
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2,2,1]
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [2,2,1]
=> 3
([(2,3),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 2
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> 2
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [2,2,1]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [3,2]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [3,2]
=> 2
Description
The size of a partition minus its first part.
This is the number of boxes in its diagram that are not in the first row.
Matching statistic: St000507
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000507: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000507: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],2)
=> [1,1]
=> [[1],[2]]
=> 1 = 0 + 1
([(0,1)],2)
=> [2]
=> [[1,2]]
=> 2 = 1 + 1
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> 1 = 0 + 1
([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> 2 = 1 + 1
([(0,1),(0,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> 2 = 1 + 1
([(0,2),(2,1)],3)
=> [3]
=> [[1,2,3]]
=> 3 = 2 + 1
([(0,2),(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> 2 = 1 + 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 1 = 0 + 1
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 1 + 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 1 + 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 3 = 2 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 3 = 2 + 1
([(1,2),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 3 = 2 + 1
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 3 = 2 + 1
([(1,3),(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 1 + 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 3 = 2 + 1
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 1 + 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> 3 = 2 + 1
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> 3 = 2 + 1
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [[1,2,3,4]]
=> 4 = 3 + 1
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 3 = 2 + 1
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1 = 0 + 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2 = 1 + 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2 = 1 + 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 4 = 3 + 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 4 = 3 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 4 = 3 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 4 = 3 + 1
([(2,3),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2 = 1 + 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 4 = 3 + 1
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2 = 1 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2 = 1 + 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 3 = 2 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 3 = 2 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 3 = 2 + 1
Description
The number of ascents of a standard tableau.
Entry $i$ of a standard Young tableau is an '''ascent''' if $i+1$ appears to the right or above $i$ in the tableau (with respect to the English notation for tableaux).
Matching statistic: St000074
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00082: Standard tableaux —to Gelfand-Tsetlin pattern⟶ Gelfand-Tsetlin patterns
St000074: Gelfand-Tsetlin patterns ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00082: Standard tableaux —to Gelfand-Tsetlin pattern⟶ Gelfand-Tsetlin patterns
St000074: Gelfand-Tsetlin patterns ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],2)
=> [1,1]
=> [[1],[2]]
=> [[1,1],[1]]
=> 0
([(0,1)],2)
=> [2]
=> [[1,2]]
=> [[2,0],[1]]
=> 1
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0
([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [[2,1,0],[2,0],[1]]
=> 1
([(0,1),(0,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [[2,1,0],[2,0],[1]]
=> 1
([(0,2),(2,1)],3)
=> [3]
=> [[1,2,3]]
=> [[3,0,0],[2,0],[1]]
=> 2
([(0,2),(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [[2,1,0],[2,0],[1]]
=> 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,1,1,1],[1,1,1],[1,1],[1]]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(1,2),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(1,3),(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> 2
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [[1,2,3,4]]
=> [[4,0,0,0],[3,0,0],[2,0],[1]]
=> 3
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,1,1,1,1],[1,1,1,1],[1,1,1],[1,1],[1]]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[2,1,1,1,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[2,1,1,1,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[2,1,1,1,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[2,1,1,1,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 3
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[3,2,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[3,2,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[3,2,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 3
([(2,3),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[2,1,1,1,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[3,2,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[2,1,1,1,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[2,1,1,1,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[2,2,1,0,0],[2,2,0,0],[2,1,0],[2,0],[1]]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[2,2,1,0,0],[2,2,0,0],[2,1,0],[2,0],[1]]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[2,2,1,0,0],[2,2,0,0],[2,1,0],[2,0],[1]]
=> 2
Description
The number of special entries.
An entry $a_{i,j}$ of a Gelfand-Tsetlin pattern is special if $a_{i-1,j-i} > a_{i,j} > a_{i-1,j}$. That is, it is neither boxed nor circled.
