searching the database
Your data matches 153 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001796
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
([],1)
=> 1
([],2)
=> 0
([(0,1)],2)
=> 1
([],3)
=> 0
([(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 3
([],4)
=> 0
([(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([],5)
=> 0
([(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3)],5)
=> 0
([(1,4),(2,3),(3,4)],5)
=> 0
([(0,1),(2,4),(3,4)],5)
=> 0
([(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 9
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 11
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 21
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 20
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 12
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 45
Description
The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1).
Matching statistic: St000699
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],2)
=> ([],2)
=> ([],2)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 1
([],3)
=> ([],3)
=> ([],3)
=> ([],3)
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ? ∊ {1,3}
([],4)
=> ([],4)
=> ([],4)
=> ([],4)
=> 0
([(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,2,3,4,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,2,3,4,4}
([],5)
=> ([],5)
=> ([],5)
=> ([],5)
=> 0
([(3,4)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([],6)
=> ([],6)
=> ([],6)
=> ([],6)
=> 0
([(4,5)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> 0
([(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 0
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
Description
The toughness times the least common multiple of 1,...,n-1 of a non-complete graph.
A graph $G$ is $t$-tough if $G$ cannot be split into $k$ different connected components by the removal of fewer than $tk$ vertices for all integers $k>1$.
The toughness of $G$ is the maximal number $t$ such that $G$ is $t$-tough. It is a rational number except for the complete graph, where it is infinity. The toughness of a disconnected graph is zero.
This statistic is the toughness multiplied by the least common multiple of $1,\dots,n-1$, where $n$ is the number of vertices of $G$.
Matching statistic: St000175
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000175: Integer partitions ⟶ ℤResult quality: 5% ●values known / values provided: 31%●distinct values known / distinct values provided: 5%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000175: Integer partitions ⟶ ℤResult quality: 5% ●values known / values provided: 31%●distinct values known / distinct values provided: 5%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 0
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
Description
Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape.
Given a partition $\lambda$ with $r$ parts, the number of semi-standard Young-tableaux of shape $k\lambda$ and boxes with values in $[r]$ grows as a polynomial in $k$. This follows by setting $q=1$ in (7.105) on page 375 of [1], which yields the polynomial
$$p(k) = \prod_{i < j}\frac{k(\lambda_j-\lambda_i)+j-i}{j-i}.$$
The statistic of the degree of this polynomial.
For example, the partition $(3, 2, 1, 1, 1)$ gives
$$p(k) = \frac{-1}{36} (k - 3) (2k - 3) (k - 2)^2 (k - 1)^3$$
which has degree 7 in $k$. Thus, $[3, 2, 1, 1, 1] \mapsto 7$.
This is the same as the number of unordered pairs of different parts, which follows from:
$$\deg p(k)=\sum_{i < j}\begin{cases}1& \lambda_j \neq \lambda_i\\0&\lambda_i=\lambda_j\end{cases}=\sum_{\stackrel{i < j}{\lambda_j \neq \lambda_i}} 1$$
Matching statistic: St000205
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000205: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 31%●distinct values known / distinct values provided: 2%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000205: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 31%●distinct values known / distinct values provided: 2%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 0
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight.
Given $\lambda$ count how many ''integer partitions'' $w$ (weight) there are, such that
$P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex.
Matching statistic: St000206
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000206: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 31%●distinct values known / distinct values provided: 2%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000206: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 31%●distinct values known / distinct values provided: 2%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 0
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight.
Given $\lambda$ count how many ''integer compositions'' $w$ (weight) there are, such that
$P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex.
See also [[St000205]].
Each value in this statistic is greater than or equal to corresponding value in [[St000205]].
Matching statistic: St000225
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000225: Integer partitions ⟶ ℤResult quality: 4% ●values known / values provided: 31%●distinct values known / distinct values provided: 4%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000225: Integer partitions ⟶ ℤResult quality: 4% ●values known / values provided: 31%●distinct values known / distinct values provided: 4%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 0
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
Description
Difference between largest and smallest parts in a partition.
Matching statistic: St000379
Values
([],1)
=> ([(0,1)],2)
=> ([],1)
=> ? = 1
([],2)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 1
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,3}
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,2,3,4,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,2,3,4,4}
([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
Description
The number of Hamiltonian cycles in a graph.
A Hamiltonian cycle in a graph $G$ is a subgraph (this is, a subset of the edges) that is a cycle which contains every vertex of $G$.
Since it is unclear whether the graph on one vertex is Hamiltonian, the statistic is undefined for this graph.
Matching statistic: St000455
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([(0,1)],2)
=> ([],1)
=> ? = 1
([],2)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 1
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,3}
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,2,3,4,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,2,3,4,4}
([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St000749
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000749: Integer partitions ⟶ ℤResult quality: 5% ●values known / values provided: 31%●distinct values known / distinct values provided: 5%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000749: Integer partitions ⟶ ℤResult quality: 5% ●values known / values provided: 31%●distinct values known / distinct values provided: 5%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 0
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
Description
The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree.
