searching the database
Your data matches 51 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001957
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 1
([],3)
=> 1
([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> 3
([(0,1),(0,2),(1,2)],3)
=> 0
([],4)
=> 1
([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 4
([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([],5)
=> 1
([(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> 3
([(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> 5
([(1,4),(2,3)],5)
=> 1
([(1,4),(2,3),(3,4)],5)
=> 4
([(0,1),(2,4),(3,4)],5)
=> 3
([(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> 12
([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 10
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 5
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> 10
([(0,1),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 0
Description
The number of Hasse diagrams with a given underlying undirected graph.
In particular, this statistic vanishes if the graph contains a triangle.
This is the size of the preimage of [[Mp00074]].
Matching statistic: St001629
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00154: Graphs —core⟶ Graphs
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
St001629: Integer compositions ⟶ ℤResult quality: 18% ●values known / values provided: 71%●distinct values known / distinct values provided: 18%
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
St001629: Integer compositions ⟶ ℤResult quality: 18% ●values known / values provided: 71%●distinct values known / distinct values provided: 18%
Values
([],1)
=> ([],1)
=> [1] => ? = 1
([],2)
=> ([],1)
=> [1] => ? ∊ {1,1}
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1}
([],3)
=> ([],1)
=> [1] => ? ∊ {1,1,3}
([(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,3}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,3}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([],4)
=> ([],1)
=> [1] => ? ∊ {1,1,1,2,3,4,4}
([(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,3,4,4}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => 0
([],5)
=> ([],1)
=> [1] => ? ∊ {1,1,1,2,2,3,3,4,5,5,10,10,12}
([(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,2,3,3,4,5,5,10,10,12}
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,2,3,3,4,5,5,10,10,12}
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,2,3,3,4,5,5,10,10,12}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,2,3,3,4,5,5,10,10,12}
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,2,3,3,4,5,5,10,10,12}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,2,3,3,4,5,5,10,10,12}
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,2,3,3,4,5,5,10,10,12}
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,2,3,3,4,5,5,10,10,12}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,2,3,3,4,5,5,10,10,12}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,2,3,3,4,5,5,10,10,12}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,2,3,3,4,5,5,10,10,12}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,1,1,2,2,3,3,4,5,5,10,10,12}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => 0
([],6)
=> ([],1)
=> [1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {0,1,1,1,1,2,2,2,3,3,3,4,5,5,6,6,6,6,6,7,9,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0
Description
The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles.
Matching statistic: St000379
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3}
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> 0
([],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
Description
The number of Hamiltonian cycles in a graph.
A Hamiltonian cycle in a graph $G$ is a subgraph (this is, a subset of the edges) that is a cycle which contains every vertex of $G$.
Since it is unclear whether the graph on one vertex is Hamiltonian, the statistic is undefined for this graph.
Matching statistic: St000699
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3}
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,3,3,4,4,5,5,10,10}
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,3,3,4,4,5,5,10,10}
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,3,3,4,4,5,5,10,10}
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,3,3,4,4,5,5,10,10}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,3,3,4,4,5,5,10,10}
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,3,3,4,4,5,5,10,10}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,3,3,4,4,5,5,10,10}
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,3,3,4,4,5,5,10,10}
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,3,3,4,4,5,5,10,10}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,3,3,4,4,5,5,10,10}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,3,3,4,4,5,5,10,10}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,3,3,4,4,5,5,10,10}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,3,3,4,4,5,5,10,10}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> 0
([],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,13,13,14,15,16,16,20,20,20,24}
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
Description
The toughness times the least common multiple of 1,...,n-1 of a non-complete graph.
A graph $G$ is $t$-tough if $G$ cannot be split into $k$ different connected components by the removal of fewer than $tk$ vertices for all integers $k>1$.
The toughness of $G$ is the maximal number $t$ such that $G$ is $t$-tough. It is a rational number except for the complete graph, where it is infinity. The toughness of a disconnected graph is zero.
This statistic is the toughness multiplied by the least common multiple of $1,\dots,n-1$, where $n$ is the number of vertices of $G$.
Matching statistic: St001281
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3}
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,4,4,5,5,10,10,12}
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,4,4,5,5,10,10,12}
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,4,4,5,5,10,10,12}
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,4,4,5,5,10,10,12}
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,4,4,5,5,10,10,12}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,4,4,5,5,10,10,12}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> 0
([],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
Description
The normalized isoperimetric number of a graph.
The isoperimetric number, or Cheeger constant, of a graph $G$ is
$$
i(G) = \min\left\{\frac{|\partial A|}{|A|}\ : \ A\subseteq V(G), 0 < |A|\leq |V(G)|/2\right\},
$$
where
$$
\partial A := \{(x, y)\in E(G)\ : \ x\in A, y\in V(G)\setminus A \}.
$$
This statistic is $i(G)\cdot\lfloor n/2\rfloor$.
