searching the database
Your data matches 40 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000018
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
St000018: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000018: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => 0
[.,[.,.]]
=> [2,1] => 1
[[.,.],.]
=> [1,2] => 0
[.,[.,[.,.]]]
=> [3,2,1] => 3
[.,[[.,.],.]]
=> [2,3,1] => 2
[[.,.],[.,.]]
=> [1,3,2] => 1
[[.,[.,.]],.]
=> [2,1,3] => 1
[[[.,.],.],.]
=> [1,2,3] => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 6
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => 5
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => 4
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => 4
[.,[[[.,.],.],.]]
=> [2,3,4,1] => 3
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => 3
[[.,.],[[.,.],.]]
=> [1,3,4,2] => 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => 3
[[.,[[.,.],.]],.]
=> [2,3,1,4] => 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 10
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => 9
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => 8
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => 8
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => 7
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => 7
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => 6
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => 6
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => 5
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => 7
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => 6
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => 5
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => 5
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => 4
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => 6
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => 5
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => 4
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => 4
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => 3
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => 4
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => 3
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => 3
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => 4
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => 3
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => 2
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => 2
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => 1
Description
The number of inversions of a permutation.
This equals the minimal number of simple transpositions (i,i+1) needed to write π. Thus, it is also the Coxeter length of π.
Matching statistic: St000391
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000391: Binary words ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000391: Binary words ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [1] => => ? = 0
[.,[.,.]]
=> [2,1] => [2,1] => 1 => 1
[[.,.],.]
=> [1,2] => [1,2] => 0 => 0
[.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => 11 => 3
[.,[[.,.],.]]
=> [2,3,1] => [2,3,1] => 01 => 2
[[.,.],[.,.]]
=> [1,3,2] => [3,1,2] => 10 => 1
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => 10 => 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => 00 => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => 111 => 6
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [3,4,2,1] => 011 => 5
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [4,2,3,1] => 101 => 4
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [3,2,4,1] => 101 => 4
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [2,3,4,1] => 001 => 3
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [4,3,1,2] => 110 => 3
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [3,4,1,2] => 010 => 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [2,4,1,3] => 010 => 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [4,1,2,3] => 100 => 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => 110 => 3
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [2,3,1,4] => 010 => 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [3,1,2,4] => 100 => 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => 100 => 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => 000 => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => 1111 => 10
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [4,5,3,2,1] => 0111 => 9
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [5,3,4,2,1] => 1011 => 8
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [4,3,5,2,1] => 1011 => 8
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [3,4,5,2,1] => 0011 => 7
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [5,4,2,3,1] => 1101 => 7
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [4,5,2,3,1] => 0101 => 6
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [3,5,2,4,1] => 0101 => 6
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [5,2,3,4,1] => 1001 => 5
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [4,3,2,5,1] => 1101 => 7
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [3,4,2,5,1] => 0101 => 6
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [4,2,3,5,1] => 1001 => 5
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [3,2,4,5,1] => 1001 => 5
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [2,3,4,5,1] => 0001 => 4
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [5,4,3,1,2] => 1110 => 6
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [4,5,3,1,2] => 0110 => 5
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [5,3,4,1,2] => 1010 => 4
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [4,3,5,1,2] => 1010 => 4
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [3,4,5,1,2] => 0010 => 3
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [5,2,4,1,3] => 1010 => 4
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [2,4,5,1,3] => 0010 => 3
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [5,4,1,2,3] => 1100 => 3
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [4,5,1,2,3] => 0100 => 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [3,2,5,1,4] => 1010 => 4
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [2,3,5,1,4] => 0010 => 3
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [3,5,1,2,4] => 0100 => 2
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [2,5,1,3,4] => 0100 => 2
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [5,1,2,3,4] => 1000 => 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,3,2,1,5] => 1110 => 6
[[[[[[.,[.,.]],[.,.]],[.,.]],[.,.]],[.,.]],[.,.]]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [2,4,6,8,10,12,1,3,5,7,9,11] => 00000100000 => ? = 6
[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],[.,.]]
=> [1,2,3,4,5,6,7,8,9,11,10] => [11,1,2,3,4,5,6,7,8,9,10] => 1000000000 => ? = 1
[[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]],.]
=> [10,9,8,7,6,5,4,3,2,1,11] => [10,9,8,7,6,5,4,3,2,1,11] => 1111111110 => ? = 45
[[.,.],[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]]
=> [1,11,10,9,8,7,6,5,4,3,2] => [11,10,9,8,7,6,5,4,3,1,2] => 1111111110 => ? = 45
[[[[[[[[[[.,[.,.]],.],.],.],.],.],.],.],.],.]
=> [2,1,3,4,5,6,7,8,9,10,11] => [2,1,3,4,5,6,7,8,9,10,11] => 1000000000 => ? = 1
Description
The sum of the positions of the ones in a binary word.
Matching statistic: St000330
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [1] => [[1]]
=> 0
[.,[.,.]]
=> [2,1] => [2,1] => [[1],[2]]
=> 1
[[.,.],.]
=> [1,2] => [1,2] => [[1,2]]
=> 0
[.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => [[1],[2],[3]]
=> 3
[.,[[.,.],.]]
=> [2,3,1] => [2,3,1] => [[1,2],[3]]
=> 2
[[.,.],[.,.]]
