searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001865
St001865: Signed permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 1
[-1] => 0
[1,2] => 4
[1,-2] => 3
[-1,2] => 3
[-1,-2] => 2
[2,1] => 2
[2,-1] => 1
[-2,1] => 1
[-2,-1] => 0
[1,2,3] => 9
[1,2,-3] => 8
[1,-2,3] => 8
[1,-2,-3] => 7
[-1,2,3] => 8
[-1,2,-3] => 7
[-1,-2,3] => 7
[-1,-2,-3] => 6
[1,3,2] => 7
[1,3,-2] => 6
[1,-3,2] => 6
[1,-3,-2] => 5
[-1,3,2] => 6
[-1,3,-2] => 5
[-1,-3,2] => 5
[-1,-3,-2] => 4
[2,1,3] => 7
[2,1,-3] => 6
[2,-1,3] => 6
[2,-1,-3] => 5
[-2,1,3] => 6
[-2,1,-3] => 5
[-2,-1,3] => 5
[-2,-1,-3] => 4
[2,3,1] => 5
[2,3,-1] => 4
[2,-3,1] => 4
[2,-3,-1] => 3
[-2,3,1] => 4
[-2,3,-1] => 3
[-2,-3,1] => 3
[-2,-3,-1] => 2
[3,1,2] => 5
[3,1,-2] => 4
[3,-1,2] => 4
[3,-1,-2] => 3
[-3,1,2] => 4
[-3,1,-2] => 3
[-3,-1,2] => 3
[-3,-1,-2] => 2
Description
The number of alignments of a signed permutation.
An alignment of a signed permutation $\pi\in\mathfrak H_n$ is a pair $-n \leq i \leq j \leq n$, $i,j\neq 0$, such that one of the following conditions hold:
* $i < j \leq \pi(j) < \pi(i)$, and $j > 0$ if it is a fixed point, or
* $\pi(j) < \pi(i) \leq i < j)$ and $i < 0$ if it is a fixed point, or
* $i \leq \pi(i) < \pi(j) \leq j$ and $i > 0$ if it is a fixed point and $j < 0$ if it is a fixed point, or
* $\pi(i) \leq i < j \leq \pi(j)$ and $i < 0$ if it is a fixed point and $j > 0$ if it is a fixed point.
Let $al$ be the number of alignments of $\pi$, $cr$ be the number of crossings, [[St001862]], and let $fwex$ be the number of flag weak excedances, [[St001817]]. Then
$$2 cr + al = n^2 - 2n + fwex.$$
Matching statistic: St000713
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00166: Signed permutations —even cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000713: Integer partitions ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 18%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000713: Integer partitions ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 18%
Values
[1] => [1]
=> []
=> ? ∊ {0,1}
[-1] => []
=> ?
=> ? ∊ {0,1}
[1,2] => [1,1]
=> [1]
=> ? ∊ {0,1,1,2,2,3,3,4}
[1,-2] => [1]
=> []
=> ? ∊ {0,1,1,2,2,3,3,4}
[-1,2] => [1]
=> []
=> ? ∊ {0,1,1,2,2,3,3,4}
[-1,-2] => []
=> ?
=> ? ∊ {0,1,1,2,2,3,3,4}
[2,1] => [2]
=> []
=> ? ∊ {0,1,1,2,2,3,3,4}
[2,-1] => []
=> ?
=> ? ∊ {0,1,1,2,2,3,3,4}
[-2,1] => []
=> ?
=> ? ∊ {0,1,1,2,2,3,3,4}
[-2,-1] => [2]
=> []
=> ? ∊ {0,1,1,2,2,3,3,4}
[1,2,3] => [1,1,1]
=> [1,1]
=> 5
[1,2,-3] => [1,1]
=> [1]
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[1,-2,3] => [1,1]
=> [1]
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[1,-2,-3] => [1]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-1,2,3] => [1,1]
=> [1]
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-1,2,-3] => [1]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-1,-2,3] => [1]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-1,-2,-3] => []
=> ?
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[1,3,-2] => [1]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[1,-3,2] => [1]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[1,-3,-2] => [2,1]
=> [1]
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-1,3,2] => [2]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-1,3,-2] => []
=> ?
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-1,-3,2] => []
=> ?
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-1,-3,-2] => [2]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[2,1,-3] => [2]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[2,-1,3] => [1]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[2,-1,-3] => []
=> ?
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-2,1,3] => [1]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-2,1,-3] => []
=> ?
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-2,-1,3] => [2,1]
=> [1]
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-2,-1,-3] => [2]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[2,3,1] => [3]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[2,3,-1] => []
=> ?
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[2,-3,1] => []
=> ?
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[2,-3,-1] => [3]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-2,3,1] => []
=> ?
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-2,3,-1] => [3]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-2,-3,1] => [3]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-2,-3,-1] => []
=> ?
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[3,1,2] => [3]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[3,1,-2] => []
=> ?
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[3,-1,2] => []
=> ?
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[3,-1,-2] => [3]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-3,1,2] => []
=> ?
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-3,1,-2] => [3]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-3,-1,2] => [3]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[-3,-1,-2] => []
=> ?
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 5
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 5
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 5
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 5
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 5
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 5
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 5
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 5
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 5
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 5
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 5
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 5
[2,1,4,3] => [2,2]
=> [2]
=> 10
[2,1,-4,-3] => [2,2]
=> [2]
=> 10
[-2,-1,4,3] => [2,2]
=> [2]
=> 10
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 10
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 5
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 5
[3,4,1,2] => [2,2]
=> [2]
=> 10
[3,-4,1,-2] => [2,2]
=> [2]
=> 10
[-3,4,-1,2] => [2,2]
=> [2]
=> 10
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 10
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 5
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 5
[4,3,2,1] => [2,2]
=> [2]
=> 10
[4,-3,-2,1] => [2,2]
=> [2]
=> 10
[-4,3,2,-1] => [2,2]
=> [2]
=> 10
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 10
Description
The dimension of the irreducible representation of Sp(4) labelled by an integer partition.
Consider the symplectic group $Sp(2n)$. Then the integer partition $(\mu_1,\dots,\mu_k)$ of length at most $n$ corresponds to the weight vector $(\mu_1-\mu_2,\dots,\mu_{k-2}-\mu_{k-1},\mu_n,0,\dots,0)$.
For example, the integer partition $(2)$ labels the symmetric square of the vector representation, whereas the integer partition $(1,1)$ labels the second fundamental representation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!