Matching statistic: St001570
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> [1] => ([],1)
=> ? = 1
([],2)
=> ([],1)
=> [1] => ([],1)
=> ? ∊ {1,1}
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1}
([],3)
=> ([],1)
=> [1] => ([],1)
=> ? ∊ {1,1,3}
([(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,3}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,3}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([],4)
=> ([],1)
=> [1] => ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,1,2,3,4,4}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([],5)
=> ([],1)
=> [1] => ([],1)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([],6)
=> ([],1)
=> [1] => ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
Description
The minimal number of edges to add to make a graph Hamiltonian.
A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
Matching statistic: St001604
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00154: Graphs —core⟶ Graphs
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 12% ●values known / values provided: 71%●distinct values known / distinct values provided: 12%
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 12% ●values known / values provided: 71%●distinct values known / distinct values provided: 12%
Values
([],1)
=> ([],1)
=> [1] => [1]
=> ? = 1
([],2)
=> ([],1)
=> [1] => [1]
=> ? ∊ {1,1}
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1}
([],3)
=> ([],1)
=> [1] => [1]
=> ? ∊ {1,1,3}
([(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,3}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,3}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([],4)
=> ([],1)
=> [1] => [1]
=> ? ∊ {1,1,1,2,3,4,4}
([(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,1,2,3,4,4}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> 0
([],5)
=> ([],1)
=> [1] => [1]
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [4,1]
=> 0
([],6)
=> ([],1)
=> [1] => [1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [1,1] => [1,1]
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1]
=> 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1]
=> 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 0
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons.
Equivalently, this is the multiplicity of the irreducible representation corresponding to a partition in the cycle index of the dihedral group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001592
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3}
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3}
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3}
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,4,4}
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 0
Description
The maximal number of simple paths between any two different vertices of a graph.
Matching statistic: St001651
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
([(0,1)],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,1}
([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,3}
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,1,1,3}
([(0,2),(1,2)],3)
=> ([],2)
=> ([],1)
=> ? ∊ {0,1,1,3}
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ? ∊ {0,1,1,3}
([],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,3,4,4}
([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,3,4,4}
([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,3,4,4}
([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,3,4,4}
([(0,3),(1,2)],4)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,3,4,4}
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,3,4,4}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,3,4,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1,2,3,4,4}
([],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4)],6)
=> ([(0,1)],2)
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6)
=> ([(0,1)],2)
=> 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,1)],2)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(4,5)],6)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 0
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(5,4)],6)
=> ([(0,1)],2)
=> 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> 0
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4)],6)
=> ([(0,1)],2)
=> 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> ([(0,1)],2)
=> 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 0
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 0
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
Description
The Frankl number of a lattice.
For a lattice $L$ on at least two elements, this is
$$
\max_x(|L|-2|[x, 1]|),
$$
where we maximize over all join irreducible elements and $[x, 1]$ denotes the interval from $x$ to the top element. Frankl's conjecture asserts that this number is non-negative, and zero if and only if $L$ is a Boolean lattice.
Matching statistic: St000455
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],2)
=> ([],2)
=> ? ∊ {1,1}
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
([],3)
=> ([],3)
=> ([],3)
=> ? ∊ {1,1,3}
([(1,2)],3)
=> ([],2)
=> ([],2)
=> ? ∊ {1,1,3}
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3}
([],4)
=> ([],4)
=> ([],4)
=> ? ∊ {0,1,1,1,2,3,4,4}
([(2,3)],4)
=> ([],3)
=> ([],3)
=> ? ∊ {0,1,1,1,2,3,4,4}
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2)],4)
=> ([],2)
=> ([],2)
=> ? ∊ {0,1,1,1,2,3,4,4}
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,2,3,4,4}
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],2)
=> ? ∊ {0,1,1,1,2,3,4,4}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,3,4,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,3,4,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1,2,3,4,4}
([],5)
=> ([],5)
=> ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(1,4),(2,3)],5)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,3,4,4,5,5,10,10,12}
([],6)
=> ([],6)
=> ([],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(4,5)],6)
=> ([],5)
=> ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(2,5),(3,4)],6)
=> ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,2),(0,3),(0,4),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,6,6,7,9,10,10,12,12,12,13,13,14,15,16,16,20,20,20,24}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
The following 41 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St001175The size of a partition minus the hook length of the base cell. St001176The size of a partition minus its first part. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St000369The dinv deficit of a Dyck path. St000376The bounce deficit of a Dyck path. St000661The number of rises of length 3 of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000931The number of occurrences of the pattern UUU in a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001141The number of occurrences of hills of size 3 in a Dyck path. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000944The 3-degree of an integer partition. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001280The number of parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001541The Gini index of an integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!