=> [1,3,2] => [3,1,2] => [[1,3],[2]]
=> 1
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => [[1,3],[2]]
=> 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [[1,2,3]]
=> 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => [[1],[2],[3],[4]]
=> 6
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [3,4,2,1] => [[1,2],[3],[4]]
=> 5
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [4,2,3,1] => [[1,3],[2],[4]]
=> 4
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [3,2,4,1] => [[1,3],[2],[4]]
=> 4
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [2,3,4,1] => [[1,2,3],[4]]
=> 3
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [4,3,1,2] => [[1,4],[2],[3]]
=> 3
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [3,4,1,2] => [[1,2],[3,4]]
=> 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [2,4,1,3] => [[1,2],[3,4]]
=> 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [4,1,2,3] => [[1,3,4],[2]]
=> 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => [[1,4],[2],[3]]
=> 3
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [2,3,1,4] => [[1,2,4],[3]]
=> 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [3,1,2,4] => [[1,3,4],[2]]
=> 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => [[1,3,4],[2]]
=> 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [[1],[2],[3],[4],[5]]
=> 10
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [4,5,3,2,1] => [[1,2],[3],[4],[5]]
=> 9
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [5,3,4,2,1] => [[1,3],[2],[4],[5]]
=> 8
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [4,3,5,2,1] => [[1,3],[2],[4],[5]]
=> 8
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [3,4,5,2,1] => [[1,2,3],[4],[5]]
=> 7
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [5,4,2,3,1] => [[1,4],[2],[3],[5]]
=> 7
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [4,5,2,3,1] => [[1,2],[3,4],[5]]
=> 6
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [3,5,2,4,1] => [[1,2],[3,4],[5]]
=> 6
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [5,2,3,4,1] => [[1,3,4],[2],[5]]
=> 5
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [4,3,2,5,1] => [[1,4],[2],[3],[5]]
=> 7
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [3,4,2,5,1] => [[1,2,4],[3],[5]]
=> 6
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [4,2,3,5,1] => [[1,3,4],[2],[5]]
=> 5
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [3,2,4,5,1] => [[1,3,4],[2],[5]]
=> 5
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [2,3,4,5,1] => [[1,2,3,4],[5]]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [5,4,3,1,2] => [[1,5],[2],[3],[4]]
=> 6
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [4,5,3,1,2] => [[1,2],[3,5],[4]]
=> 5
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [5,3,4,1,2] => [[1,3],[2,5],[4]]
=> 4
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [4,3,5,1,2] => [[1,3],[2,5],[4]]
=> 4
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [3,4,5,1,2] => [[1,2,3],[4,5]]
=> 3
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [5,2,4,1,3] => [[1,3],[2,5],[4]]
=> 4
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [2,4,5,1,3] => [[1,2,3],[4,5]]
=> 3
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [5,4,1,2,3] => [[1,4,5],[2],[3]]
=> 3
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [4,5,1,2,3] => [[1,2,5],[3,4]]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [3,2,5,1,4] => [[1,3],[2,5],[4]]
=> 4
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [2,3,5,1,4] => [[1,2,3],[4,5]]
=> 3
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [3,5,1,2,4] => [[1,2,5],[3,4]]
=> 2
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [2,5,1,3,4] => [[1,2,5],[3,4]]
=> 2
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [5,1,2,3,4] => [[1,3,4,5],[2]]
=> 1
[.,[[[[[[[.,[.,.]],.],.],.],.],.],.]]
=> [3,2,4,5,6,7,8,9,1] => [3,2,4,5,6,7,8,9,1] => [[1,3,4,5,6,7,8],[2],[9]]
=> ? = 9
[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],[.,.]]
=> [1,2,3,4,5,6,7,8,9,11,10] => [11,1,2,3,4,5,6,7,8,9,10] => [[1,3,4,5,6,7,8,9,10,11],[2]]
=> ? = 1
[.,[[[[[[.,[[.,.],.]],.],.],.],.],.]]
=> [3,4,2,5,6,7,8,9,1] => [3,4,2,5,6,7,8,9,1] => [[1,2,4,5,6,7,8],[3],[9]]
=> ? = 10
[.,[[[[[[[[.,[.,.]],.],.],.],.],.],.],.]]
=> [3,2,4,5,6,7,8,9,10,1] => [3,2,4,5,6,7,8,9,10,1] => [[1,3,4,5,6,7,8,9],[2],[10]]
=> ? = 10
[.,[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],.]]
=> [2,3,4,5,6,7,8,9,10,11,1] => [2,3,4,5,6,7,8,9,10,11,1] => [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 10
[[.,.],[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [1,8,9,7,6,5,4,3,2] => [8,9,7,6,5,4,3,1,2] => [[1,2],[3,9],[4],[5],[6],[7],[8]]
=> ? = 27
[[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]],.]
=> [10,9,8,7,6,5,4,3,2,1,11] => [10,9,8,7,6,5,4,3,2,1,11] => [[1,11],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 45
[[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]],.]
=> [7,6,8,5,4,3,2,1,9] => [7,6,8,5,4,3,2,1,9] => [[1,3,9],[2],[4],[5],[6],[7],[8]]
=> ? = 26
[[.,.],[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [1,8,7,9,6,5,4,3,2] => [8,7,9,6,5,4,3,1,2] => [[1,3],[2,9],[4],[5],[6],[7],[8]]
=> ? = 26
[[.,.],[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]]
=> [1,9,10,8,7,6,5,4,3,2] => [9,10,8,7,6,5,4,3,1,2] => [[1,2],[3,10],[4],[5],[6],[7],[8],[9]]
=> ? = 35
[[.,.],[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]]
=> [1,11,10,9,8,7,6,5,4,3,2] => [11,10,9,8,7,6,5,4,3,1,2] => [[1,11],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 45
[[[[[[[[[[.,[.,.]],.],.],.],.],.],.],.],.],.]
=> [2,1,3,4,5,6,7,8,9,10,11] => [2,1,3,4,5,6,7,8,9,10,11] => [[1,3,4,5,6,7,8,9,10,11],[2]]
=> ? = 1
[[.,[[[[[[[.,.],.],.],.],.],.],.]],.]
=> [2,3,4,5,6,7,8,1,9] => [2,3,4,5,6,7,8,1,9] => [[1,2,3,4,5,6,7,9],[8]]
=> ? = 7
[[[.,[[[[[[.,.],.],.],.],.],.]],.],.]
=> [2,3,4,5,6,7,1,8,9] => [2,3,4,5,6,7,1,8,9] => [[1,2,3,4,5,6,8,9],[7]]
=> ? = 6
Description
The (standard) major index of a standard tableau.
A descent of a standard tableau T is an index i such that i+1 appears in a row strictly below the row of i. The (standard) major index is the the sum of the descents.
Matching statistic: St000008
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00071: Permutations —descent composition⟶ Integer compositions
St000008: Integer compositions ⟶ ℤResult quality: 93% ●values known / values provided: 93%●distinct values known / distinct values provided: 93%
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00071: Permutations —descent composition⟶ Integer compositions
St000008: Integer compositions ⟶ ℤResult quality: 93% ●values known / values provided: 93%●distinct values known / distinct values provided: 93%
Values
[.,.]
=> [1] => [1] => [1] => 0
[.,[.,.]]
=> [2,1] => [2,1] => [1,1] => 1
[[.,.],.]
