searching the database
Your data matches 113 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001786
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
St001786: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 1
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,1,0,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> 8
[1,1,0,1,0,1,1,0,0,0]
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 6
[1,1,0,1,1,0,1,0,0,0]
=> 9
[1,1,0,1,1,1,0,0,0,0]
=> 4
Description
The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order.
Alternatively, remark that the monomials of the polynomial $\prod_{k=1}^n (z_1+\dots +z_k)$ are in bijection with Dyck paths, regarded as superdiagonal paths, with $n$ east steps: the exponent of $z_i$ is the number of north steps before the $i$-th east step, see [2]. Thus, this statistic records the coefficients of the monomials.
A formula for the coefficient of $z_1^{a_1}\dots z_n^{a_n}$ is provided in [3]:
$$
c_{(a_1,\dots,a_n)} = \prod_{k=1}^{n-1} \frac{n-k+1 - \sum_{i=k+1}^n a_i}{a_k!}.
$$
This polynomial arises in a partial symmetrization process as follows, see [1]. For $w\in\frak{S}_n$, let $w\cdot F(x_1,\dots,x_n)=F(x_{w(1)},\dots,x_{w(n)})$. Furthermore, let
$$G(\mathbf{x},\mathbf{z}) = \prod_{k=1}^n\frac{x_1z_1+x_2z_2+\cdots+x_kz_k}{x_k-x_{k+1}}.$$
Then $\sum_{w\in\frak{S}_{n+1}}w\cdot G = \prod_{k=1}^n (z_1+\dots +z_k)$.
Matching statistic: St000772
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 21% ●values known / values provided: 32%●distinct values known / distinct values provided: 21%
Mp00160: Permutations —graph of inversions⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 21% ●values known / values provided: 32%●distinct values known / distinct values provided: 21%
Values
[1,0]
=> [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,2] => ([],2)
=> ? = 1
[1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1}
[1,0,1,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1}
[1,1,0,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1}
[1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,2,2,3,4}
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,3,4}
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,3,4}
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,3,4}
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,3,4}
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,3,4}
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,2,2,3,4}
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,3,4}
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,3,4}
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St000771
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00241: Permutations —invert Laguerre heap⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 21% ●values known / values provided: 32%●distinct values known / distinct values provided: 21%
Mp00241: Permutations —invert Laguerre heap⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 21% ●values known / values provided: 32%●distinct values known / distinct values provided: 21%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,2] => [1,2] => ([],2)
=> ? = 1
[1,1,0,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1}
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1}
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1}
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,2,3,4}
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,4}
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,4}
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,4}
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,4}
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,4}
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,4}
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,4}
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,4}
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [5,1,3,2,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [5,4,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => [5,1,3,4,2] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => [4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [1,2,3,4,6,5] => ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [1,2,3,5,4,6] => ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [1,2,4,3,5,6] => ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => [6,1,2,3,5,4] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => [6,1,2,4,3,5] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => [6,5,1,2,4,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => [6,1,2,4,5,3] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => [5,1,2,4,6,3] => ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => [5,4,1,2,6,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => [6,1,2,5,4,3] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => [5,1,2,6,4,3] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => [5,3,1,2,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => [6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => [6,1,3,2,4,5] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => [6,5,1,3,2,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => [6,1,3,2,5,4] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => [5,1,3,2,6,4] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => [6,5,4,1,3,2] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => [6,1,3,4,2,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => [6,5,1,3,4,2] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => [6,1,3,4,5,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => [5,1,3,4,6,2] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => [5,4,1,3,6,2] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => [6,1,4,3,5,2] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => [5,1,4,3,6,2] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => [5,3,1,4,6,2] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000456
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 17% ●values known / values provided: 31%●distinct values known / distinct values provided: 17%
Mp00252: Permutations —restriction⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 17% ●values known / values provided: 31%●distinct values known / distinct values provided: 17%
Values
[1,0]
=> [1] => [] => ([],0)
=> ? = 1
[1,0,1,0]
=> [1,2] => [1] => ([],1)
=> ? ∊ {1,1}
[1,1,0,0]
=> [2,1] => [1] => ([],1)
=> ? ∊ {1,1}
[1,0,1,0,1,0]
=> [1,2,3] => [1,2] => ([],2)
=> ? ∊ {1,1,2}
[1,0,1,1,0,0]
=> [1,3,2] => [1,2] => ([],2)
=> ? ∊ {1,1,2}
[1,1,0,0,1,0]
=> [2,1,3] => [2,1] => ([(0,1)],2)
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,1] => ([(0,1)],2)
=> 1
[1,1,1,0,0,0]
=> [3,1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,2}
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27}
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,1,6] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,6] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,6,4] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,1,4] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,1,5,3,6] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,1,5,6,3] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [2,4,5,1,3,6] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,1,6,3] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,1,3] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,1,3,6,4] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,1,6,3,4] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,1,3,4] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [3,1,4,5,2,6] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,4,5,6,2] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [3,1,5,2,4,6] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,1,5,2,6,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,1,5,6,2,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [3,4,1,5,2,6] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,4,1,5,6,2] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,1,6,2] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,1,2] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,1,2,6,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,5,1,6,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,5,6,1,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St000460
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000460: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 29%●distinct values known / distinct values provided: 14%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000460: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 29%●distinct values known / distinct values provided: 14%
Values
[1,0]
=> [[1],[]]
=> []
=> ?
