searching the database
Your data matches 79 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001769
St001769: Signed permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0
[-1] => 1
[1,2] => 0
[1,-2] => 1
[-1,2] => 1
[-1,-2] => 2
[2,1] => 1
[2,-1] => 2
[-2,1] => 2
[-2,-1] => 1
[1,2,3] => 0
[1,2,-3] => 1
[1,-2,3] => 1
[1,-2,-3] => 2
[-1,2,3] => 1
[-1,2,-3] => 2
[-1,-2,3] => 2
[-1,-2,-3] => 3
[1,3,2] => 1
[1,3,-2] => 2
[1,-3,2] => 2
[1,-3,-2] => 1
[-1,3,2] => 2
[-1,3,-2] => 3
[-1,-3,2] => 3
[-1,-3,-2] => 2
[2,1,3] => 1
[2,1,-3] => 2
[2,-1,3] => 2
[2,-1,-3] => 3
[-2,1,3] => 2
[-2,1,-3] => 3
[-2,-1,3] => 1
[-2,-1,-3] => 2
[2,3,1] => 2
[2,3,-1] => 3
[2,-3,1] => 3
[2,-3,-1] => 2
[-2,3,1] => 3
[-2,3,-1] => 2
[-2,-3,1] => 2
[-2,-3,-1] => 3
[3,1,2] => 2
[3,1,-2] => 3
[3,-1,2] => 3
[3,-1,-2] => 2
[-3,1,2] => 3
[-3,1,-2] => 2
[-3,-1,2] => 2
[-3,-1,-2] => 3
Description
The reflection length of a signed permutation.
This is the minimal numbers of reflections needed to express a signed permutation.
Matching statistic: St000064
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00169: Signed permutations —odd cycle type⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000064: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 60%
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000064: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 60%
Values
[1] => []
=> []
=> [] => ? ∊ {0,1}
[-1] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1}
[1,2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1}
[1,-2] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1}
[-1,2] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1}
[-1,-2] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[2,1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1}
[2,-1] => [2]
=> [[1,2]]
=> [1,2] => 2
[-2,1] => [2]
=> [[1,2]]
=> [1,2] => 2
[-2,-1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1}
[1,2,3] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,2,-3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,-2,3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,-2,-3] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[-1,2,3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-1,2,-3] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[-1,-2,3] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[-1,-2,-3] => [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 3
[1,3,2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,3,-2] => [2]
=> [[1,2]]
=> [1,2] => 2
[1,-3,2] => [2]
=> [[1,2]]
=> [1,2] => 2
[1,-3,-2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-1,3,2] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-1,3,-2] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-1,-3,2] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-1,-3,-2] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,1,3] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,1,-3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,-1,3] => [2]
=> [[1,2]]
=> [1,2] => 2
[2,-1,-3] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-2,1,3] => [2]
=> [[1,2]]
=> [1,2] => 2
[-2,1,-3] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-2,-1,3] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-2,-1,-3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,-1] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[2,-3,1] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[2,-3,-1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-2,3,1] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[-2,3,-1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-2,-3,1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-2,-3,-1] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[3,1,2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,1,-2] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[3,-1,2] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[3,-1,-2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-3,1,2] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[-3,1,-2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-3,-1,2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-3,-1,-2] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[3,2,1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,2,-1] => [2]
=> [[1,2]]
=> [1,2] => 2
[3,-2,1] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,-2,-1] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-3,2,1] => [2]
=> [[1,2]]
=> [1,2] => 2
[-3,2,-1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-3,-2,1] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-3,-2,-1] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,2,3,4] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,-4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,-3,4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,-3,-4] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[1,-2,3,4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,3,-4] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[1,-2,-3,4] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[1,-2,-3,-4] => [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 3
[-1,2,3,4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,3,-4] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[-1,2,-3,4] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[-1,2,-3,-4] => [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 3
[-1,-2,3,4] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[-1,-2,3,-4] => [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 3
[-1,-2,-3,4] => [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 3
[-1,-2,-3,-4] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 4
[1,2,4,3] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,-3] => [2]
=> [[1,2]]
=> [1,2] => 2
[1,2,-4,3] => [2]
=> [[1,2]]
=> [1,2] => 2
[1,2,-4,-3] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,4,3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,4,-3] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[1,-2,-4,3] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[1,-2,-4,-3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,4,3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,4,-3] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-1,2,-4,3] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-1,2,-4,-3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,-2,4,3] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[-1,-2,4,-3] => [2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => 3
[-1,-2,-4,3] => [2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => 3
[-1,-2,-4,-3] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[1,3,2,4] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,-4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,-2,4] => [2]
=> [[1,2]]
=> [1,2] => 2
[1,3,-2,-4] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[1,-3,-2,4] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-3,-2,-4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,3,2,4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,-3,-2,4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,4,2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,-4,-2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The number of one-box pattern of a permutation.