=> [1,2] => [1,2] => [2] => 0
[.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => [1,1,1] => 3
[.,[[.,.],.]]
=> [2,3,1] => [2,3,1] => [2,1] => 2
[[.,.],[.,.]]
=> [1,3,2] => [3,1,2] => [1,2] => 1
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => [1,2] => 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [3] => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => [1,1,1,1] => 6
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [3,4,2,1] => [2,1,1] => 5
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [4,2,3,1] => [1,2,1] => 4
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [3,2,4,1] => [1,2,1] => 4
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [2,3,4,1] => [3,1] => 3
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [4,3,1,2] => [1,1,2] => 3
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [3,4,1,2] => [2,2] => 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [2,4,1,3] => [2,2] => 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [4,1,2,3] => [1,3] => 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => [1,1,2] => 3
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [2,3,1,4] => [2,2] => 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [3,1,2,4] => [1,3] => 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => [1,3] => 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [4] => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1] => 10
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [4,5,3,2,1] => [2,1,1,1] => 9
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [5,3,4,2,1] => [1,2,1,1] => 8
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [4,3,5,2,1] => [1,2,1,1] => 8
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [3,4,5,2,1] => [3,1,1] => 7
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [5,4,2,3,1] => [1,1,2,1] => 7
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [4,5,2,3,1] => [2,2,1] => 6
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [3,5,2,4,1] => [2,2,1] => 6
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [5,2,3,4,1] => [1,3,1] => 5
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [4,3,2,5,1] => [1,1,2,1] => 7
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [3,4,2,5,1] => [2,2,1] => 6
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [4,2,3,5,1] => [1,3,1] => 5
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [3,2,4,5,1] => [1,3,1] => 5
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [2,3,4,5,1] => [4,1] => 4
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,2] => 6
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [4,5,3,1,2] => [2,1,2] => 5
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [5,3,4,1,2] => [1,2,2] => 4
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [4,3,5,1,2] => [1,2,2] => 4
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [3,4,5,1,2] => [3,2] => 3
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [5,2,4,1,3] => [1,2,2] => 4
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [2,4,5,1,3] => [3,2] => 3
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [5,4,1,2,3] => [1,1,3] => 3
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [4,5,1,2,3] => [2,3] => 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [3,2,5,1,4] => [1,2,2] => 4
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [2,3,5,1,4] => [3,2] => 3
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [3,5,1,2,4] => [2,3] => 2
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [2,5,1,3,4] => [2,3] => 2
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [5,1,2,3,4] => [1,4] => 1
[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> [9,8,7,6,5,4,3,2,1] => [9,8,7,6,5,4,3,2,1] => [1,1,1,1,1,1,1,1,1] => ? = 36
[[[[[[[[[.,.],.],.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [9] => ? = 0
[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7,8,9,10] => [1,2,3,4,5,6,7,8,9,10] => [10] => ? = 0
[[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],.]
=> [8,7,6,5,4,3,2,1,9] => [8,7,6,5,4,3,2,1,9] => [1,1,1,1,1,1,1,2] => ? = 28
[[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]],.]
=> [9,8,7,6,5,4,3,2,1,10] => [9,8,7,6,5,4,3,2,1,10] => [1,1,1,1,1,1,1,1,2] => ? = 36
[.,[[[[[[.,[[.,.],.]],.],.],.],.],.]]
=> [3,4,2,5,6,7,8,9,1] => [3,4,2,5,6,7,8,9,1] => [2,6,1] => ? = 10
[[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,9,8,7,6,5,4,3,2] => [9,8,7,6,5,4,3,1,2] => [1,1,1,1,1,1,1,2] => ? = 28
[[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]],.]
=> [7,8,6,5,4,3,2,1,9] => [7,8,6,5,4,3,2,1,9] => [2,1,1,1,1,1,2] => ? = 27
[[.,.],[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [1,8,9,7,6,5,4,3,2] => [8,9,7,6,5,4,3,1,2] => [2,1,1,1,1,1,2] => ? = 27
[[.,.],[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> [1,10,9,8,7,6,5,4,3,2] => [10,9,8,7,6,5,4,3,1,2] => [1,1,1,1,1,1,1,1,2] => ? = 36
[[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]],.]
=> [10,9,8,7,6,5,4,3,2,1,11] => [10,9,8,7,6,5,4,3,2,1,11] => [1,1,1,1,1,1,1,1,1,2] => ? = 45
[[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]],.]
=> [7,6,8,5,4,3,2,1,9] => [7,6,8,5,4,3,2,1,9] => [1,2,1,1,1,1,2] => ? = 26
[[.,.],[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [1,8,7,9,6,5,4,3,2] => [8,7,9,6,5,4,3,1,2] => [1,2,1,1,1,1,2] => ? = 26
[[.,.],[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]]
=> [1,11,10,9,8,7,6,5,4,3,2] => [11,10,9,8,7,6,5,4,3,1,2] => [1,1,1,1,1,1,1,1,1,2] => ? = 45
[[[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.],.]
=> [7,6,5,4,3,2,1,8,9] => [7,6,5,4,3,2,1,8,9] => [1,1,1,1,1,1,3] => ? = 21
[[[[.,[.,[.,[.,[.,[.,.]]]]]],.],.],.]
=> [6,5,4,3,2,1,7,8,9] => [6,5,4,3,2,1,7,8,9] => [1,1,1,1,1,4] => ? = 15
[[[[[.,[.,[.,[.,[.,.]]]]],.],.],.],.]
=> [5,4,3,2,1,6,7,8,9] => [5,4,3,2,1,6,7,8,9] => [1,1,1,1,5] => ? = 10
[[[[[[.,[.,[.,[.,.]]]],.],.],.],.],.]
=> [4,3,2,1,5,6,7,8,9] => [4,3,2,1,5,6,7,8,9] => [1,1,1,6] => ? = 6
[[[[[[[.,[.,[.,.]]],.],.],.],.],.],.]
=> [3,2,1,4,5,6,7,8,9] => [3,2,1,4,5,6,7,8,9] => [1,1,7] => ? = 3
[[[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],.],.]
=> [8,7,6,5,4,3,2,1,9,10] => [8,7,6,5,4,3,2,1,9,10] => [1,1,1,1,1,1,1,3] => ? = 28
[[[[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.],.],.]
