Your data matches 77 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001684
St001684: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 1
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 2
[3,1,2] => 2
[3,2,1] => 4
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 2
[1,4,2,3] => 2
[1,4,3,2] => 4
[2,1,3,4] => 1
[2,1,4,3] => 3
[2,3,1,4] => 2
[2,3,4,1] => 3
[2,4,1,3] => 4
[2,4,3,1] => 6
[3,1,2,4] => 2
[3,1,4,2] => 4
[3,2,1,4] => 4
[3,2,4,1] => 6
[3,4,1,2] => 5
[3,4,2,1] => 8
[4,1,2,3] => 3
[4,1,3,2] => 6
[4,2,1,3] => 6
[4,2,3,1] => 9
[4,3,1,2] => 8
[4,3,2,1] => 12
Description
The reduced word complexity of a permutation. For a permutation $\pi$, this is the smallest length of a word in simple transpositions that contains all reduced expressions of $\pi$. For example, the permutation $[3,2,1] = (12)(23)(12) = (23)(12)(23)$ and the reduced word complexity is $4$ since the smallest words containing those two reduced words as subwords are $(12),(23),(12),(23)$ and also $(23),(12),(23),(12)$. This statistic appears in [1, Question 6.1].
Mp00061: Permutations to increasing treeBinary trees
Mp00020: Binary trees to Tamari-corresponding Dyck pathDyck paths
Mp00142: Dyck paths promotionDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 64%distinct values known / distinct values provided: 50%
Values
[1] => [.,.]
=> [1,0]
=> [1,0]
=> 0
[1,2] => [.,[.,.]]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[2,1] => [[.,.],.]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,2,3] => [.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,3,2] => [.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 4
[2,1,3] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[2,3,1] => [[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[3,1,2] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[3,2,1] => [[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {4,4,5,6,6,6,6,8,8,9,12}
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,5,6,6,6,6,8,8,9,12}
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,5,6,6,6,6,8,8,9,12}
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {4,4,5,6,6,6,6,8,8,9,12}
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,5,6,6,6,6,8,8,9,12}
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[2,4,3,1] => [[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[3,1,2,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,1,4,2] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,5,6,6,6,6,8,8,9,12}
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {4,4,5,6,6,6,6,8,8,9,12}
[3,2,4,1] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[4,1,2,3] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[4,1,3,2] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {4,4,5,6,6,6,6,8,8,9,12}
[4,2,1,3] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {4,4,5,6,6,6,6,8,8,9,12}
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[4,3,1,2] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {4,4,5,6,6,6,6,8,8,9,12}
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {4,4,5,6,6,6,6,8,8,9,12}
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000454: Graphs ⟶ ℤResult quality: 40% values known / values provided: 45%distinct values known / distinct values provided: 40%
Values
[1] => [1] => ([],1)
=> 0
[1,2] => [2] => ([],2)
=> 0
[2,1] => [1,1] => ([(0,1)],2)
=> 1
[1,2,3] => [3] => ([],3)
=> 0
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {2,4}
[2,1,3] => [1,2] => ([(1,2)],3)
=> 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {2,4}
[3,1,2] => [1,2] => ([(1,2)],3)
=> 1
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,2,3,4] => [4] => ([],4)
=> 0
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00247: Graphs de-duplicateGraphs
St001645: Graphs ⟶ ℤResult quality: 40% values known / values provided: 45%distinct values known / distinct values provided: 40%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,2] => [2] => ([],2)
=> ([],1)
=> 1 = 0 + 1
[2,1] => [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,2,3] => [3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,1,3] => [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,4} + 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 1 + 1
[3,1,2] => [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,4} + 1
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,2,3,4] => [4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
Description
The pebbling number of a connected graph.