This is the number of $i$ for which there is a $j$ such that $(i,\sigma_i)$ and $(j,\sigma_j)$ have distance 2 in the taxi metric on the $\mathbb{Z}^2$ grid.
Matching statistic: St000724
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00169: Signed permutations —odd cycle type⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000724: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 60%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000724: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 60%
Values
[1] => []
=> []
=> [] => ? ∊ {0,1}
[-1] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1}
[1,2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1}
[1,-2] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1}
[-1,2] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1}
[-1,-2] => [1,1]
=> [1,1,0,0]
=> [2,1] => 2
[2,1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1}
[2,-1] => [2]
=> [1,0,1,0]
=> [1,2] => 2
[-2,1] => [2]
=> [1,0,1,0]
=> [1,2] => 2
[-2,-1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1}
[1,2,3] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,2,-3] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,-2,3] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,-2,-3] => [1,1]
=> [1,1,0,0]
=> [2,1] => 2
[-1,2,3] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[-1,2,-3] => [1,1]
=> [1,1,0,0]
=> [2,1] => 2
[-1,-2,3] => [1,1]
=> [1,1,0,0]
=> [2,1] => 2
[-1,-2,-3] => [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 3
[1,3,2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,3,-2] => [2]
=> [1,0,1,0]
=> [1,2] => 2
[1,-3,2] => [2]
=> [1,0,1,0]
=> [1,2] => 2
[1,-3,-2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[-1,3,2] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[-1,3,-2] => [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 3
[-1,-3,2] => [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 3
[-1,-3,-2] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,1,3] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,1,-3] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,-1,3] => [2]
=> [1,0,1,0]
=> [1,2] => 2
[2,-1,-3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 3
[-2,1,3] => [2]
=> [1,0,1,0]
=> [1,2] => 2
[-2,1,-3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 3
[-2,-1,3] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[-2,-1,-3] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,3,1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,3,-1] => [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[2,-3,1] => [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[2,-3,-1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[-2,3,1] => [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[-2,3,-1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[-2,-3,1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[-2,-3,-1] => [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[3,1,2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,1,-2] => [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[3,-1,2] => [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[3,-1,-2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[-3,1,2] => [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[-3,1,-2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[-3,-1,2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[-3,-1,-2] => [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[3,2,1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,2,-1] => [2]
=> [1,0,1,0]
=> [1,2] => 2
[3,-2,1] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,-2,-1] => [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 3
[-3,2,1] => [2]
=> [1,0,1,0]
=> [1,2] => 2
[-3,2,-1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[-3,-2,1] => [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 3
[-3,-2,-1] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,2,3,4] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,-4] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,-3,4] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,-3,-4] => [1,1]
=> [1,1,0,0]
=> [2,1] => 2
[1,-2,3,4] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,3,-4] => [1,1]
=> [1,1,0,0]
=> [2,1] => 2
[1,-2,-3,4] => [1,1]
=> [1,1,0,0]
=> [2,1] => 2
[1,-2,-3,-4] => [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 3
[-1,2,3,4] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,3,-4] => [1,1]
=> [1,1,0,0]
=> [2,1] => 2
[-1,2,-3,4] => [1,1]
=> [1,1,0,0]
=> [2,1] => 2
[-1,2,-3,-4] => [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 3
[-1,-2,3,4] => [1,1]
=> [1,1,0,0]
=> [2,1] => 2
[-1,-2,3,-4] => [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 3
[-1,-2,-3,4] => [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 3
[-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 4
[1,2,4,3] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,-3] => [2]
=> [1,0,1,0]
=> [1,2] => 2
[1,2,-4,3] => [2]
=> [1,0,1,0]
=> [1,2] => 2
[1,2,-4,-3] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,4,3] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,4,-3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 3
[1,-2,-4,3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 3
[1,-2,-4,-3] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,4,3] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,4,-3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 3
[-1,2,-4,3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 3
[-1,2,-4,-3] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,-2,4,3] => [1,1]
=> [1,1,0,0]
=> [2,1] => 2
[-1,-2,4,-3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 4
[-1,-2,-4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 4
[-1,-2,-4,-3] => [1,1]
=> [1,1,0,0]
=> [2,1] => 2
[1,3,2,4] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,-4] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,-2,4] => [2]
=> [1,0,1,0]
=> [1,2] => 2
[1,3,-2,-4] => [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 3
[1,-3,-2,4] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-3,-2,-4] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,3,2,4] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,-3,-2,4] => [1]
=> [1,0]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,4,2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,-4,-2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The label of the leaf of the path following the smaller label in the increasing binary tree associated to a permutation.
Associate an increasing binary tree to the permutation using [[Mp00061]]. Then follow the path starting at the root which always selects the child with the smaller label. This statistic is the label of the leaf in the path, see [1].
Han [2] showed that this statistic is (up to a shift) equidistributed on zigzag permutations (permutations $\pi$ such that $\pi(1) < \pi(2) > \pi(3) \cdots$) with the greater neighbor of the maximum ([[St000060]]), see also [3].