For example, restricting $S_{(6,3)}$ to $\mathfrak S_8$ yields $$S_{(5,3)}\oplus S_{(6,2)}$$ of degrees (number of standard Young tableaux) 28 and 20, none of which are odd. Restricting to $\mathfrak S_7$ yields $$S_{(4,3)}\oplus 2S_{(5,2)}\oplus S_{(6,1)}$$ of degrees 14, 14 and 6. However, restricting to $\mathfrak S_6$ yields
$$S_{(3,3)}\oplus 3S_{(4,2)}\oplus 3S_{(5,1)}\oplus S_6$$ of degrees 5,9,5 and 1. Therefore, the statistic on the partition $(6,3)$ gives 3.
This is related to $2$-saturations of Welter's game, see [1, Corollary 1.2].
Matching statistic: St000944
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000944: Integer partitions ⟶ ℤResult quality: 4% ●values known / values provided: 31%●distinct values known / distinct values provided: 4%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000944: Integer partitions ⟶ ℤResult quality: 4% ●values known / values provided: 31%●distinct values known / distinct values provided: 4%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 0
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,4,4}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,2,3,3,3,3,4,4,4,5,5,9,11,12,20,21,45,75,125}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7,8,8,9,9,9,11,11,11,12,12,12,12,12,12,14,15,15,15,16,16,16,16,18,20,20,20,21,21,21,24,26,27,28,29,30,33,35,45,45,48,48,50,52,55,55,56,57,60,61,65,69,75,75,75,81,81,81,90,99,100,108,108,111,115,121,125,135,135,144,150,168,180,185,209,225}
Description
The 3-degree of an integer partition.
For an integer partition $\lambda$, this is given by the exponent of 3 in the Gram determinant of the integal Specht module of the symmetric group indexed by $\lambda$.
This stupid comment should not be accepted as an edit!
The following 143 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001175The size of a partition minus the hook length of the base cell. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001541The Gini index of an integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St000017The number of inversions of a standard tableau. St000117The number of centered tunnels of a Dyck path. St000142The number of even parts of a partition. St000143The largest repeated part of a partition. St000149The number of cells of the partition whose leg is zero and arm is odd. St000150The floored half-sum of the multiplicities of a partition. St000185The weighted size of a partition. St000256The number of parts from which one can substract 2 and still get an integer partition. St000257The number of distinct parts of a partition that occur at least twice. St000290The major index of a binary word. St000291The number of descents of a binary word. St000292The number of ascents of a binary word. St000293The number of inversions of a binary word. St000295The length of the border of a binary word. St000296The length of the symmetric border of a binary word. St000347The inversion sum of a binary word. St000348The non-inversion sum of a binary word. St000377The dinv defect of an integer partition. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000480The number of lower covers of a partition in dominance order. St000481The number of upper covers of a partition in dominance order. St000513The number of invariant subsets of size 2 when acting with a permutation of given cycle type. St000547The number of even non-empty partial sums of an integer partition. St000628The balance of a binary word. St000629The defect of a binary word. St000661The number of rises of length 3 of a Dyck path. St000682The Grundy value of Welter's game on a binary word. St000687The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000691The number of changes of a binary word. St000697The number of 3-rim hooks removed from an integer partition to obtain its associated 3-core. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000874The position of the last double rise in a Dyck path. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000877The depth of the binary word interpreted as a path. St000921The number of internal inversions of a binary word. St000931The number of occurrences of the pattern UUU in a Dyck path. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St000995The largest even part of an integer partition. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001091The number of parts in an integer partition whose next smaller part has the same size. St001092The number of distinct even parts of a partition. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001141The number of occurrences of hills of size 3 in a Dyck path. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001172The number of 1-rises at odd height of a Dyck path. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001214The aft of an integer partition. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001251The number of parts of a partition that are not congruent 1 modulo 3. St001252Half the sum of the even parts of a partition. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001371The length of the longest Yamanouchi prefix of a binary word. St001382The number of boxes in the diagram of a partition that do not lie in its Durfee square. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001423The number of distinct cubes in a binary word. St001435The number of missing boxes in the first row. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001438The number of missing boxes of a skew partition. St001485The modular major index of a binary word. St001498The normalised height of a Nakayama algebra with magnitude 1. St001524The degree of symmetry of a binary word. St001584The area statistic between a Dyck path and its bounce path. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001596The number of two-by-two squares inside a skew partition. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001721The degree of a binary word. St001730The number of times the path corresponding to a binary word crosses the base line. St001910The height of the middle non-run of a Dyck path. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000934The 2-degree of an integer partition. St000567The sum of the products of all pairs of parts. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St001176The size of a partition minus its first part. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001570The minimal number of edges to add to make a graph Hamiltonian. St001651The Frankl number of a lattice. St000454The largest eigenvalue of a graph if it is integral. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000369The dinv deficit of a Dyck path. St000376The bounce deficit of a Dyck path. St000508Eigenvalues of the random-to-random operator acting on a simple module. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001280The number of parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!