Identifier
- St001629: Integer compositions ⟶ ℤ
Values
=>
[1,1,1]=>1
[1,2]=>0
[2,1]=>0
[3]=>1
[1,1,1,1]=>0
[1,1,2]=>1
[1,2,1]=>2
[1,3]=>0
[2,1,1]=>1
[2,2]=>1
[3,1]=>0
[4]=>1
[1,1,1,1,1]=>1
[1,1,1,2]=>0
[1,1,2,1]=>1
[1,1,3]=>2
[1,2,1,1]=>1
[1,2,2]=>4
[1,3,1]=>3
[1,4]=>0
[2,1,1,1]=>0
[2,1,2]=>3
[2,2,1]=>4
[2,3]=>1
[3,1,1]=>2
[3,2]=>1
[4,1]=>0
[5]=>1
[1,1,1,1,1,1]=>0
[1,1,1,1,2]=>1
[1,1,1,2,1]=>2
[1,1,1,3]=>2
[1,1,2,1,1]=>4
[1,1,2,2]=>5
[1,1,3,1]=>4
[1,1,4]=>2
[1,2,1,1,1]=>2
[1,2,1,2]=>7
[1,2,2,1]=>10
[1,2,3]=>6
[1,3,1,1]=>4
[1,3,2]=>7
[1,4,1]=>4
[1,5]=>0
[2,1,1,1,1]=>1
[2,1,1,2]=>3
[2,1,2,1]=>7
[2,1,3]=>4
[2,2,1,1]=>5
[2,2,2]=>11
[2,3,1]=>7
[2,4]=>2
[3,1,1,1]=>2
[3,1,2]=>4
[3,2,1]=>6
[3,3]=>3
[4,1,1]=>2
[4,2]=>2
[5,1]=>0
[6]=>1
[1,1,1,1,1,1,1]=>1
[1,1,1,1,1,2]=>0
[1,1,1,1,2,1]=>2
[1,1,1,1,3]=>3
[1,1,1,2,1,1]=>4
[1,1,1,2,2]=>10
[1,1,1,3,1]=>8
[1,1,1,4]=>2
[1,1,2,1,1,1]=>4
[1,1,2,1,2]=>15
[1,1,2,2,1]=>23
[1,1,2,3]=>12
[1,1,3,1,1]=>11
[1,1,3,2]=>15
[1,1,4,1]=>7
[1,1,5]=>3
[1,2,1,1,1,1]=>2
[1,2,1,1,2]=>12
[1,2,1,2,1]=>25
[1,2,1,3]=>15
[1,2,2,1,1]=>23
[1,2,2,2]=>38
[1,2,3,1]=>25
[1,2,4]=>10
[1,3,1,1,1]=>8
[1,3,1,2]=>18
[1,3,2,1]=>25
[1,3,3]=>15
[1,4,1,1]=>7
[1,4,2]=>12
[1,5,1]=>5
[1,6]=>0
[2,1,1,1,1,1]=>0
[2,1,1,1,2]=>5
[2,1,1,2,1]=>12
[2,1,1,3]=>7
[2,1,2,1,1]=>15
[2,1,2,2]=>25
[2,1,3,1]=>18
[2,1,4]=>8
[2,2,1,1,1]=>10
[2,2,1,2]=>25
[2,2,2,1]=>38
[2,2,3]=>23
[2,3,1,1]=>15
[2,3,2]=>25
[2,4,1]=>12
[2,5]=>2
[3,1,1,1,1]=>3
[3,1,1,2]=>7
[3,1,2,1]=>15
[3,1,3]=>11
[3,2,1,1]=>12
[3,2,2]=>23
[3,3,1]=>15
[3,4]=>4
[4,1,1,1]=>2
[4,1,2]=>8
[4,2,1]=>10
[4,3]=>4
[5,1,1]=>3
[5,2]=>2
[6,1]=>0
[7]=>1
[1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,2]=>1
[1,1,1,1,1,2,1]=>4
[1,1,1,1,1,3]=>2
[1,1,1,1,2,1,1]=>7
[1,1,1,1,2,2]=>13
[1,1,1,1,3,1]=>10
[1,1,1,1,4]=>5
[1,1,1,2,1,1,1]=>10
[1,1,1,2,1,2]=>24
[1,1,1,2,2,1]=>40
[1,1,1,2,3]=>24
[1,1,1,3,1,1]=>18
[1,1,1,3,2]=>32
[1,1,1,4,1]=>16
[1,1,1,5]=>4
[1,1,2,1,1,1,1]=>7
[1,1,2,1,1,2]=>27