Matching statistic: St000923
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00169: Signed permutations —odd cycle type⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000923: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 60%
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000923: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 60%
Values
[1] => []
=> []
=> [] => ? ∊ {0,1}
[-1] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1}
[1,2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1}
[1,-2] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1}
[-1,2] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1}
[-1,-2] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[2,1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1}
[2,-1] => [2]
=> [[1,2]]
=> [1,2] => 2
[-2,1] => [2]
=> [[1,2]]
=> [1,2] => 2
[-2,-1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1}
[1,2,3] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,2,-3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,-2,3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,-2,-3] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[-1,2,3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-1,2,-3] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[-1,-2,3] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[-1,-2,-3] => [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 3
[1,3,2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,3,-2] => [2]
=> [[1,2]]
=> [1,2] => 2
[1,-3,2] => [2]
=> [[1,2]]
=> [1,2] => 2
[1,-3,-2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-1,3,2] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-1,3,-2] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-1,-3,2] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-1,-3,-2] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,1,3] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,1,-3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,-1,3] => [2]
=> [[1,2]]
=> [1,2] => 2
[2,-1,-3] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-2,1,3] => [2]
=> [[1,2]]
=> [1,2] => 2
[-2,1,-3] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-2,-1,3] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-2,-1,-3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,-1] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[2,-3,1] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[2,-3,-1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-2,3,1] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[-2,3,-1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-2,-3,1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-2,-3,-1] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[3,1,2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,1,-2] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[3,-1,2] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[3,-1,-2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-3,1,2] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[-3,1,-2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-3,-1,2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-3,-1,-2] => [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[3,2,1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,2,-1] => [2]
=> [[1,2]]
=> [1,2] => 2
[3,-2,1] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,-2,-1] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-3,2,1] => [2]
=> [[1,2]]
=> [1,2] => 2
[-3,2,-1] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-3,-2,1] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-3,-2,-1] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[1,2,3,4] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,-4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,-3,4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,-3,-4] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[1,-2,3,4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,3,-4] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[1,-2,-3,4] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[1,-2,-3,-4] => [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 3
[-1,2,3,4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,3,-4] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[-1,2,-3,4] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[-1,2,-3,-4] => [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 3
[-1,-2,3,4] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[-1,-2,3,-4] => [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 3
[-1,-2,-3,4] => [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 3
[-1,-2,-3,-4] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 4
[1,2,4,3] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,-3] => [2]
=> [[1,2]]
=> [1,2] => 2
[1,2,-4,3] => [2]
=> [[1,2]]
=> [1,2] => 2
[1,2,-4,-3] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,4,3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,4,-3] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[1,-2,-4,3] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[1,-2,-4,-3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,4,3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,4,-3] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-1,2,-4,3] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[-1,2,-4,-3] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,-2,4,3] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[-1,-2,4,-3] => [2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => 3
[-1,-2,-4,3] => [2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => 3
[-1,-2,-4,-3] => [1,1]
=> [[1],[2]]
=> [2,1] => 2
[1,3,2,4] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,-4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,-2,4] => [2]
=> [[1,2]]
=> [1,2] => 2
[1,3,-2,-4] => [2,1]
=> [[1,3],[2]]
=> [2,1,3] => 2
[1,-3,-2,4] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-3,-2,-4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,3,2,4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,-3,-2,4] => [1]
=> [[1]]
=> [1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,4,2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,-4,-2] => []
=> []
=> [] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The minimal number with no two order isomorphic substrings of this length in a permutation.
For example, the length $3$ substrings of the permutation $12435$ are $124$, $243$ and $435$, whereas its length $2$ substrings are $12$, $24$, $43$ and $35$.
No two sequences among $124$, $243$ and $435$ are order isomorphic, but $12$ and $24$ are, so the statistic on $12435$ is $3$.
This is inspired by [[St000922]].