Matching statistic: St000157
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000157: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000157: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],2)
=> [1,1]
=> [[1],[2]]
=> [[1,2]]
=> 0
([(0,1)],2)
=> [2]
=> [[1,2]]
=> [[1],[2]]
=> 1
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 0
([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [[1,3],[2]]
=> 1
([(0,1),(0,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [[1,3],[2]]
=> 1
([(0,2),(2,1)],3)
=> [3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 2
([(0,2),(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [[1,3],[2]]
=> 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 2
([(1,2),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 2
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 2
([(1,3),(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 3
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 2
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 2
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 3
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 3
([(2,3),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 2
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 2
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 2
Description
The number of descents of a standard tableau.
Entry $i$ of a standard Young tableau is a descent if $i+1$ appears in a row below the row of $i$.
Matching statistic: St000211
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00284: Standard tableaux —rows⟶ Set partitions
St000211: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00284: Standard tableaux —rows⟶ Set partitions
St000211: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],2)
=> [1,1]
=> [[1],[2]]
=> {{1},{2}}
=> 0
([(0,1)],2)
=> [2]
=> [[1,2]]
=> {{1,2}}
=> 1
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> {{1},{2},{3}}
=> 0
([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> {{1,2},{3}}
=> 1
([(0,1),(0,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> {{1,2},{3}}
=> 1
([(0,2),(2,1)],3)
=> [3]
=> [[1,2,3]]
=> {{1,2,3}}
=> 2
([(0,2),(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> {{1,2},{3}}
=> 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> 0
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> {{1,2,3},{4}}
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> {{1,2,3},{4}}
=> 2
([(1,2),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> {{1,2,3},{4}}
=> 2
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> {{1,2,3},{4}}
=> 2
([(1,3),(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> {{1,2,3},{4}}
=> 2
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> 2
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> 2
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [[1,2,3,4]]
=> {{1,2,3,4}}
=> 3
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> {{1,2,3},{4}}
=> 2
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> 3
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> 3
([(2,3),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> 3
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> 2
Description
The rank of the set partition.
This is defined as the number of elements in the set partition minus the number of blocks, or, equivalently, the number of arcs in the one-line diagram associated to the set partition.
Matching statistic: St000228
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000228: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000228: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],2)
=> [1,1]
=> [2]
=> []
=> 0
([(0,1)],2)
=> [2]
=> [1,1]
=> [1]
=> 1
([],3)
=> [1,1,1]
=> [3]
=> []
=> 0
([(1,2)],3)
=> [2,1]
=> [2,1]
=> [1]
=> 1
([(0,1),(0,2)],3)
=> [2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> [1,1]
=> 2
([(0,2),(1,2)],3)
=> [2,1]
=> [2,1]
=> [1]
=> 1
([],4)
=> [1,1,1,1]
=> [4]
=> []
=> 0
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 2
([(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 2
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 2
([(1,3),(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> [2]
=> 2
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2,2]
=> [2]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2,2]
=> [2]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 3
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 2
([],5)
=> [1,1,1,1,1]
=> [5]
=> []
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 3
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 3
([(2,3),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> [2]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [3,2]
=> [2]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [3,2]
=> [2]
=> 2
Description
The size of a partition.
This statistic is the constant statistic of the level sets.
Matching statistic: St000245
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000245: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000245: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],2)
=> [1,1]
=> [[1],[2]]
=> [2,1] => 0
([(0,1)],2)
=> [2]
=> [[1,2]]
=> [1,2] => 1
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 0
([(1,2)],3)
=> [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 1
([(0,1),(0,2)],3)
=> [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 1
([(0,2),(2,1)],3)
=> [3]
=> [[1,2,3]]
=> [1,2,3] => 2
([(0,2),(1,2)],3)
=> [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 0
([(2,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [[1,3,4],[2]]
=> [2,1,3,4] => 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,3,4],[2]]
=> [2,1,3,4] => 2
([(1,2),(2,3)],4)
=> [3,1]
=> [[1,3,4],[2]]
=> [2,1,3,4] => 2
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [[1,3,4],[2]]
=> [2,1,3,4] => 2
([(1,3),(2,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [[1,3,4],[2]]
=> [2,1,3,4] => 2
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 2
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 2
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 3
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [[1,3,4],[2]]
=> [2,1,3,4] => 2
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 0
([(3,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 2
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [[1,3,4,5],[2]]
=> [2,1,3,4,5] => 3
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [3,4,1,2,5] => 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [3,4,1,2,5] => 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [3,4,1,2,5] => 3
([(2,3),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 2
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 2
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [3,4,1,2,5] => 3
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> [4,2,5,1,3] => 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> [4,2,5,1,3] => 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> [4,2,5,1,3] => 2
Description
The number of ascents of a permutation.