Mp00159: Permutations Demazure product with inversePermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000770: Integer partitions ⟶ ℤResult quality: 42% values known / values provided: 42%distinct values known / distinct values provided: 60%
Values
[1] => [1] => [1,0]
=> []
=> ? = 0
[1,2] => [1,2] => [1,0,1,0]
=> [1]
=> ? ∊ {0,1}
[2,1] => [2,1] => [1,1,0,0]
=> []
=> ? ∊ {0,1}
[1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 4
[1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 1
[2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 2
[2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,1,2}
[3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,1,2}
[3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {0,1,2}
[1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 9
[1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 4
[1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 6
[1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,4,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> 6
[2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> 2
[2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 3
[2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,2,2,2,4,4,4,5,6,6,8,8,12}
[2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> ? ∊ {0,2,2,2,4,4,4,5,6,6,8,8,12}
[2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,2,2,2,4,4,4,5,6,6,8,8,12}
[3,1,2,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 3
[3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,2,2,2,4,4,4,5,6,6,8,8,12}
[3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 3
[3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,2,2,2,4,4,4,5,6,6,8,8,12}
[3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,2,2,2,4,4,4,5,6,6,8,8,12}
[3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,2,2,2,4,4,4,5,6,6,8,8,12}
[4,1,2,3] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,2,2,2,4,4,4,5,6,6,8,8,12}
[4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,2,2,2,4,4,4,5,6,6,8,8,12}
[4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,2,2,2,4,4,4,5,6,6,8,8,12}
[4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,2,2,2,4,4,4,5,6,6,8,8,12}
[4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,2,2,2,4,4,4,5,6,6,8,8,12}
[4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {0,2,2,2,4,4,4,5,6,6,8,8,12}
Description
The major index of an integer partition when read from bottom to top. This is the sum of the positions of the corners of the shape of an integer partition when reading from bottom to top. For example, the partition $\lambda = (8,6,6,4,3,3)$ has corners at positions 3,6,9, and 13, giving a major index of 31.
Matching statistic: St000848
Mp00065: Permutations permutation posetPosets
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
St000848: Posets ⟶ ℤResult quality: 30% values known / values provided: 39%distinct values known / distinct values provided: 30%
Values
[1] => ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[2,3,1] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 4
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,4,2,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[4,2,3,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[4,3,1,2] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[4,3,2,1] => ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
Description
The balance constant multiplied with the number of linear extensions of a poset. A pair of elements $x,y$ of a poset is $\alpha$-balanced if the proportion $P(x,y)$ of linear extensions where $x$ comes before $y$ is between $\alpha$ and $1-\alpha$. The balance constant of a poset is $\max\min(P(x,y), P(y,x)).$ Kislitsyn [1] conjectured that every poset which is not a chain is $1/3$-balanced. Brightwell, Felsner and Trotter [2] show that it is at least $(1-\sqrt 5)/10$-balanced. Olson and Sagan [3] exhibit various posets that are $1/2$-balanced.
Matching statistic: St000849
Mp00065: Permutations permutation posetPosets
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
St000849: Posets ⟶ ℤResult quality: 30% values known / values provided: 39%distinct values known / distinct values provided: 30%
Values
[1] => ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[2,3,1] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 4
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[3,4,2,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[4,2,3,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[4,3,1,2] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
[4,3,2,1] => ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {2,2,2,3,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12}
Description
The number of 1/3-balanced pairs in a poset. A pair of elements $x,y$ of a poset is $\alpha$-balanced if the proportion of linear extensions where $x$ comes before $y$ is between $\alpha$ and $1-\alpha$. Kislitsyn [1] conjectured that every poset which is not a chain has a $1/3$-balanced pair. Brightwell, Felsner and Trotter [2] show that at least a $(1-\sqrt 5)/10$-balanced pair exists in posets which are not chains. Olson and Sagan [3] show that posets corresponding to skew Ferrers diagrams have a $1/3$-balanced pair.