Matching statistic: St001200
(load all 15 compositions to match this statistic)
(load all 15 compositions to match this statistic)
Mp00169: Signed permutations —odd cycle type⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 48%●distinct values known / distinct values provided: 40%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 48%●distinct values known / distinct values provided: 40%
Values
[1] => []
=> []
=> ? ∊ {0,1}
[-1] => [1]
=> [1,0]
=> ? ∊ {0,1}
[1,2] => []
=> []
=> ? ∊ {0,1,1,1,1,2}
[1,-2] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,2}
[-1,2] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,2}
[-1,-2] => [1,1]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,2}
[2,1] => []
=> []
=> ? ∊ {0,1,1,1,1,2}
[2,-1] => [2]
=> [1,0,1,0]
=> 2
[-2,1] => [2]
=> [1,0,1,0]
=> 2
[-2,-1] => []
=> []
=> ? ∊ {0,1,1,1,1,2}
[1,2,3] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,2,-3] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,-2,3] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,-2,-3] => [1,1]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,2,3] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,2,-3] => [1,1]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,-2,3] => [1,1]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,-2,-3] => [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,3,2] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,3,-2] => [2]
=> [1,0,1,0]
=> 2
[1,-3,2] => [2]
=> [1,0,1,0]
=> 2
[1,-3,-2] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,3,2] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,3,-2] => [2,1]
=> [1,0,1,1,0,0]
=> 2
[-1,-3,2] => [2,1]
=> [1,0,1,1,0,0]
=> 2
[-1,-3,-2] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,1,3] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,1,-3] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,-1,3] => [2]
=> [1,0,1,0]
=> 2
[2,-1,-3] => [2,1]
=> [1,0,1,1,0,0]
=> 2
[-2,1,3] => [2]
=> [1,0,1,0]
=> 2
[-2,1,-3] => [2,1]
=> [1,0,1,1,0,0]
=> 2
[-2,-1,3] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-1,-3] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,3,1] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,3,-1] => [3]
=> [1,0,1,0,1,0]
=> 3
[2,-3,1] => [3]
=> [1,0,1,0,1,0]
=> 3
[2,-3,-1] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,3,1] => [3]
=> [1,0,1,0,1,0]
=> 3
[-2,3,-1] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-3,1] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-3,-1] => [3]
=> [1,0,1,0,1,0]
=> 3
[3,1,2] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,1,-2] => [3]
=> [1,0,1,0,1,0]
=> 3
[3,-1,2] => [3]
=> [1,0,1,0,1,0]
=> 3
[3,-1,-2] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,1,2] => [3]
=> [1,0,1,0,1,0]
=> 3
[-3,1,-2] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,-1,2] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,-1,-2] => [3]
=> [1,0,1,0,1,0]
=> 3
[3,2,1] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,2,-1] => [2]
=> [1,0,1,0]
=> 2
[3,-2,1] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,-2,-1] => [2,1]
=> [1,0,1,1,0,0]
=> 2
[-3,2,1] => [2]
=> [1,0,1,0]
=> 2
[-3,2,-1] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,-2,1] => [2,1]
=> [1,0,1,1,0,0]
=> 2
[-3,-2,-1] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,2,3,4] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,-4] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,-3,4] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,-3,-4] => [1,1]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,3,4] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,3,-4] => [1,1]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,-3,4] => [1,1]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,-3,-4] => [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[-1,2,3,4] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,3,-4] => [1,1]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,-3,4] => [1,1]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,-3,-4] => [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[-1,-2,3,4] => [1,1]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,-2,3,-4] => [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[-1,-2,-3,4] => [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,2,4,3] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,-3] => [2]
=> [1,0,1,0]
=> 2
[1,2,-4,3] => [2]
=> [1,0,1,0]
=> 2
[1,2,-4,-3] => []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,4,3] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,4,-3] => [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,-2,-4,3] => [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,-2,-4,-3] => [1]
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,4,-3] => [2,1]
=> [1,0,1,1,0,0]
=> 2
[-1,2,-4,3] => [2,1]
=> [1,0,1,1,0,0]
=> 2
[-1,-2,4,-3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 3
[-1,-2,-4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 3
[1,3,-2,4] => [2]
=> [1,0,1,0]
=> 2
[1,3,-2,-4] => [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,-3,2,4] => [2]
=> [1,0,1,0]
=> 2
[1,-3,2,-4] => [2,1]
=> [1,0,1,1,0,0]
=> 2
[-1,3,-2,4] => [2,1]
=> [1,0,1,1,0,0]
=> 2
[-1,3,-2,-4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 3
[-1,-3,2,4] => [2,1]
=> [1,0,1,1,0,0]
=> 2
[-1,-3,2,-4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 3
[1,3,4,-2] => [3]
=> [1,0,1,0,1,0]
=> 3
[1,3,-4,2] => [3]
=> [1,0,1,0,1,0]
=> 3
[1,-3,4,2] => [3]
=> [1,0,1,0,1,0]
=> 3
[1,-3,-4,-2] => [3]
=> [1,0,1,0,1,0]
=> 3
[-1,3,4,-2] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3
[-1,3,-4,2] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3
Description
The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001198
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00169: Signed permutations —odd cycle type⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 48%●distinct values known / distinct values provided: 40%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 48%●distinct values known / distinct values provided: 40%
Values
[1] => []
=> []
=> [1,0]
=> ? ∊ {0,1}
[-1] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1}
[1,2] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,2}
[1,-2] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,2}
[-1,2] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,2}
[-1,-2] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,2}
[2,1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,2}
[2,-1] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[-2,1] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[-2,-1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,2}
[1,2,3] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,2,-3] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,-2,3] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,-2,-3] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,2,3] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,2,-3] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,-2,3] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,-2,-3] => [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,3,2] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,3,-2] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,-3,2] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,-3,-2] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,3,2] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,3,-2] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-1,-3,2] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-1,-3,-2] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,1,3] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,1,-3] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,-1,3] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[2,-1,-3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-2,1,3] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[-2,1,-3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-2,-1,3] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-1,-3] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,3,1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,3,-1] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[2,-3,1] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[2,-3,-1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,3,1] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[-2,3,-1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-3,1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-3,-1] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[3,1,2] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,1,-2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[3,-1,2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[3,-1,-2] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,1,2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[-3,1,-2] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,-1,2] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,-1,-2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[3,2,1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,2,-1] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[3,-2,1] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,-2,-1] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-3,2,1] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[-3,2,-1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,-2,1] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-3,-2,-1] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,2,3,4] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,-4] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,-3,4] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,-3,-4] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,3,4] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,3,-4] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,-3,4] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,-3,-4] => [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[-1,2,3,4] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,3,-4] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,-3,4] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,-3,-4] => [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[-1,-2,3,4] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,-2,3,-4] => [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[-1,-2,-3,4] => [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
