searching the database
Your data matches 10 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001679
Values
([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 10
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 8
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 24
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 10
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 16
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 16
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 20
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 54
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 24
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1)],2)
=> 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> 32
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 16
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 32
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 10
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 32
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 40
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> 48
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 10
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 44
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 32
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 20
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 116
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 54
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([],1)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1)],2)
=> 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> 64
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> 32
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 4
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> 64
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,1)],2)
=> 2
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(2,1)],3)
=> 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 10
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 64
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 16
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 64
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 24
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> 2
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> 64
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1)],2)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 80
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> 96
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> 108
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 10
Description
The number of subsets of a lattice whose meet is the bottom element.
Matching statistic: St000771
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {8,10}
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? ∊ {8,10}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {10,16,16,20,24}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {10,16,16,20,24}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? ∊ {10,16,16,20,24}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24}
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(5,4),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,6),(5,1),(5,2),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,2),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(4,6),(5,4),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000772
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {8,10}
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? ∊ {8,10}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {10,16,16,20,24}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {10,16,16,20,24}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? ∊ {10,16,16,20,24}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24}
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(5,4),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,6),(5,1),(5,2),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,2),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(4,6),(5,4),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St000777
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {8,10}
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? ∊ {8,10}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {10,16,16,20,24}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {10,16,16,20,24}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? ∊ {10,16,16,20,24}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24}
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(5,4),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,6),(5,1),(5,2),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,2),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(4,6),(5,4),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001645
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {8,10}
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? ∊ {8,10}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {10,16,16,20,24}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {10,16,16,20,24}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? ∊ {10,16,16,20,24}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24}
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54}
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116}
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(5,4),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,6),(5,1),(5,2),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,2),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(4,6),(5,4),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
Description
The pebbling number of a connected graph.
Matching statistic: St000259
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {8,10} - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? ∊ {8,10} - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {10,16,16,20,24} - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(5,4),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,6),(5,1),(5,2),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,2),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(4,6),(5,4),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St000260
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {8,10} - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? ∊ {8,10} - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {10,16,16,20,24} - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(5,4),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,6),(5,1),(5,2),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,2),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(4,6),(5,4),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000302
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {8,10} - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? ∊ {8,10} - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {10,16,16,20,24} - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(5,4),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,6),(5,1),(5,2),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,2),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(4,6),(5,4),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
Description
The determinant of the distance matrix of a connected graph.
Matching statistic: St000466
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {8,10} - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? ∊ {8,10} - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {10,16,16,20,24} - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(5,4),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,6),(5,1),(5,2),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,2),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(4,6),(5,4),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
Description
The Gutman (or modified Schultz) index of a connected graph.
This is
$$\sum_{\{u,v\}\subseteq V} d(u)d(v)d(u,v)$$
where $d(u)$ is the degree of vertex $u$ and $d(u,v)$ is the distance between vertices $u$ and $v$.
For trees on $n$ vertices, the modified Schultz index is related to the Wiener index via $S^\ast(T)=4W(T)-(n-1)(2n-1)$ [1].
Matching statistic: St000467
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {8,10} - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? ∊ {8,10} - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {10,16,16,20,24} - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {10,16,16,20,24} - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,10,10,16,20,24,32,32,32,32,40,44,48,54} - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4,4,10,10,10,10,10,16,16,20,20,24,24,32,32,32,40,44,44,44,44,48,54,64,64,64,64,64,64,64,64,80,80,88,92,96,104,108,116} - 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(5,4),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,6),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,6),(5,1),(5,2),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,2),(4,6),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(3,7),(4,6),(5,1),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,5),(1,7),(2,7),(3,6),(4,1),(4,6),(5,4),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,2),(5,1),(5,6),(6,7)],8)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
Description
The hyper-Wiener index of a connected graph.
This is
$$
\sum_{\{u,v\}\subseteq V} d(u,v)+d(u,v)^2.
$$
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!