=> ? = 1
[1,0,1,0]
=> [[1,1],[]]
=> []
=> ?
=> ? ∊ {1,1}
[1,1,0,0]
=> [[2],[]]
=> []
=> ?
=> ? ∊ {1,1}
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [[4,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 3
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [[4,3,2],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [[4,4,2],[3,1]]
=> [3,1]
=> [1]
=> 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [[4,4,2],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [[3,3,3,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [[4,3,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [[4,4,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [[4,3,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [[4,4,3],[3,2]]
=> [3,2]
=> [2]
=> 2
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [[4,4,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [[4,4,4],[3,3]]
=> [3,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [[4,4,4],[3,2]]
=> [3,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [[4,4,4],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [[3,3,3,3],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 3
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [[4,3,3],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [[4,4,3],[3,1]]
=> [3,1]
=> [1]
=> 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [[4,4,3],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [[3,3,3,3],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 2
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [[4,3,3],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [[3,3,3,3],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [[4,4,3],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [[4,4,4],[3,1]]
=> [3,1]
=> [1]
=> 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [[4,4,4],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> [1,1]
=> [1]
=> 1
Description
The hook length of the last cell along the main diagonal of an integer partition.
Matching statistic: St000870
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000870: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 29%●distinct values known / distinct values provided: 17%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000870: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 29%●distinct values known / distinct values provided: 17%
Values
[1,0]
=> [[1],[]]
=> []
=> ?
=> ? = 1
[1,0,1,0]
=> [[1,1],[]]
=> []
=> ?
=> ? ∊ {1,1}
[1,1,0,0]
=> [[2],[]]
=> []
=> ?
=> ? ∊ {1,1}
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [[4,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 3
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [[4,3,2],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [[4,4,2],[3,1]]
=> [3,1]
=> [1]
=> 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [[4,4,2],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [[3,3,3,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [[4,3,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [[4,4,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 3
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [[4,3,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [[4,4,3],[3,2]]
=> [3,2]
=> [2]
=> 2
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [[4,4,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [[4,4,4],[3,3]]
=> [3,3]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [[4,4,4],[3,2]]
=> [3,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [[4,4,4],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [[3,3,3,3],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 3
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [[4,3,3],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [[4,4,3],[3,1]]
=> [3,1]
=> [1]
=> 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [[4,4,3],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [[3,3,3,3],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 2
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [[4,3,3],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [[3,3,3,3],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [[4,4,3],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [[4,4,4],[3,1]]
=> [3,1]
=> [1]
=> 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [[4,4,4],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> [1,1]
=> [1]
=> 1
Description
The product of the hook lengths of the diagonal cells in an integer partition.
For a cell in the Ferrers diagram of a partition, the hook length is given by the number of boxes to its right plus the number of boxes below + 1. This statistic is the product of the hook lengths of the diagonal cells $(i,i)$ of a partition.
Matching statistic: St001914
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001914: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 29%●distinct values known / distinct values provided: 17%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001914: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 29%●distinct values known / distinct values provided: 17%
Values
[1,0]
=> [[1],[]]
=> []
=> ?
=> ? = 1
[1,0,1,0]
=> [[1,1],[]]
=> []
=> ?
=> ? ∊ {1,1}
[1,1,0,0]
=> [[2],[]]
=> []
=> ?