[1,2,4,3] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,-3] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,2,-4,3] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,2,-4,-3] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,4,3] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,4,-3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,-2,-4,3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,-2,-4,-3] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,4,-3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-1,2,-4,3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-1,-2,4,-3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
[-1,-2,-4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
[1,3,-2,4] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,3,-2,-4] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,-3,2,4] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,-3,2,-4] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-1,3,-2,4] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-1,3,-2,-4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
[-1,-3,2,4] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-1,-3,2,-4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
[1,3,4,-2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,3,-4,2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,-3,4,2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,-3,-4,-2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[-1,3,4,-2] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
[-1,3,-4,2] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
Description
The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001206
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00169: Signed permutations —odd cycle type⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 48%●distinct values known / distinct values provided: 40%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 48%●distinct values known / distinct values provided: 40%
Values
[1] => []
=> []
=> [1,0]
=> ? ∊ {0,1}
[-1] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1}
[1,2] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,2}
[1,-2] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,2}
[-1,2] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,2}
[-1,-2] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,2}
[2,1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,2}
[2,-1] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[-2,1] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[-2,-1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,2}
[1,2,3] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,2,-3] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,-2,3] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,-2,-3] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,2,3] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,2,-3] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,-2,3] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,-2,-3] => [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,3,2] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,3,-2] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,-3,2] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,-3,-2] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,3,2] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,3,-2] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-1,-3,2] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-1,-3,-2] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,1,3] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,1,-3] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,-1,3] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[2,-1,-3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-2,1,3] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[-2,1,-3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-2,-1,3] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-1,-3] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,3,1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,3,-1] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[2,-3,1] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[2,-3,-1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,3,1] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[-2,3,-1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-3,1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-3,-1] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[3,1,2] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,1,-2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[3,-1,2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[3,-1,-2] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,1,2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[-3,1,-2] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,-1,2] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,-1,-2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[3,2,1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,2,-1] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[3,-2,1] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,-2,-1] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-3,2,1] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[-3,2,-1] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,-2,1] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-3,-2,-1] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,2,3,4] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,-4] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,-3,4] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,-3,-4] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,3,4] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,3,-4] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,-3,4] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,-3,-4] => [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[-1,2,3,4] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,3,-4] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,-3,4] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,-3,-4] => [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[-1,-2,3,4] => [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,-2,3,-4] => [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[-1,-2,-3,4] => [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
[1,2,4,3] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,-3] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,2,-4,3] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,2,-4,-3] => []
=> []
=> [1,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,4,3] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,4,-3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,-2,-4,3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,-2,-4,-3] => [1]
=> [1,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[-1,2,4,-3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-1,2,-4,3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-1,-2,4,-3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
[-1,-2,-4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
[1,3,-2,4] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,3,-2,-4] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,-3,2,4] => [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,-3,2,-4] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-1,3,-2,4] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-1,3,-2,-4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
[-1,-3,2,4] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[-1,-3,2,-4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
[1,3,4,-2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,3,-4,2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,-3,4,2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,-3,-4,-2] => [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[-1,3,4,-2] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
[-1,3,-4,2] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
Description
The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.