[1,1,2,1,2,1]=>59
[1,1,2,1,3]=>40
[1,1,2,2,1,1]=>56
[1,1,2,2,2]=>99
[1,1,2,3,1]=>67
[1,1,2,4]=>23
[1,1,3,1,1,1]=>18
[1,1,3,1,2]=>53
[1,1,3,2,1]=>72
[1,1,3,3]=>39
[1,1,4,1,1]=>24
[1,1,4,2]=>31
[1,1,5,1]=>12
[1,1,6]=>3
[1,2,1,1,1,1,1]=>4
[1,2,1,1,1,2]=>16
[1,2,1,1,2,1]=>46
[1,2,1,1,3]=>32
[1,2,1,2,1,1]=>59
[1,2,1,2,2]=>110
[1,2,1,3,1]=>80
[1,2,1,4]=>31
[1,2,2,1,1,1]=>40
[1,2,2,1,2]=>115
[1,2,2,2,1]=>174
[1,2,2,3]=>98
[1,2,3,1,1]=>72
[1,2,3,2]=>109
[1,2,4,1]=>50
[1,2,5]=>14
[1,3,1,1,1,1]=>10
[1,3,1,1,2]=>40
[1,3,1,2,1]=>80
[1,3,1,3]=>52
[1,3,2,1,1]=>67
[1,3,2,2]=>114
[1,3,3,1]=>74
[1,3,4]=>25
[1,4,1,1,1]=>16
[1,4,1,2]=>39
[1,4,2,1]=>50
[1,4,3]=>28
[1,5,1,1]=>12
[1,5,2]=>17
[1,6,1]=>6
[1,7]=>0
[2,1,1,1,1,1,1]=>1
[2,1,1,1,1,2]=>5
[2,1,1,1,2,1]=>16
[2,1,1,1,3]=>13
[2,1,1,2,1,1]=>27
[2,1,1,2,2]=>51
[2,1,1,3,1]=>40
[2,1,1,4]=>15
[2,1,2,1,1,1]=>24
[2,1,2,1,2]=>75
[2,1,2,2,1]=>115
[2,1,2,3]=>66
[2,1,3,1,1]=>53
[2,1,3,2]=>79
[2,1,4,1]=>39
[2,1,5]=>11
[2,2,1,1,1,1]=>13
[2,2,1,1,2]=>51
[2,2,1,2,1]=>110
[2,2,1,3]=>71
[2,2,2,1,1]=>99
[2,2,2,2]=>173
[2,2,3,1]=>114
[2,2,4]=>41
[2,3,1,1,1]=>32
[2,3,1,2]=>79
[2,3,2,1]=>109
[2,3,3]=>60
[2,4,1,1]=>31
[2,4,2]=>47
[2,5,1]=>17
[2,6]=>3
[3,1,1,1,1,1]=>2
[3,1,1,1,2]=>13
[3,1,1,2,1]=>32
[3,1,1,3]=>23
[3,1,2,1,1]=>40
[3,1,2,2]=>71
[3,1,3,1]=>52
[3,1,4]=>19
[3,2,1,1,1]=>24
[3,2,1,2]=>66
[3,2,2,1]=>98
[3,2,3]=>57
[3,3,1,1]=>39
[3,3,2]=>60
[3,4,1]=>28
[3,5]=>6
[4,1,1,1,1]=>5
[4,1,1,2]=>15
[4,1,2,1]=>31
[4,1,3]=>19
[4,2,1,1]=>23
[4,2,2]=>41
[4,3,1]=>25
[4,4]=>9
[5,1,1,1]=>4
[5,1,2]=>11
[5,2,1]=>14
[5,3]=>6
[6,1,1]=>3
[6,2]=>3
[7,1]=>0
[8]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles.
Code
def statistic(a): F = QuasiSymmetricFunctions(QQ).F() S = species.CycleSpecies().cycle_index_series() return F(S.coefficient(a.size())).coefficient(a)
Created
Oct 02, 2020 at 07:18 by Martin Rubey
Updated
Oct 02, 2020 at 07:18 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!