searching the database
Your data matches 11 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001782
Values
([],1)
 => ([],1)
 => 2
([(0,1)],2)
 => ([(0,1)],2)
 => 3
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => 4
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 4
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => 5
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => 8
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => 10
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 6
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => 10
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => 4
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => 24
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => 8
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => 10
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => 9
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 6
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => 12
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => 6
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => 8
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => 6
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => 10
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => 15
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => 5
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => 7
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => 9
Description
The order of rowmotion on the set of order ideals of a poset.
Matching statistic: St000668
Mp00193: Lattices —to poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 92% ●values known / values provided: 92%●distinct values known / distinct values provided: 92%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 92% ●values known / values provided: 92%●distinct values known / distinct values provided: 92%
Values
([],1)
 => ([],1)
 => [2]
 => 2
([(0,1)],2)
 => ([(0,1)],2)
 => [3]
 => 3
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => [4]
 => 4
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => [4,2]
 => 4
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => [5]
 => 5
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => [4,2,2,2]
 => 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => [8]
 => 8
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => [5,2]
 => 10
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => [6]
 => 6
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => [5,2]
 => 10
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => [4,2,2,2,2,2,2,2]
 => ? ∊ {4,24}
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => [8,6]
 => ? ∊ {4,24}
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => [8,2,2]
 => 8
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => [5,2,2,2]
 => 10
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => [9]
 => 9
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => [6,2]
 => 6
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => [6,4]
 => 12
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => [6,2]
 => 6
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => [8,2,2]
 => 8
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => [6,2]
 => 6
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => [5,2,2,2]
 => 10
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => [5,3,3]
 => 15
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => [5,5]
 => 5
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => [7]
 => 7
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => [9]
 => 9
Description
The least common multiple of the parts of the partition.
Matching statistic: St001330
Values
([],1)
 => ([],1)
 => ([],1)
 => ([],1)
 => 1 = 2 - 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => ([(0,1)],2)
 => 2 = 3 - 1
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3 = 4 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ? = 4 - 1
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4 = 5 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {4,8,10,10} - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {4,8,10,10} - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {4,8,10,10} - 1
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {4,8,10,10} - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {4,5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {4,5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {4,5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {4,5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {4,5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(4,5)],6)
 => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {4,5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(2,5),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {4,5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(4,5)],6)
 => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {4,5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {4,5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(4,5)],6)
 => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {4,5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {4,5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(2,4),(2,5),(3,4),(3,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {4,5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(2,5),(3,4),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {4,5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([],6)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 6 = 7 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {4,5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St001621
Values
([],1)
 => ([],1)
 => ([],1)
 => ([],1)
 => 0 = 2 - 2
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1 = 3 - 2
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(2,1)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? = 5 - 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,2),(2,1)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {6,8,10,10} - 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {6,8,10,10} - 2
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {6,8,10,10} - 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {6,8,10,10} - 2
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
Description
The number of atoms of a lattice.
An element of a lattice is an '''atom''' if it covers the least element.
Matching statistic: St001875
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
 => ([],1)
 => ([],1)
 => ([],1)
 => ? = 2 - 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ? = 3 - 1
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => 3 = 4 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([],1)
 => ? = 4 - 1
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => 4 = 5 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([],1)
 => ? ∊ {4,8,10,10} - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([],1)
 => ? ∊ {4,8,10,10} - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([],1)
 => ? ∊ {4,8,10,10} - 1
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([],1)
 => ? ∊ {4,8,10,10} - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([],1)
 => ? ∊ {5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([],1)
 => ? ∊ {5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ? ∊ {5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([],1)
 => ? ∊ {5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([],1)
 => ? ∊ {5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([],1)
 => ? ∊ {5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([],1)
 => ? ∊ {5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([],1)
 => ? ∊ {5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ? ∊ {5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([],1)
 => ? ∊ {5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([],1)
 => ? ∊ {5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([],1)
 => ? ∊ {5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => 3 = 4 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => 6 = 7 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([],1)
 => ? ∊ {5,6,6,6,8,8,9,9,10,10,12,15,24} - 1
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St000327
Values
([],1)
 => ([],1)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1 = 2 - 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => 2 = 3 - 1
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => 3 = 4 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ? = 4 - 1
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 4 = 5 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ? ∊ {4,6,8,10,10} - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
 => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
 => ? ∊ {4,6,8,10,10} - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ? ∊ {4,6,8,10,10} - 1
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ? ∊ {4,6,8,10,10} - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ? ∊ {4,6,8,10,10} - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
 => ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
 => ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
 => ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
 => ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
 => ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
 => ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
 => ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
 => ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
 => ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
 => ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
 => ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
 => ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
Description
The number of cover relations in a poset.
Equivalently, this is also the number of edges in the Hasse diagram [1].
Matching statistic: St001637
Values
([],1)
 => ([],1)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1 = 2 - 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => 2 = 3 - 1
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => 3 = 4 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ? = 4 - 1
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 4 = 5 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ? ∊ {4,6,8,10,10} - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
 => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
 => ? ∊ {4,6,8,10,10} - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ? ∊ {4,6,8,10,10} - 1
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ? ∊ {4,6,8,10,10} - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ? ∊ {4,6,8,10,10} - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
 => ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
 => ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
 => ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
 => ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
 => ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
 => ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
 => ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
 => ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
 => ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
 => ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
 => ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
 => ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
Description
The number of (upper) dissectors of a poset.
Matching statistic: St001668
Values
([],1)
 => ([],1)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1 = 2 - 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => 2 = 3 - 1
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => 3 = 4 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ? = 4 - 1
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 4 = 5 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ? ∊ {4,6,8,10,10} - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
 => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
 => ? ∊ {4,6,8,10,10} - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ? ∊ {4,6,8,10,10} - 1
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ? ∊ {4,6,8,10,10} - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ? ∊ {4,6,8,10,10} - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
 => ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
 => ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
 => ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
 => ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
 => ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
 => ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
 => ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
 => ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
 => ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
 => ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
 => ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
 => ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
 => ? ∊ {4,5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 1
Description
The number of points of the poset minus the width of the poset.
Matching statistic: St001630
Values
([],1)
 => ([],1)
 => ([],1)
 => ([],1)
 => ? = 2 - 2
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ? = 3 - 2
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(2,1)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? = 5 - 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,2),(2,1)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {6,8,10,10} - 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {6,8,10,10} - 2
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {6,8,10,10} - 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {6,8,10,10} - 2
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St001878
Values
([],1)
 => ([],1)
 => ([],1)
 => ([],1)
 => ? = 2 - 2
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ? = 3 - 2
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(2,1)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? = 5 - 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,2),(2,1)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {6,8,10,10} - 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {6,8,10,10} - 2
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {6,8,10,10} - 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {6,8,10,10} - 2
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2 = 4 - 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
 => ? ∊ {5,6,6,6,7,8,8,9,9,10,10,12,15,24} - 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
The following 1 statistic also match your data. Click on any of them to see the details.
St001877Number of indecomposable injective modules with projective dimension 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!