=> [7,6,5,4,3,2,1,8,9,10] => [7,6,5,4,3,2,1,8,9,10] => [1,1,1,1,1,1,4] => ? = 21
[[[[[.,[.,[.,[.,[.,[.,.]]]]]],.],.],.],.]
=> [6,5,4,3,2,1,7,8,9,10] => [6,5,4,3,2,1,7,8,9,10] => [1,1,1,1,1,5] => ? = 15
[[[[[[.,[.,[.,[.,[.,.]]]]],.],.],.],.],.]
=> [5,4,3,2,1,6,7,8,9,10] => [5,4,3,2,1,6,7,8,9,10] => [1,1,1,1,6] => ? = 10
[[[[[[[.,[.,[.,[.,.]]]],.],.],.],.],.],.]
=> [4,3,2,1,5,6,7,8,9,10] => [4,3,2,1,5,6,7,8,9,10] => [1,1,1,7] => ? = 6
[[[[[[[[.,[.,[.,.]]],.],.],.],.],.],.],.]
=> [3,2,1,4,5,6,7,8,9,10] => [3,2,1,4,5,6,7,8,9,10] => [1,1,8] => ? = 3
[[.,[[[[[[[.,.],.],.],.],.],.],.]],.]
=> [2,3,4,5,6,7,8,1,9] => [2,3,4,5,6,7,8,1,9] => [7,2] => ? = 7
[[[.,[[[[[[.,.],.],.],.],.],.]],.],.]
=> [2,3,4,5,6,7,1,8,9] => [2,3,4,5,6,7,1,8,9] => [6,3] => ? = 6
[[.,[[[[[[[[.,.],.],.],.],.],.],.],.]],.]
=> [2,3,4,5,6,7,8,9,1,10] => [2,3,4,5,6,7,8,9,1,10] => [8,2] => ? = 8
Description
The major index of the composition.
The descents of a composition [c1,c2,…,ck] are the partial sums c1,c1+c2,…,c1+⋯+ck−1, excluding the sum of all parts. The major index of a composition is the sum of its descents.
For details about the major index see [[Permutations/Descents-Major]].
Matching statistic: St001161
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St001161: Dyck paths ⟶ ℤResult quality: 82% ●values known / values provided: 82%●distinct values known / distinct values provided: 83%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St001161: Dyck paths ⟶ ℤResult quality: 82% ●values known / values provided: 82%●distinct values known / distinct values provided: 83%
Values
[.,.]
=> [1,0]
=> [1,0]
=> [1,0]
=> 0
[.,[.,.]]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[[.,.],.]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 0
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 6
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 5
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 4
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 4
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 10
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 9
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 8
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 8
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 7
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 7
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 7
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 6
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 5
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[.,[.,[[[.,[.,.]],[.,.]],[.,.]]]]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 16
[.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 10
[.,[[[[.,[[[.,.],.],.]],.],.],.]]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 10
[.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 7
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 18
[[.,.],[[[.,[.,.]],[.,.]],[.,.]]]
=> [1,0,1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 9
[[[.,.],.],[.,[.,[[[.,.],.],.]]]]
=> [1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 12
[[.,[.,[.,.]]],[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 9
[[[[.,.],.],.],[[[[.,.],.],.],.]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[[.,[.,[[.,.],.]]],[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 10
[[.,[[[.,.],.],.]],[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6
[[.,[[.,[.,.]],[.,.]]],[.,[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 9
[[[[.,[[.,.],.]],.],.],[[.,.],.]]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[[.,[[[[[.,.],.],.],.],.]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6
[[[[.,[.,.]],[.,.]],[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[[.,[.,[.,[.,[[[.,.],.],.]]]]],.]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 18
[[.,[[[.,[.,.]],[.,.]],[.,.]]],.]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 9
[[.,[[[[[[.,.],.],.],.],.],.]],.]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6
[[[[.,.],[[.,.],.]],[[.,.],.]],.]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[[[[[.,.],[.,.]],[.,.]],[.,.]],.]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[[[.,[[[[[.,.],.],.],.],.]],.],.]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 5
[[[[.,[[[[.,.],.],.],.]],.],.],.]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[[[[[[[[.,.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 36
[.,[[[[[[[[.,.],.],.],.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 8
[[[[[[[[[.,.],.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 0
[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 45
[.,[[[[[[[[[.,.],.],.],.],.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 9
[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
[[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 28
[[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 36
[[[[[.,[.,.]],[.,.]],[.,.]],[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
[[[[[[.,[.,.]],[.,.]],[.,.]],[.,.]],[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> ?
=> ? = 6
[[[[[[[[.,.],.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
[[[[[[[[[.,.],.],.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 1
[.,[[[[[[[.,[.,.]],.],.],.],.],.],.]]
=> ?
=> ?
=> ?
=> ? = 9
[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],[.,.]]
=> ?
=> ?
=> ?
=> ? = 1
[.,[[[[[[.,[[.,.],.]],.],.],.],.],.]]
=> ?
=> ?
=> ?
=> ? = 10
[.,[[[[[[[[.,[.,.]],.],.],.],.],.],.],.]]
=> ?
=> ?
=> ?
=> ? = 10
[.,[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],.]]
=> ?
=> ?
=> ?
=> ? = 10
[[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 28
[[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]],.]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 27
[[.,.],[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> ?
=> ?
=> ?
=> ? = 27
[[.,.],[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 36
[[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 45
[[.,[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 35
[[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]],.]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 26
[[.,.],[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ?
=> ?
=> ?
=> ? = 26
[[.,.],[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]]
=> ?
=> ?
=> ?
=> ? = 35
[[.,.],[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]]
=> ?
=> ?
=> ?
=> ? = 45
Description
The major index north count of a Dyck path.
The descent set des(D) of a Dyck path D=D1⋯D2n with Di∈{N,E} is given by all indices i such that Di=E and Di+1=N. This is, the positions of the valleys of D.
The '''major index''' of a Dyck path is then the sum of the positions of the valleys, ∑i∈des(D)i, see [[St000027]].
The '''major index north count''' is given by ∑i∈des(D)#{j≤i∣Dj=N}.
Matching statistic: St000246
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00016: Binary trees —left-right symmetry⟶ Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000246: Permutations ⟶ ℤResult quality: 81% ●values known / values provided: 81%●distinct values known / distinct values provided: 100%
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000246: Permutations ⟶ ℤResult quality: 81% ●values known / values provided: 81%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [.,.]
