searching the database
Your data matches 9 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001924
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St001924: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 1
[1,1]
=> 1
[3]
=> 1
[2,1]
=> 3
[1,1,1]
=> 1
[4]
=> 1
[3,1]
=> 2
[2,2]
=> 2
[2,1,1]
=> 2
[1,1,1,1]
=> 1
[5]
=> 1
[4,1]
=> 2
[3,2]
=> 3
[3,1,1]
=> 3
[2,2,1]
=> 3
[2,1,1,1]
=> 2
[1,1,1,1,1]
=> 1
[6]
=> 1
[5,1]
=> 2
[4,2]
=> 2
[4,1,1]
=> 2
[3,3]
=> 2
[3,2,1]
=> 6
[3,1,1,1]
=> 2
[2,2,2]
=> 2
[2,2,1,1]
=> 2
[2,1,1,1,1]
=> 2
[1,1,1,1,1,1]
=> 1
[7]
=> 1
[6,1]
=> 2
[5,2]
=> 2
[5,1,1]
=> 2
[4,3]
=> 3
[4,2,1]
=> 4
[4,1,1,1]
=> 3
[3,3,1]
=> 4
[3,2,2]
=> 4
[3,2,1,1]
=> 4
[3,1,1,1,1]
=> 2
[2,2,2,1]
=> 3
[2,2,1,1,1]
=> 2
[2,1,1,1,1,1]
=> 2
[1,1,1,1,1,1,1]
=> 1
[8]
=> 1
[7,1]
=> 2
[6,2]
=> 2
[6,1,1]
=> 2
[5,3]
=> 2
[5,2,1]
=> 4
Description
The number of cells in an integer partition whose arm and leg length coincide.
Matching statistic: St000012
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000012: Dyck paths ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000012: Dyck paths ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 4
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[11,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[10,2]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[9,1,1,1]
=> [1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,2,2]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[4,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
Description
The area of a Dyck path.
This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic.
1. Dyck paths are bijection with '''area sequences''' (a1,…,an) such that a1=0,ak+1≤ak+1.
2. The generating function Dn(q)=∑D∈Dnqarea(D) satisfy the recurrence Dn+1(q)=∑qkDk(q)Dn−k(q).
3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of q,t-Catalan numbers.
Matching statistic: St000683
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000683: Dyck paths ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000683: Dyck paths ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 4
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[11,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[10,2]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[9,1,1,1]
=> [1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,2,2]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[4,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
Description
The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps.
Matching statistic: St000984
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000984: Dyck paths ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000984: Dyck paths ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 4
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,4,4}
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[11,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[10,2]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[9,1,1,1]
=> [1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,2,2]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[4,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ?
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
Description
The number of boxes below precisely one peak.
Imagine that each peak of the Dyck path, drawn with north and east steps, casts a shadow onto the triangular region between it and the diagonal. This statistic is the number of cells which are in the shade of precisely one peak.
Matching statistic: St001295
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St001295: Dyck paths ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 80%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St001295: Dyck paths ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 80%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1}
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1}
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2}
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2}
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 4
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 4
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2}
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2}
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,4,4}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
[2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4}
Description
Gives the vector space dimension of the homomorphism space between J^2 and J^2.
Matching statistic: St000260
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 30%
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 30%
Values
[1]
=> [1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1}
[1,1]
=> [1,0,1,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1}
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,3}
[2,1]
=> [1,0,1,0,1,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,3}
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,2}
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,2}
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,2}
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => ([(4,5)],6)
=> ? ∊ {1,1,3,3,3}
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,3}
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,3,3,3}
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,3}
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => ([(4,5)],6)
=> ? ∊ {1,1,3,3,3}
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,7,6] => ([(5,6)],7)
=> ? ∊ {1,2,2,2,2,2,2,6}
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,6}
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,6}
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,6}
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,6}
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,6}
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,6}
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ([(5,6)],7)
=> ? ∊ {1,2,2,2,2,2,2,6}
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,6,8,7] => ([(6,7)],8)
=> ? ∊ {1,1,2,2,3,3,3,4,4,4,4}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,5,2,3,6,4] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,2,2,3,3,3,4,4,4,4}
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [4,1,2,3,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,3,3,3,4,4,4,4}
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,4,4,4,4}
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,2,2,3,3,3,4,4,4,4}
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,4,4,4,4}
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,4,4,4,4}
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,1,6,3,4,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,3,3,3,4,4,4,4}
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,4,4,4,4}
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,2,2,3,3,3,4,4,4,4}
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,7,1,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ([(6,7)],8)
=> ? ∊ {1,1,2,2,3,3,3,4,4,4,4}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,6,7,9,8] => ([(7,8)],9)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,8,6] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,6,2,3,4,7,5] => ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,7,6] => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,5,1,2,6,3] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [3,1,2,4,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => ([(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [2,1,3,6,4,5] => ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [2,1,7,3,4,5,6] => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => ([(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,6,1,3,4,5,7] => ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,8,1,3,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8,9] => ([(7,8)],9)
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,6,7,8,10,9] => ([(8,9)],10)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,6,6,6,6}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,9,7] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(7,8)],9)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,6,6,6,6}
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [5,6,1,2,3,7,4] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
[5,3,1]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [4,1,5,2,6,3] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[5,2,1,1]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [3,5,1,2,6,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 2
[4,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 2
[3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,6,7,1,3,4,5] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [5,1,6,2,3,7,4] => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [4,6,1,2,3,7,5] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> 2
[5,4,1]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[5,3,1,1]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[5,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [2,6,1,7,3,4,5] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> 2
[3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,5,7,1,3,4,6] => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
[6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [5,1,2,6,3,7,4] => ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 2
[6,3,1,1]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [4,1,6,2,3,7,5] => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 3
[6,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [3,6,1,2,4,7,5] => ([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> 2
[5,3,2,1]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[5,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [2,6,1,3,7,4,5] => ([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,3,3,1]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[4,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [2,5,1,7,3,4,6] => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 3
[3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,4,7,1,3,5,6] => ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 2
[6,5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [5,1,2,3,6,7,4] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2
[6,4,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,6,3,7,5] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 3