Matching statistic: St000264
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00163: Signed permutations —permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 40% ●values known / values provided: 42%●distinct values known / distinct values provided: 40%
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 40% ●values known / values provided: 42%●distinct values known / distinct values provided: 40%
Values
[1] => [1] => ([],1)
=> ? ∊ {0,1}
[-1] => [1] => ([],1)
=> ? ∊ {0,1}
[1,2] => [1,2] => ([],2)
=> ? ∊ {0,1,1,1,1,2,2,2}
[1,-2] => [1,2] => ([],2)
=> ? ∊ {0,1,1,1,1,2,2,2}
[-1,2] => [1,2] => ([],2)
=> ? ∊ {0,1,1,1,1,2,2,2}
[-1,-2] => [1,2] => ([],2)
=> ? ∊ {0,1,1,1,1,2,2,2}
[2,1] => [2,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,2,2,2}
[2,-1] => [2,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,2,2,2}
[-2,1] => [2,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,2,2,2}
[-2,-1] => [2,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,2,2,2}
[1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,2,-3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,-2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,-2,-3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,2,-3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,-2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,-2,-3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,3,-2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,-3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,-3,-2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,3,-2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,-3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,-3,-2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,1,-3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,-1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,-1,-3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,1,-3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-1,-3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,3,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,3,-1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,-3,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,-3,-1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,3,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,3,-1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-3,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-3,-1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,1,-2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,-1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,-1,-2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,1,-2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,-1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,-1,-2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,-1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[3,-2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[3,-2,-1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[-3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[-3,2,-1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[-3,-2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[-3,-2,-1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,4,3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,4,-3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,4,-3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,-4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,-4,3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,-4,-3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,-4,-3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[-1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[-1,4,3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[-1,4,-3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[-1,4,-3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[-1,-4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[-1,-4,3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[-1,-4,-3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[-1,-4,-3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[2,4,3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,4,3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,4,-3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,4,-3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,-4,3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,-4,3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,-4,-3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,-4,-3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-2,4,3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-2,4,3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-2,4,-3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-2,4,-3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-2,-4,3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-2,-4,3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-2,-4,-3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[-2,-4,-3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[3,2,1,-4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[3,2,-1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[3,2,-1,-4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[3,-2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[3,-2,1,-4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[3,-2,-1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[3,-2,-1,-4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[-3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[-3,2,1,-4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St001060
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00163: Signed permutations —permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00154: Graphs —core⟶ Graphs
St001060: Graphs ⟶ ℤResult quality: 20% ●values known / values provided: 38%●distinct values known / distinct values provided: 20%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00154: Graphs —core⟶ Graphs
St001060: Graphs ⟶ ℤResult quality: 20% ●values known / values provided: 38%●distinct values known / distinct values provided: 20%
Values
[1] => [1] => ([],1)
=> ([],1)
=> ? ∊ {0,1}
[-1] => [1] => ([],1)
=> ([],1)
=> ? ∊ {0,1}
[1,2] => [1,2] => ([],2)
=> ([],1)
=> ? ∊ {0,1,1,1,1,2,2,2}
[1,-2] => [1,2] => ([],2)
=> ([],1)
=> ? ∊ {0,1,1,1,1,2,2,2}
[-1,2] => [1,2] => ([],2)
=> ([],1)
=> ? ∊ {0,1,1,1,1,2,2,2}
[-1,-2] => [1,2] => ([],2)
=> ([],1)
=> ? ∊ {0,1,1,1,1,2,2,2}
[2,1] => [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,2,2,2}
[2,-1] => [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,2,2,2}
[-2,1] => [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,2,2,2}
[-2,-1] => [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,2,2,2}
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,2,-3] => [1,2,3] => ([],3)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,-2,3] => [1,2,3] => ([],3)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,-2,-3] => [1,2,3] => ([],3)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,2,-3] => [1,2,3] => ([],3)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,-2,3] => [1,2,3] => ([],3)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,-2,-3] => [1,2,3] => ([],3)
=> ([],1)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,3,2] => [1,3,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,3,-2] => [1,3,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,-3,2] => [1,3,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[1,-3,-2] => [1,3,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,3,2] => [1,3,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,3,-2] => [1,3,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,-3,2] => [1,3,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-1,-3,-2] => [1,3,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,1,3] => [2,1,3] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,1,-3] => [2,1,3] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,-1,3] => [2,1,3] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,-1,-3] => [2,1,3] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,1,3] => [2,1,3] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,1,-3] => [2,1,3] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-1,3] => [2,1,3] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-1,-3] => [2,1,3] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,3,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,3,-1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,-3,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[2,-3,-1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,3,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,3,-1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-3,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-2,-3,-1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,1,-2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,-1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,-1,-2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,1,-2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,-1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[-3,-1,-2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3}
[3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,-1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,-2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,-2,-1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-3,2,-1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-3,-2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-3,-2,-1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4,3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4,-3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4,-3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,-4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,-4,3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,-4,-3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,-4,-3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-1,4,3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-1,4,-3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-1,4,-3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-1,-4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-1,-4,3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-1,-4,-3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-1,-4,-3,-2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,4,3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,4,3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,4,-3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,4,-3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,-4,3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,-4,3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,-4,-3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,-4,-3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-2,4,3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-2,4,3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-2,4,-3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-2,4,-3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-2,-4,3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-2,-4,3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-2,-4,-3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-2,-4,-3,-1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,1,-4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,-1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,-1,-4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,-2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,-2,1,-4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,-2,-1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,-2,-1,-4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[-3,2,1,-4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
Description
The distinguishing index of a graph.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Matching statistic: St000939
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00260: Signed permutations —Demazure product with inverse⟶ Signed permutations
Mp00169: Signed permutations —odd cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000939: Integer partitions ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 40%
Mp00169: Signed permutations —odd cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000939: Integer partitions ⟶ ℤResult quality: 36% ●values known / values provided: 36%●distinct values known / distinct values provided: 40%
Values
[1] => [1] => []
=> ?