The following 148 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000293The number of inversions of a binary word. St000369The dinv deficit of a Dyck path. St000394The sum of the heights of the peaks of a Dyck path minus the number of peaks. St000441The number of successions of a permutation. St000459The hook length of the base cell of a partition. St000502The number of successions of a set partitions. St000672The number of minimal elements in Bruhat order not less than the permutation. St000728The dimension of a set partition. St001298The number of repeated entries in the Lehmer code of a permutation. St001480The number of simple summands of the module J^2/J^3. St000026The position of the first return of a Dyck path. St000093The cardinality of a maximal independent set of vertices of a graph. St000240The number of indices that are not small excedances. St000738The first entry in the last row of a standard tableau. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St000259The diameter of a connected graph. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001060The distinguishing index of a graph. St000145The Dyson rank of a partition. St000741The Colin de Verdière graph invariant. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000144The pyramid weight of the Dyck path. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001118The acyclic chromatic index of a graph. St001720The minimal length of a chain of small intervals in a lattice. St000454The largest eigenvalue of a graph if it is integral. St000260The radius of a connected graph. St001545The second Elser number of a connected graph. St001568The smallest positive integer that does not appear twice in the partition. St001645The pebbling number of a connected graph. St001498The normalised height of a Nakayama algebra with magnitude 1. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000993The multiplicity of the largest part of an integer partition. St000455The second largest eigenvalue of a graph if it is integral. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000456The monochromatic index of a connected graph. St001877Number of indecomposable injective modules with projective dimension 2. St001626The number of maximal proper sublattices of a lattice. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000171The degree of the graph. St000387The matching number of a graph. St000552The number of cut vertices of a graph. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001305The number of induced cycles on four vertices in a graph. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001349The number of different graphs obtained from the given graph by removing an edge. St001393The induced matching number of a graph. St001689The number of celebrities in a graph. St000172The Grundy number of a graph. St000363The number of minimal vertex covers of a graph. St000388The number of orbits of vertices of a graph under automorphisms. St000482The (zero)-forcing number of a graph. St000537The cutwidth of a graph. St000553The number of blocks of a graph. St000778The metric dimension of a graph. St000785The number of distinct colouring schemes of a graph. St001108The 2-dynamic chromatic number of a graph. St001110The 3-dynamic chromatic number of a graph. St001261The Castelnuovo-Mumford regularity of a graph. St001271The competition number of a graph. St001304The number of maximally independent sets of vertices of a graph. St001352The number of internal nodes in the modular decomposition of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001670The connected partition number of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001725The harmonious chromatic number of a graph. St001829The common independence number of a graph. St001963The tree-depth of a graph. St000469The distinguishing number of a graph. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001366The maximal multiplicity of a degree of a vertex of a graph. St001691The number of kings in a graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001844The maximal degree of a generator of the invariant ring of the automorphism group of a graph. St001883The mutual visibility number of a graph. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001644The dimension of a graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000632The jump number of the poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000640The rank of the largest boolean interval in a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St000907The number of maximal antichains of minimal length in a poset. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St000307The number of rowmotion orbits of a poset. St001117The game chromatic index of a graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St001574The minimal number of edges to add or remove to make a graph regular. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001742The difference of the maximal and the minimal degree in a graph. St001812The biclique partition number of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St000822The Hadwiger number of the graph. St001330The hat guessing number of a graph. St001734The lettericity of a graph. St000315The number of isolated vertices of a graph. St001642The Prague dimension of a graph. St000264The girth of a graph, which is not a tree. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000567The sum of the products of all pairs of parts. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000939The number of characters of the symmetric group whose value on the partition is positive. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!