=> [1] => [1] => 0
[.,[.,.]]
=> [[.,.],.]
=> [1,2] => [1,2] => 1
[[.,.],.]
=> [.,[.,.]]
=> [2,1] => [2,1] => 0
[.,[.,[.,.]]]
=> [[[.,.],.],.]
=> [1,2,3] => [1,2,3] => 3
[.,[[.,.],.]]
=> [[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => 2
[[.,.],[.,.]]
=> [[.,.],[.,.]]
=> [3,1,2] => [2,3,1] => 1
[[.,[.,.]],.]
=> [.,[[.,.],.]]
=> [2,3,1] => [3,1,2] => 1
[[[.,.],.],.]
=> [.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => 0
[.,[.,[.,[.,.]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => 6
[.,[.,[[.,.],.]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => 5
[.,[[.,.],[.,.]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => [2,3,1,4] => 4
[.,[[.,[.,.]],.]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,1,2,4] => 4
[.,[[[.,.],.],.]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => 3
[[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => [2,3,4,1] => 3
[[.,.],[[.,.],.]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => [3,2,4,1] => 2
[[.,[.,.]],[.,.]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => [3,4,1,2] => 2
[[[.,.],.],[.,.]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => [3,4,2,1] => 1
[[.,[.,[.,.]]],.]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [4,1,2,3] => 3
[[.,[[.,.],.]],.]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,2,1,3] => 2
[[[.,.],[.,.]],.]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => [4,2,3,1] => 1
[[[.,[.,.]],.],.]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,3,1,2] => 1
[[[[.,.],.],.],.]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => 0
[.,[.,[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,2,3,4,5] => 10
[.,[.,[.,[[.,.],.]]]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [2,1,3,4,5] => 9
[.,[.,[[.,.],[.,.]]]]
=> [[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => [2,3,1,4,5] => 8
[.,[.,[[.,[.,.]],.]]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [3,1,2,4,5] => 8
[.,[.,[[[.,.],.],.]]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [3,2,1,4,5] => 7
[.,[[.,.],[.,[.,.]]]]
=> [[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => [2,3,4,1,5] => 7
[.,[[.,.],[[.,.],.]]]
=> [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => [3,2,4,1,5] => 6
[.,[[.,[.,.]],[.,.]]]
=> [[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => [3,4,1,2,5] => 6
[.,[[[.,.],.],[.,.]]]
=> [[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => [3,4,2,1,5] => 5
[.,[[.,[.,[.,.]]],.]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [4,1,2,3,5] => 7
[.,[[.,[[.,.],.]],.]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [4,2,1,3,5] => 6
[.,[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => [4,2,3,1,5] => 5
[.,[[[.,[.,.]],.],.]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [4,3,1,2,5] => 5
[.,[[[[.,.],.],.],.]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,3,2,1,5] => 4
[[.,.],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [2,3,4,5,1] => 6
[[.,.],[.,[[.,.],.]]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [3,2,4,5,1] => 5
[[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [3,4,2,5,1] => 4
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [4,2,3,5,1] => 4
[[.,.],[[[.,.],.],.]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [4,3,2,5,1] => 3
[[.,[.,.]],[.,[.,.]]]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [3,4,5,1,2] => 4
[[.,[.,.]],[[.,.],.]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [4,3,5,1,2] => 3
[[[.,.],.],[.,[.,.]]]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [3,4,5,2,1] => 3
[[[.,.],.],[[.,.],.]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [4,3,5,2,1] => 2
[[.,[.,[.,.]]],[.,.]]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [4,5,1,2,3] => 4
[[.,[[.,.],.]],[.,.]]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [4,5,2,1,3] => 3
[[[.,.],[.,.]],[.,.]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [4,5,2,3,1] => 2
[[[.,[.,.]],.],[.,.]]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [4,5,3,1,2] => 2
[[[[.,.],.],.],[.,.]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [4,5,3,2,1] => 1
[.,[[.,[[[[.,.],.],.],.]],.]]
=> [[.,[[.,[.,[.,[.,.]]]],.]],.]
=> [5,4,3,2,6,1,7] => [6,4,3,2,1,5,7] => ? = 10
[.,[[[.,[[.,[.,.]],.]],.],.]]
=> [[.,[.,[[.,[[.,.],.]],.]]],.]
=> [4,5,3,6,2,1,7] => [6,5,3,1,2,4,7] => ? = 10
[.,[[[.,[[[.,.],.],.]],.],.]]
=> [[.,[.,[[.,[.,[.,.]]],.]]],.]
=> [5,4,3,6,2,1,7] => [6,5,3,2,1,4,7] => ? = 9
[.,[[[[.,[.,[.,.]]],.],.],.]]
=> [[.,[.,[.,[[[.,.],.],.]]]],.]
=> [4,5,6,3,2,1,7] => [6,5,4,1,2,3,7] => ? = 9
[.,[[[[.,[[.,.],.]],.],.],.]]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> [5,4,6,3,2,1,7] => [6,5,4,2,1,3,7] => ? = 8
[.,[[[[[.,[.,.]],.],.],.],.]]
=> [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> [5,6,4,3,2,1,7] => [6,5,4,3,1,2,7] => ? = 7
[[.,[[[[.,.],.],.],.]],[.,.]]
=> [[.,.],[[.,[.,[.,[.,.]]]],.]]
=> [6,5,4,3,7,1,2] => [6,7,4,3,2,1,5] => ? = 5
[[[.,[[[.,.],.],.]],.],[.,.]]
=> [[.,.],[.,[[.,[.,[.,.]]],.]]]
=> [6,5,4,7,3,1,2] => [6,7,5,3,2,1,4] => ? = 4
[[[[[[.,.],.],.],.],.],[.,.]]
=> [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [7,6,5,4,3,1,2] => [6,7,5,4,3,2,1] => ? = 1
[[.,[[[[[.,.],.],.],.],.]],.]
=> [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [6,5,4,3,2,7,1] => [7,5,4,3,2,1,6] => ? = 5
[[[[[[.,.],.],.],.],[.,.]],.]
=> [.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [7,6,5,4,2,3,1] => [7,5,6,4,3,2,1] => ? = 1
[[[.,[[[[.,.],.],.],.]],.],.]
=> [.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => [7,6,4,3,2,1,5] => ? = 4
[[[[.,[[[.,.],.],.]],.],.],.]