[6,3,2,1]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [4,5,6,1,2,7,3] => ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> 2
[6,3,1,1,1]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [3,1,6,2,4,7,5] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 3
[6,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [2,6,1,3,4,7,5] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2
[5,4,2,1]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[5,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000454
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 30%
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 30%
Values
[1]
=> [1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1
[2]
=> [1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {1,1}
[1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {1,1}
[3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,3}
[2,1]
=> [1,0,1,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,3}
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1}
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1}
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,3,3,3}
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,3,3,3}
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,2,3,3,3}
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,2,3,3,3}
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,3,3,3}
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,3,3,3}
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,2,2,2,2,2,2,6}
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,6}
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,6}
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,6}
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,6}
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,6}
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,6}
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,2,2,2,2,2,2,6}
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,4,4,4,4}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,4,4,4,4}
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,4,4,4,4}
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,4,4,4,4}
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,4,4,4,4}
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,4,4,4,4}
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,4,4,4,4}
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,4,4,4,4}
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,4,4,4,4}
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,4,4,4,4}
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,4,4,4,4}
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,4,4,4,4}
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,3,4,5,6,1,7] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,4,4,4,4}
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,4,4,4,4}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6,8] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6,7] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [5,1,2,6,3,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,1,2,3,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,3,4,1,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [2,3,4,5,1,6,7] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,4,5,7,1,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [5,1,2,3,4,7,6] => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[5,2,2]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[5,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,5,6] => ([(4,5)],6)
=> 1
[3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 3
[3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,3,4,5,1,7,6] => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[5,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,1,3,4,6,5] => ([(2,5),(3,4)],6)
=> 1
[4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 1
[6,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,6,7] => ([(5,6)],7)
=> 1
[6,4,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,7,3,5,6] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2
[6,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ([(3,6),(4,5)],7)
=> 1
[5,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,3,5,4,6] => ([(2,5),(3,4)],6)
=> 1
[4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [3,4,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[4,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,3,5,1,6,7,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2
[6,3,2,2]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,6,3,7] => ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2
[5,3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,5,6,3,4] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[4,4,3,2]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [3,4,1,2,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[4,4,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [2,3,6,1,4,5,7] => ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2
[6,3,3,1,1]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [3,1,2,6,7,4,5] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> 2
[6,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [2,1,3,4,6,5,7] => ([(3,6),(4,5)],7)
=> 1
[5,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => ([(2,5),(3,4)],6)
=> 1
[5,3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [2,3,1,6,7,4,5] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> 2
[6,5,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,1,7,3,4,5,6] => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[6,3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [2,1,3,6,7,4,5] => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
[6,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,4,5,6,7,3] => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5] => ([(0,5),(1,4),(2,3)],6)
=> 1
[4,4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [4,5,6,1,2,3,7] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 3
[6,4,2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,1,3,5,4,6,7] => ([(3,6),(4,5)],7)
=> 1
[5,5,2,2,2]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [3,4,1,2,5,6,7] => ([(3,5),(3,6),(4,5),(4,6)],7)
=> 2
Description
The largest eigenvalue of a graph if it is integral.
If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001198
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 10%
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 10%
Values
[1]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 1
[2]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,1}
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,1}
[3]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,1,3}
[2,1]
=> [1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,1,3}
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,1,3}
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2,2}
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2,2}
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,1,2,2,2}
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2,2}
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2,2}
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,3,3,3}
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,3,3,3}
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2,3,3,3}
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,3,3,3}
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2,3,3,3}
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,3,3,3}
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,3,3,3}
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[5,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[5,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2
[2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 2
[4,4,2]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 2
[3,3,3,1]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 2
[3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2
[2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2
[4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 2
[3,3,3,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 2
[4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 2
[3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 2
Description
The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA.
Matching statistic: St001206
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 10%
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 10%
Values
[1]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 1
[2]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,1}
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,1}
[3]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,1,3}
[2,1]
=> [1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,1,3}
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,1,3}
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2,2}
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2,2}
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,1,2,2,2}
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2,2}
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2,2}
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,3,3,3}
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,3,3,3}
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2,3,3,3}
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,3,3,3}
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2,3,3,3}
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,3,3,3}
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,3,3,3}
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,6}
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3,3,4,4,4,4}
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[5,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[5,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2
[2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 2
[4,4,2]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 2
[3,3,3,1]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 2
[3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2
[2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2
[4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 2
[3,3,3,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 2
[4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 2
[3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 2
Description
The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!