=> ? ∊ {0,1}
[-1] => [-1] => [1]
=> []
=> ? ∊ {0,1}
[1,2] => [1,2] => []
=> ?
=> ? ∊ {0,1,1,1,1,2,2,2}
[1,-2] => [1,-2] => [1]
=> []
=> ? ∊ {0,1,1,1,1,2,2,2}
[-1,2] => [-1,-2] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2}
[-1,-2] => [-1,-2] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2}
[2,1] => [2,1] => []
=> ?
=> ? ∊ {0,1,1,1,1,2,2,2}
[2,-1] => [-1,2] => [1]
=> []
=> ? ∊ {0,1,1,1,1,2,2,2}
[-2,1] => [-2,-1] => []
=> ?
=> ? ∊ {0,1,1,1,1,2,2,2}
[-2,-1] => [-1,-2] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2}
[1,2,3] => [1,2,3] => []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,-3] => [1,2,-3] => [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,-2,3] => [1,-2,-3] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,-2,-3] => [1,-2,-3] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-1,2,3] => [-1,-2,3] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-1,2,-3] => [-1,-2,-3] => [1,1,1]
=> [1,1]
=> 2
[-1,-2,3] => [-1,-2,-3] => [1,1,1]
=> [1,1]
=> 2
[-1,-2,-3] => [-1,-2,-3] => [1,1,1]
=> [1,1]
=> 2
[1,3,2] => [1,3,2] => []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,-2] => [1,-2,3] => [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,-3,2] => [1,-3,-2] => []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,-3,-2] => [1,-2,-3] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-1,3,2] => [-1,-2,3] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-1,3,-2] => [-1,-2,-3] => [1,1,1]
=> [1,1]
=> 2
[-1,-3,2] => [-1,-2,-3] => [1,1,1]
=> [1,1]
=> 2
[-1,-3,-2] => [-1,-2,-3] => [1,1,1]
=> [1,1]
=> 2
[2,1,3] => [2,1,3] => []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,1,-3] => [2,1,-3] => [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,-1,3] => [-1,2,-3] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,-1,-3] => [-1,2,-3] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-2,1,3] => [-2,-1,3] => []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-2,1,-3] => [-2,-1,-3] => [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-2,-1,3] => [-1,-2,-3] => [1,1,1]
=> [1,1]
=> 2
[-2,-1,-3] => [-1,-2,-3] => [1,1,1]
=> [1,1]
=> 2
[2,3,1] => [3,2,1] => []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,3,-1] => [-1,2,3] => [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,-3,1] => [-3,2,-1] => []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,-3,-1] => [-1,2,-3] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-2,3,1] => [-2,-1,3] => []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-2,3,-1] => [-1,-2,-3] => [1,1,1]
=> [1,1]
=> 2
[-2,-3,1] => [-2,-1,-3] => [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-2,-3,-1] => [-1,-2,-3] => [1,1,1]
=> [1,1]
=> 2
[3,1,2] => [3,2,1] => []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[3,1,-2] => [3,-2,1] => [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[3,-1,2] => [-1,-2,3] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[3,-1,-2] => [-1,-2,3] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-3,1,2] => [-3,2,-1] => []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-3,1,-2] => [-3,-2,-1] => [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-3,-1,2] => [-1,-2,-3] => [1,1,1]
=> [1,1]
=> 2
[-3,-1,-2] => [-1,-2,-3] => [1,1,1]
=> [1,1]
=> 2
[3,2,1] => [3,2,1] => []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[3,2,-1] => [-1,3,2] => [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[3,-2,1] => [-2,-1,3] => []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[3,-2,-1] => [-1,-2,3] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-3,2,1] => [-3,2,-1] => []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-3,2,-1] => [-1,-3,-2] => [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-3,-2,1] => [-2,-1,-3] => [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[-3,-2,-1] => [-1,-2,-3] => [1,1,1]
=> [1,1]
=> 2
[1,2,3,4] => [1,2,3,4] => []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,-4] => [1,2,3,-4] => [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,-3,4] => [1,2,-3,-4] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,-3,-4] => [1,2,-3,-4] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,3,4] => [1,-2,-3,4] => [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,-2,3,-4] => [1,-2,-3,-4] => [1,1,1]
=> [1,1]
=> 2
[1,-2,-3,4] => [1,-2,-3,-4] => [1,1,1]
=> [1,1]
=> 2
[1,-2,-3,-4] => [1,-2,-3,-4] => [1,1,1]
=> [1,1]
=> 2
[-1,2,3,-4] => [-1,-2,3,-4] => [1,1,1]
=> [1,1]
=> 2
[-1,2,-3,4] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,2,-3,-4] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-2,3,4] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-2,3,-4] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-2,-3,4] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-2,-3,-4] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[1,-2,4,-3] => [1,-2,-3,-4] => [1,1,1]
=> [1,1]
=> 2
[1,-2,-4,3] => [1,-2,-3,-4] => [1,1,1]
=> [1,1]
=> 2
[1,-2,-4,-3] => [1,-2,-3,-4] => [1,1,1]
=> [1,1]
=> 2
[-1,2,4,-3] => [-1,-2,-3,4] => [1,1,1]
=> [1,1]
=> 2
[-1,2,-4,-3] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-2,4,3] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-2,4,-3] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-2,-4,3] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-2,-4,-3] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[1,-3,-2,4] => [1,-2,-3,-4] => [1,1,1]
=> [1,1]
=> 2
[1,-3,-2,-4] => [1,-2,-3,-4] => [1,1,1]
=> [1,1]
=> 2
[-1,3,2,-4] => [-1,-2,3,-4] => [1,1,1]
=> [1,1]
=> 2