=> [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => [7,6,5,3,2,1,4] => ? = 3
[[[[[.,[[.,.],.]],.],.],.],.]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => [7,6,5,4,2,1,3] => ? = 2
[[[[[[.,.],[.,.]],.],.],.],.]
=> [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [7,5,6,4,3,2,1] => [7,6,5,4,2,3,1] => ? = 1
[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [[[[[[.,[[.,.],.]],.],.],.],.],.]
=> [2,3,1,4,5,6,7,8] => [3,1,2,4,5,6,7,8] => ? = 26
[.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> [[[[.,[[.,[[.,.],.]],.]],.],.],.]
=> [3,4,2,5,1,6,7,8] => [5,3,1,2,4,6,7,8] => ? = 22
[.,[.,[[.,.],[[.,.],[.,[.,.]]]]]]
=> [[[[[[.,.],.],[.,.]],[.,.]],.],.]
=> [6,4,1,2,3,5,7,8] => [3,4,5,2,6,1,7,8] => ? = 20
[.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [[[[[[.,.],[.,.]],.],.],[.,.]],.]
=> [7,3,1,2,4,5,6,8] => [3,4,2,5,6,7,1,8] => ? = 20
[.,[[[.,.],.],[[[.,.],.],[.,.]]]]
=> [[[[.,.],[.,[.,.]]],[.,[.,.]]],.]
=> [7,6,4,3,1,2,5,8] => [5,6,4,3,7,2,1,8] => ? = 12
[.,[[[.,[.,.]],[.,[.,.]]],[.,.]]]
=> [[[.,.],[[[.,.],.],[[.,.],.]]],.]
=> [6,7,3,4,5,1,2,8] => [6,7,3,4,5,1,2,8] => ? = 12
[.,[[.,[.,[.,[[.,[.,.]],.]]]],.]]
=> [[.,[[[[.,[[.,.],.]],.],.],.]],.]
=> [3,4,2,5,6,7,1,8] => [7,3,1,2,4,5,6,8] => ? = 20
[.,[[.,[[.,[.,[.,[.,.]]]],.]],.]]
=> [[.,[[.,[[[[.,.],.],.],.]],.]],.]
=> [3,4,5,6,2,7,1,8] => [7,5,1,2,3,4,6,8] => ? = 18
[.,[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> [[.,[[.,[[.,[[.,.],.]],.]],.]],.]
=> [4,5,3,6,2,7,1,8] => [7,5,3,1,2,4,6,8] => ? = 16
[.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> [[.,[[.,[[.,.],[[.,.],.]]],.]],.]
=> [5,6,3,4,2,7,1,8] => [7,5,3,4,1,2,6,8] => ? = 14
[.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> [[.,[[.,[[.,.],.]],[[.,.],.]]],.]
=> [6,7,3,4,2,5,1,8] => [7,5,3,4,6,1,2,8] => ? = 12
[.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> [[.,[[.,.],[[.,[[.,.],.]],.]]],.]
=> [5,6,4,7,2,3,1,8] => [7,5,6,3,1,2,4,8] => ? = 12
[.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> [[.,[[.,.],[[.,.],[[.,.],.]]]],.]
=> [6,7,4,5,2,3,1,8] => [7,5,6,3,4,1,2,8] => ? = 10
[.,[[[[.,[[[.,.],.],.]],.],.],.]]
=> [[.,[.,[.,[[.,[.,[.,.]]],.]]]],.]
=> [6,5,4,7,3,2,1,8] => [7,6,5,3,2,1,4,8] => ? = 10
[.,[[[[[.,[.,[.,.]]],.],.],.],.]]
=> [[.,[.,[.,[.,[[[.,.],.],.]]]]],.]
=> [5,6,7,4,3,2,1,8] => [7,6,5,4,1,2,3,8] => ? = 10
[.,[[[[[.,[[.,.],.]],.],.],.],.]]
=> [[.,[.,[.,[.,[[.,[.,.]],.]]]]],.]
=> [6,5,7,4,3,2,1,8] => [7,6,5,4,2,1,3,8] => ? = 9
[.,[[[[[[.,[.,.]],.],.],.],.],.]]
=> [[.,[.,[.,[.,[.,[[.,.],.]]]]]],.]
=> [6,7,5,4,3,2,1,8] => [7,6,5,4,3,1,2,8] => ? = 8
[[.,.],[[.,[.,.]],[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],[[.,.],.]],[.,.]]
=> [8,5,6,1,2,3,4,7] => [4,5,6,7,2,3,8,1] => ? = 13
[[.,.],[[.,[.,[.,[.,.]]]],[.,.]]]
=> [[[.,.],[[[[.,.],.],.],.]],[.,.]]
=> [8,3,4,5,6,1,2,7] => [6,7,2,3,4,5,8,1] => ? = 13
[[.,.],[[[.,[.,.]],[.,.]],[.,.]]]
=> [[[.,.],[[.,.],[[.,.],.]]],[.,.]]
=> [8,5,6,3,4,1,2,7] => [6,7,4,5,2,3,8,1] => ? = 9
[[.,[.,.]],[[.,[[.,[.,.]],.]],.]]
=> [[.,[[.,[[.,.],.]],.]],[[.,.],.]]
=> [7,8,3,4,2,5,1,6] => [7,5,3,4,6,8,1,2] => ? = 10
[[.,[.,.]],[[[.,[.,.]],[.,.]],.]]
=> [[.,[[.,.],[[.,.],.]]],[[.,.],.]]
=> [7,8,4,5,2,3,1,6] => [7,5,6,3,4,8,1,2] => ? = 8
[[[.,.],.],[.,[.,[[[.,.],.],.]]]]
=> [[[[.,[.,[.,.]]],.],.],[.,[.,.]]]
=> [8,7,3,2,1,4,5,6] => [5,4,3,6,7,8,2,1] => ? = 12
[[.,[.,[.,.]]],[.,[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],.],[[[.,.],.],.]]
=> [6,7,8,1,2,3,4,5] => [4,5,6,7,8,1,2,3] => ? = 13
[[.,[[.,.],[.,.]]],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[[[.,.],[.,.]],.]]
=> [7,5,6,8,3,1,2,4] => [6,7,5,8,2,3,1,4] => ? = 8
[[.,[[.,[.,.]],.]],[[.,[.,.]],.]]
=> [[.,[[.,.],.]],[[.,[[.,.],.]],.]]