=> ? ∊ {1,1}
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [[4,2,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [[4,3,2],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [[4,4,2],[3,1]]
=> [3,1]
=> [1]
=> 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [[4,4,2],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [[3,3,3,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [[4,3,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [[4,4,2],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 3
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [[4,3,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [[4,4,3],[3,2]]
=> [3,2]
=> [2]
=> 2
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [[4,4,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [[4,4,4],[3,3]]
=> [3,3]
=> [3]
=> 2
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [[4,4,4],[3,2]]
=> [3,2]
=> [2]
=> 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [[4,4,4],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [[3,3,3,3],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 1
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [[4,3,3],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [[4,4,3],[3,1]]
=> [3,1]
=> [1]
=> 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [[4,4,3],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [[3,3,3,3],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 2
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [[4,3,3],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [[3,3,3,3],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [[4,4,3],[1,1]]
=> [1,1]
=> [1]
=> 1
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [[4,4,4],[3,1]]
=> [3,1]
=> [1]
=> 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [[4,4,4],[2,1]]
=> [2,1]
=> [1]
=> 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> [1,1]
=> [1]
=> 1
Description
The size of the orbit of an integer partition in Bulgarian solitaire.
Bulgarian solitaire is the dynamical system where a move consists of removing the first column of the Ferrers diagram and inserting it as a row.
This statistic returns the number of partitions that can be obtained from the given partition.
Matching statistic: St000454
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 27%●distinct values known / distinct values provided: 14%
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 27%●distinct values known / distinct values provided: 14%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0 = 1 - 1
[1,0,1,0]
=> [2,1] => [2] => ([],2)
=> 0 = 1 - 1
[1,1,0,0]
=> [1,2] => [2] => ([],2)
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 2 - 1
[1,0,1,1,0,0]
=> [2,3,1] => [3] => ([],3)
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [3,1,2] => [3] => ([],3)
=> 0 = 1 - 1
[1,1,0,1,0,0]
=> [2,1,3] => [3] => ([],3)
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,2,3] => [3] => ([],3)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,3,4} - 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,3,4} - 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,3,4} - 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,3,4} - 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4] => ([],4)
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4] => ([],4)
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,3,4} - 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,3,4} - 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [4] => ([],4)
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [4] => ([],4)
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [4] => ([],4)
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [4] => ([],4)
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4] => ([],4)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5] => ([],5)
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [5] => ([],5)
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [5] => ([],5)
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [5] => ([],5)
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [5] => ([],5)
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,4,4,4,4,6,6,6,6,8,9,9} - 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [5] => ([],5)
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [5] => ([],5)
=> 0 = 1 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [5] => ([],5)
=> 0 = 1 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [5] => ([],5)
=> 0 = 1 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [5] => ([],5)
=> 0 = 1 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [5] => ([],5)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,4,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,6,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,6,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,6,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6] => ([],6)
=> 0 = 1 - 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,1,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,1,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,1,2] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,1,2] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,1,2] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => [6] => ([],6)
=> 0 = 1 - 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,1,3] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,1,4] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,1,6] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001330
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 7% ●values known / values provided: 20%●distinct values known / distinct values provided: 7%
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 7% ●values known / values provided: 20%●distinct values known / distinct values provided: 7%
Values
[1,0]
=> [1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> 2 = 1 + 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,4} + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,4} + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,3,3,4} + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,4} + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,4} + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,3,3,4} + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,1,5,6,2,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,4,1,6,2,5] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,1,2,6,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,1,5,2,6,3] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,1,5,6,2,3] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,1,6,2,3,5] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,5,1,2,6,3] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [4,5,1,6,2,3] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,1,2,6,3,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,1,6,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9} + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,5,7,1,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,4,6,7,1,5] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,4,7,1,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [2,3,5,1,6,7,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [2,3,5,1,7,4,6] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [2,3,5,6,1,7,4] => ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,3,5,6,7,1,4] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [2,3,5,7,1,4,6] => ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,6,1,4,7,5] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [2,3,6,1,7,4,5] => ([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,6,7,1,4,5] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,7,1,4,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [2,4,1,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [2,4,1,5,7,3,6] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,7,5] => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [2,4,1,6,7,3,5] => ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [2,4,1,7,3,5,6] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [2,4,5,1,6,7,3] => ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [2,4,5,1,7,3,6] => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [2,4,5,6,1,7,3] => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,4,5,6,7,1,3] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [2,4,5,7,1,3,6] => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [2,4,6,1,3,7,5] => ([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [2,4,6,1,7,3,5] => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [2,4,6,7,1,3,5] => ([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [2,4,7,1,3,5,6] => ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [2,5,1,3,6,7,4] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [2,5,1,3,7,4,6] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [2,5,1,6,3,7,4] => ([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [2,5,1,6,7,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,12,12,12,12,12,12,12,16,16,16,18,18,18,18,18,18,24,27,27} + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [2,6,1,3,4,7,5] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,7,1,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,1,4,5,6,7,2] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [3,1,4,5,7,2,6] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St001630