[-1,3,-2,4] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,3,-2,-4] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-3,2,4] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-3,2,-4] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-3,-2,4] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-3,-2,-4] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[1,-3,4,-2] => [1,-2,-3,-4] => [1,1,1]
=> [1,1]
=> 2
[1,-3,-4,-2] => [1,-2,-3,-4] => [1,1,1]
=> [1,1]
=> 2
[-1,3,4,-2] => [-1,-2,-3,4] => [1,1,1]
=> [1,1]
=> 2
[-1,3,-4,-2] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-3,4,2] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-3,4,-2] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-3,-4,2] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[-1,-3,-4,-2] => [-1,-2,-3,-4] => [1,1,1,1]
=> [1,1,1]
=> 3
[1,-4,-2,3] => [1,-2,-3,-4] => [1,1,1]
=> [1,1]
=> 2
Description
The number of characters of the symmetric group whose value on the partition is positive.
The following 69 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000993The multiplicity of the largest part of an integer partition. St000014The number of parking functions supported by a Dyck path. St000063The number of linear extensions of a certain poset defined for an integer partition. St000108The number of partitions contained in the given partition. St000144The pyramid weight of the Dyck path. St000294The number of distinct factors of a binary word. St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. St000393The number of strictly increasing runs in a binary word. St000395The sum of the heights of the peaks of a Dyck path. St000420The number of Dyck paths that are weakly above a Dyck path. St000439The position of the first down step of a Dyck path. St000518The number of distinct subsequences in a binary word. St000529The number of permutations whose descent word is the given binary word. St000532The total number of rook placements on a Ferrers board. St000543The size of the conjugacy class of a binary word. St000626The minimal period of a binary word. St000759The smallest missing part in an integer partition. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001012Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path. St001018Sum of projective dimension of the indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001023Number of simple modules with projective dimension at most 3 in the Nakayama algebra corresponding to the Dyck path. St001065Number of indecomposable reflexive modules in the corresponding Nakayama algebra. St001166Number of indecomposable projective non-injective modules with dominant dimension equal to the global dimension plus the number of indecomposable projective injective modules in the corresponding Nakayama algebra. St001170Number of indecomposable injective modules whose socle has projective dimension at most g-1 when g denotes the global dimension in the corresponding Nakayama algebra. St001179Number of indecomposable injective modules with projective dimension at most 2 in the corresponding Nakayama algebra. St001180Number of indecomposable injective modules with projective dimension at most 1. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001190Number of simple modules with projective dimension at most 4 in the corresponding Nakayama algebra. St001211The number of simple modules in the corresponding Nakayama algebra that have vanishing second Ext-group with the regular module. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001237The number of simple modules with injective dimension at most one or dominant dimension at least one. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001267The length of the Lyndon factorization of the binary word. St001400The total number of Littlewood-Richardson tableaux of given shape. St001437The flex of a binary word. St001492The number of simple modules that do not appear in the socle of the regular module or have no nontrivial selfextensions with the regular module in the corresponding Nakayama algebra. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St001650The order of Ringel's homological bijection associated to the linear Nakayama algebra corresponding to the Dyck path. St001658The total number of rook placements on a Ferrers board. St001814The number of partitions interlacing the given partition. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001875The number of simple modules with projective dimension at most 1. St001568The smallest positive integer that does not appear twice in the partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000937The number of positive values of the symmetric group character corresponding to the partition. St000418The number of Dyck paths that are weakly below a Dyck path. St000438The position of the last up step in a Dyck path. St000444The length of the maximal rise of a Dyck path. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000668The least common multiple of the parts of the partition. St000675The number of centered multitunnels of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000981The length of the longest zigzag subpath. St001500The global dimension of magnitude 1 Nakayama algebras. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001531Number of partial orders contained in the poset determined by the Dyck path. St001808The box weight or horizontal decoration of a Dyck path. St001959The product of the heights of the peaks of a Dyck path.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!