=> [6,7,5,8,2,3,1,4] => [7,5,6,8,3,1,2,4] => ? = 8
[[[.,[.,.]],[.,.]],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[[.,.],[[.,.],.]]]
=> [7,8,5,6,3,1,2,4] => [6,7,5,8,3,4,1,2] => ? = 6
[[[.,[.,.]],[.,.]],[[.,[.,.]],.]]
=> [[.,[[.,.],.]],[[.,.],[[.,.],.]]]
=> [7,8,5,6,2,3,1,4] => [7,5,6,8,3,4,1,2] => ? = 6
[[.,[[.,[.,.]],[.,.]]],[.,[.,.]]]
=> [[[.,.],.],[[[.,.],[[.,.],.]],.]]
=> [6,7,4,5,8,1,2,3] => [6,7,8,3,4,1,2,5] => ? = 9
[[.,[[.,[[.,[.,.]],.]],.]],[.,.]]
=> [[.,.],[[.,[[.,[[.,.],.]],.]],.]]
=> [5,6,4,7,3,8,1,2] => [7,8,5,3,1,2,4,6] => ? = 10
[[.,[[[.,[.,.]],[.,.]],.]],[.,.]]
=> [[.,.],[[.,[[.,.],[[.,.],.]]],.]]
=> [6,7,4,5,3,8,1,2] => [7,8,5,3,4,1,2,6] => ? = 8
[[.,[[[[[.,.],.],.],.],.]],[.,.]]
=> [[.,.],[[.,[.,[.,[.,[.,.]]]]],.]]
=> [7,6,5,4,3,8,1,2] => [7,8,5,4,3,2,1,6] => ? = 6
[[[.,[.,.]],[[.,.],[.,.]]],[.,.]]
=> [[.,.],[[[.,.],[.,.]],[[.,.],.]]]
=> [7,8,5,3,4,6,1,2] => [7,8,4,5,3,6,1,2] => ? = 6
[[[.,[.,.]],[[.,[.,.]],.]],[.,.]]
=> [[.,.],[[.,[[.,.],.]],[[.,.],.]]]
=> [7,8,4,5,3,6,1,2] => [7,8,5,3,4,6,1,2] => ? = 6
[[[.,[[.,.],[.,.]]],[.,.]],[.,.]]
=> [[.,.],[[.,.],[[[.,.],[.,.]],.]]]
=> [7,5,6,8,3,4,1,2] => [7,8,5,6,2,3,1,4] => ? = 6
Description
The number of non-inversions of a permutation.
For a permutation of {1,…,n}, this is given by \operatorname{noninv}(\pi) = \binom{n}{2}-\operatorname{inv}(\pi).
Matching statistic: St000947
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000947: Dyck paths ⟶ ℤResult quality: 81% ●values known / values provided: 81%●distinct values known / distinct values provided: 83%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000947: Dyck paths ⟶ ℤResult quality: 81% ●values known / values provided: 81%●distinct values known / distinct values provided: 83%
Values
[.,.]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 0
[.,[.,.]]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[[.,.],.]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 0
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 6
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 5
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 4
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 4
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 10
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 9
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 8
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 8
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 7
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 7
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 7
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 6
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 5
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[.,[.,[.,[.,.]]]],.]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 6
[.,[.,[[[.,[.,.]],[.,.]],[.,.]]]]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 16
[.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 10
[.,[[[[.,[[[.,.],.],.]],.],.],.]]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 10
[.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 7
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 18
[[.,.],[[[.,[.,.]],[.,.]],[.,.]]]
=> [1,0,1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 9
[[[.,.],.],[.,[.,[[[.,.],.],.]]]]
=> [1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 12
[[.,[.,[.,.]]],[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 9
[[[[.,.],.],.],[[[[.,.],.],.],.]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[[.,[.,[[.,.],.]]],[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 10
[[.,[[[.,.],.],.]],[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6
[[.,[[.,[.,.]],[.,.]]],[.,[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 9
[[[[.,[[.,.],.]],.],.],[[.,.],.]]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[[.,[[[[[.,.],.],.],.],.]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6
[[[[.,[.,.]],[.,.]],[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[[.,[.,[.,[.,[[[.,.],.],.]]]]],.]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 18
[[.,[[[.,[.,.]],[.,.]],[.,.]]],.]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 9
[[.,[[[[[[.,.],.],.],.],.],.]],.]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6
[[[[.,.],[[.,.],.]],[[.,.],.]],.]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[[[[[.,.],[.,.]],[.,.]],[.,.]],.]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[[[.,[[[[[.,.],.],.],.],.]],.],.]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 5
[[[[.,[[[[.,.],.],.],.]],.],.],.]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[[[[[[[[.,.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 36
[.,[[[[[[[[.,.],.],.],.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 8
[[[[[[[[[.,.],.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 0
[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 45
[.,[[[[[[[[[.,.],.],.],.],.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 9
[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
[[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 28
[[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 36
[[[[[.,[.,.]],[.,.]],[.,.]],[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
[[[[[[.,[.,.]],[.,.]],[.,.]],[.,.]],[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> ?
=> ? = 6
[[[[[[[[.,.],.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
[[[[[[[[[.,.],.],.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 1
[.,[[[[[[[.,[.,.]],.],.],.],.],.],.]]
=> ?
=> ?
=> ?
=> ? = 9
[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],[.,.]]
=> ?
=> ?
=> ?
=> ? = 1
[.,[[[[[[.,[[.,.],.]],.],.],.],.],.]]
=> ?
=> ?
=> ?
=> ? = 10
[.,[[[[[[[[.,[.,.]],.],.],.],.],.],.],.]]
=> ?
=> ?
=> ?
=> ? = 10
[.,[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],.]]
=> ?
=> ?
=> ?
=> ? = 10
[[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 28
[[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]],.]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 27
[[.,.],[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> ?
=> ?
=> ?
=> ? = 27
[[.,.],[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 36
[[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 45
[[.,[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 35
[[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]],.]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 26
[[.,.],[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ?
=> ?
=> ?
=> ? = 26
[[.,.],[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]]
=> ?
=> ?
=> ?
=> ? = 35
Description
The major index east count of a Dyck path.
The descent set \operatorname{des}(D) of a Dyck path D = D_1 \cdots D_{2n} with D_i \in \{N,E\} is given by all indices i such that D_i = E and D_{i+1} = N. This is, the positions of the valleys of D.