Matching statistic: St000910
Mp00065: Permutations permutation posetPosets
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
St000910: Posets ⟶ ℤResult quality: 39% values known / values provided: 39%distinct values known / distinct values provided: 40%
Values
[1] => ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2 = 1 + 1
[2,3,1] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2 = 1 + 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 1 + 1
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 4 = 3 + 1
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,4,2,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,2,3,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,3,1,2] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,3,2,1] => ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
Description
The number of maximal chains of minimal length in a poset.
Matching statistic: St001105
Mp00065: Permutations permutation posetPosets
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
St001105: Posets ⟶ ℤResult quality: 39% values known / values provided: 39%distinct values known / distinct values provided: 40%
Values
[1] => ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2 = 1 + 1
[2,3,1] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2 = 1 + 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 1 + 1
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 4 = 3 + 1
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,4,2,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,2,3,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,3,1,2] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,3,2,1] => ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
Description
The number of greedy linear extensions of a poset. A linear extension of a poset $P$ with elements $\{x_1,\dots,x_n\}$ is greedy, if it can be obtained by the following algorithm: * Step 1. Choose a minimal element $x_1$. * Step 2. Suppose $X=\{x_1,\dots,x_i\}$ have been chosen. If there is at least one minimal element of $P\setminus X$ which is greater than $x_i$ then choose $x_{i+1}$ to be any such minimal element; otherwise, choose $x_{i+1}$ to be any minimal element of $P\setminus X$. This statistic records the number of greedy linear extensions.
Matching statistic: St001106
Mp00065: Permutations permutation posetPosets
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
St001106: Posets ⟶ ℤResult quality: 39% values known / values provided: 39%distinct values known / distinct values provided: 40%
Values
[1] => ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2 = 1 + 1
[2,3,1] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 2 + 1
[3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 4 + 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2 = 1 + 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 1 + 1
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 4 = 3 + 1
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[3,4,2,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,2,3,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,3,1,2] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
[4,3,2,1] => ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {2,2,2,2,3,3,4,4,4,4,5,6,6,6,6,8,8,9,12} + 1
Description
The number of supergreedy linear extensions of a poset. A linear extension of a poset P with elements $\{x_1,\dots,x_n\}$ is supergreedy, if it can be obtained by the following algorithm: * Step 1. Choose a minimal element $x_1$. * Step 2. Suppose $X=\{x_1,\dots,x_i\}$ have been chosen, let $M$ be the set of minimal elements of $P\setminus X$. If there is an element of $M$ which covers an element $x_j$ in $X$, then let $x_{i+1}$ be one of these such that $j$ is maximal; otherwise, choose $x_{i+1}$ to be any element of $M$. This statistic records the number of supergreedy linear extensions.
The following 67 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000259The diameter of a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001626The number of maximal proper sublattices of a lattice. St000260The radius of a connected graph. St001877Number of indecomposable injective modules with projective dimension 2. St001545The second Elser number of a connected graph. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001330The hat guessing number of a graph. St000668The least common multiple of the parts of the partition. St000706The product of the factorials of the multiplicities of an integer partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St000264The girth of a graph, which is not a tree. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000567The sum of the products of all pairs of parts. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000927The alternating sum of the coefficients of the character polynomial of an integer partition. St001060The distinguishing index of a graph. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001568The smallest positive integer that does not appear twice in the partition. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000477The weight of a partition according to Alladi. St000997The even-odd crank of an integer partition. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001498The normalised height of a Nakayama algebra with magnitude 1. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000112The sum of the entries reduced by the index of their row in a semistandard tableau. St000736The last entry in the first row of a semistandard tableau. St000177The number of free tiles in the pattern. St000178Number of free entries. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001520The number of strict 3-descents. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001811The Castelnuovo-Mumford regularity of a permutation. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001948The number of augmented double ascents of a permutation. St000958The number of Bruhat factorizations of a permutation. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001569The maximal modular displacement of a permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000075The orbit size of a standard tableau under promotion. St000422The energy of a graph, if it is integral. St001235The global dimension of the corresponding Comp-Nakayama algebra.