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Values
[1,0]
=> ([],1)
=> ([],1)
=> ? = 1
[1,0,1,0]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1}
[1,1,0,0]
=> ([],2)
=> ([],1)
=> ? ∊ {1,1}
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,1,1,2}
[1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {1,1,1,2}
[1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,2}
[1,1,1,0,0,0]
=> ([],3)
=> ([],1)
=> ? ∊ {1,1,1,2}
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,3,3,4}
[1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,3,3,4}
[1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,2,2,3,3,4}
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,3,3,4}
[1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,3,3,4}
[1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,2,2,3,3,4}
[1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,2,2,3,3,4}
[1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,3,3,4}
[1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,3,3,4}
[1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,3,3,4}
[1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,2,2,3,3,4}
[1,1,1,1,0,0,0,0]
=> ([],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,0,1,0,1,0,0,0]
=> ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,6,6,6,6,8,9,9}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(1,2),(2,5),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,0,1,0,1,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> ([(2,5),(3,4),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(1,5),(1,6),(3,5),(3,6),(4,2),(5,4),(6,4)],7)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(3,4),(4,2),(5,3),(6,4)],7)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,6),(1,5),(1,6),(3,5),(4,2),(5,4),(6,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,6),(1,5),(2,3),(2,5),(3,6),(5,6),(6,4)],7)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,2),(2,6),(3,5),(4,5),(6,3),(6,4)],7)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(3,2),(4,2),(5,3),(5,4),(6,3),(6,4)],7)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(4,6),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(1,2),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,6),(1,6),(2,5),(3,5),(4,3),(6,2),(6,4)],7)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1)],7)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(1,4),(1,6),(2,5),(3,4),(3,6),(4,2),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(2,1)],3)
=> 1
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
The following 103 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000354The number of recoils of a permutation. St000668The least common multiple of the parts of the partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St000654The first descent of a permutation. St000832The number of permutations obtained by reversing blocks of three consecutive numbers. St000910The number of maximal chains of minimal length in a poset. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St001877Number of indecomposable injective modules with projective dimension 2. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000909The number of maximal chains of maximal size in a poset. St001964The interval resolution global dimension of a poset. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St000028The number of stack-sorts needed to sort a permutation. St000441The number of successions of a permutation. St000451The length of the longest pattern of the form k 1 2. St000665The number of rafts of a permutation. St000731The number of double exceedences of a permutation. St000527The width of the poset. St001118The acyclic chromatic index of a graph. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000908The length of the shortest maximal antichain in a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001510The number of self-evacuating linear extensions of a finite poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001779The order of promotion on the set of linear extensions of a poset. St000632The jump number of the poset. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001397Number of pairs of incomparable elements in a finite poset. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001902The number of potential covers of a poset. St001472The permanent of the Coxeter matrix of the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000635The number of strictly order preserving maps of a poset into itself. St000524The number of posets with the same order polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000914The sum of the values of the Möbius function of a poset. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000181The number of connected components of the Hasse diagram for the poset. St001846The number of elements which do not have a complement in the lattice. St000327The number of cover relations in a poset. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001890The maximum magnitude of the Möbius function of a poset. St001720The minimal length of a chain of small intervals in a lattice. St001875The number of simple modules with projective dimension at most 1. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001686The order of promotion on a Gelfand-Tsetlin pattern. St000058The order of a permutation. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001820The size of the image of the pop stack sorting operator. St000264The girth of a graph, which is not a tree. St001271The competition number of a graph. St001722The number of minimal chains with small intervals between a binary word and the top element. St001095The number of non-isomorphic posets with precisely one further covering relation. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001438The number of missing boxes of a skew partition. St001060The distinguishing index of a graph. St001435The number of missing boxes in the first row. St001866The nesting alignments of a signed permutation. St000920The logarithmic height of a Dyck path. St000356The number of occurrences of the pattern 13-2. St001083The number of boxed occurrences of 132 in a permutation. St000091The descent variation of a composition. St000031The number of cycles in the cycle decomposition of a permutation. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000237The number of small exceedances. St000406The number of occurrences of the pattern 3241 in a permutation. St000534The number of 2-rises of a permutation. St000884The number of isolated descents of a permutation. St001394The genus of a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St000741The Colin de Verdière graph invariant. St000764The number of strong records in an integer composition. St000562The number of internal points of a set partition. St000582The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 3 is maximal, (1,3) are consecutive in a block. St000600The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, (1,3) are consecutive in a block. St000883The number of longest increasing subsequences of a permutation. St000214The number of adjacencies of a permutation. St000215The number of adjacencies of a permutation, zero appended. St001465The number of adjacent transpositions in the cycle decomposition of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!