The '''major index''' of a Dyck path is then the sum of the positions of the valleys, \sum_{i \in \operatorname{des}(D)} i, see [[St000027]].
The '''major index east count''' is given by \sum_{i \in \operatorname{des}(D)} \#\{ j \leq i \mid D_j = E\}.
Matching statistic: St000161
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
St000161: Binary trees ⟶ ℤResult quality: 79% ●values known / values provided: 79%●distinct values known / distinct values provided: 90%
Values
[.,.]
=> 0
[.,[.,.]]
=> 1
[[.,.],.]
=> 0
[.,[.,[.,.]]]
=> 3
[.,[[.,.],.]]
=> 2
[[.,.],[.,.]]
=> 1
[[.,[.,.]],.]
=> 1
[[[.,.],.],.]
=> 0
[.,[.,[.,[.,.]]]]
=> 6
[.,[.,[[.,.],.]]]
=> 5
[.,[[.,.],[.,.]]]
=> 4
[.,[[.,[.,.]],.]]
=> 4
[.,[[[.,.],.],.]]
=> 3
[[.,.],[.,[.,.]]]
=> 3
[[.,.],[[.,.],.]]
=> 2
[[.,[.,.]],[.,.]]
=> 2
[[[.,.],.],[.,.]]
=> 1
[[.,[.,[.,.]]],.]
=> 3
[[.,[[.,.],.]],.]
=> 2
[[[.,.],[.,.]],.]
=> 1
[[[.,[.,.]],.],.]
=> 1
[[[[.,.],.],.],.]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> 10
[.,[.,[.,[[.,.],.]]]]
=> 9
[.,[.,[[.,.],[.,.]]]]
=> 8
[.,[.,[[.,[.,.]],.]]]
=> 8
[.,[.,[[[.,.],.],.]]]
=> 7
[.,[[.,.],[.,[.,.]]]]
=> 7
[.,[[.,.],[[.,.],.]]]
=> 6
[.,[[.,[.,.]],[.,.]]]
=> 6
[.,[[[.,.],.],[.,.]]]
=> 5
[.,[[.,[.,[.,.]]],.]]
=> 7
[.,[[.,[[.,.],.]],.]]
=> 6
[.,[[[.,.],[.,.]],.]]
=> 5
[.,[[[.,[.,.]],.],.]]
=> 5
[.,[[[[.,.],.],.],.]]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> 6
[[.,.],[.,[[.,.],.]]]
=> 5
[[.,.],[[.,.],[.,.]]]
=> 4
[[.,.],[[.,[.,.]],.]]
=> 4
[[.,.],[[[.,.],.],.]]
=> 3
[[.,[.,.]],[.,[.,.]]]
=> 4
[[.,[.,.]],[[.,.],.]]
=> 3
[[[.,.],.],[.,[.,.]]]
=> 3
[[[.,.],.],[[.,.],.]]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> 4
[[.,[[.,.],.]],[.,.]]
=> 3
[[[.,.],[.,.]],[.,.]]
=> 2
[[[.,[.,.]],.],[.,.]]
=> 2
[[[[.,.],.],.],[.,.]]
=> 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[[.,[[[[[.,.],.],.],.],.]],.]
=> ? = 5
[[[[[[.,.],.],.],.],[.,.]],.]
=> ? = 1
[[[.,[.,[.,[.,[.,.]]]]],.],.]
=> ? = 10
[[[.,[[[[.,.],.],.],.]],.],.]
=> ? = 4
[[[[.,[.,[.,[.,.]]]],.],.],.]
=> ? = 6
[[[[.,[[[.,.],.],.]],.],.],.]
=> ? = 3
[[[[[.,[.,[.,.]]],.],.],.],.]
=> ? = 3
[[[[[.,[[.,.],.]],.],.],.],.]
=> ? = 2
[[[[[[.,.],[.,.]],.],.],.],.]
=> ? = 1
[[[[[[.,[.,.]],.],.],.],.],.]
=> ? = 1
[[[[[[[.,.],.],.],.],.],.],.]
=> ? = 0
[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 28
[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 26
[.,[.,[.,[.,[[.,[.,.]],[.,.]]]]]]
=> ? = 24
[.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ? = 24
[.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> ? = 22
[.,[.,[[.,.],[[.,.],[.,[.,.]]]]]]
=> ? = 20
[.,[.,[[[.,[.,.]],[.,.]],[.,.]]]]
=> ? = 16
[.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> ? = 20
[.,[[[.,.],.],[[[.,.],.],[.,.]]]]
=> ? = 12
[.,[[[.,[.,.]],[.,[.,.]]],[.,.]]]
=> ? = 12
[.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> ? = 22
[.,[[.,[.,[.,[[.,[.,.]],.]]]],.]]
=> ? = 20
[.,[[.,[[.,[.,[.,[.,.]]]],.]],.]]
=> ? = 18
[[.,.],[[.,[.,.]],[.,[.,[.,.]]]]]
=> ? = 13
[[.,.],[[.,[.,[.,[.,.]]]],[.,.]]]
=> ? = 13
[[.,.],[[[.,[.,.]],[.,.]],[.,.]]]
=> ? = 9
[[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
=> ? = 16
[[[.,.],.],[.,[.,[[[.,.],.],.]]]]
=> ? = 12
[[.,[.,[.,.]]],[.,[.,[.,[.,.]]]]]
=> ? = 13
[[.,[.,[.,.]]],[[.,[.,.]],[.,.]]]
=> ? = 9
[[[.,[.,.]],[.,.]],[.,[.,[.,.]]]]
=> ? = 8
[[[.,[.,.]],[.,.]],[[.,.],[.,.]]]
=> ? = 6
[[.,[.,[.,[.,[.,.]]]]],[.,[.,.]]]
=> ? = 13
[[.,[[.,[.,.]],[.,.]]],[.,[.,.]]]
=> ? = 9
[[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]]
=> ? = 16
[[.,[[[[[.,.],.],.],.],.]],[.,.]]
=> ? = 6
[[[.,[.,.]],[.,[.,[.,.]]]],[.,.]]
=> ? = 8
[[[.,[.,[.,[.,.]]]],[.,.]],[.,.]]
=> ? = 8
[[[.,[[.,.],[.,.]]],[.,.]],[.,.]]
=> ? = 6
[[.,[[.,[.,.]],[.,[.,[.,.]]]]],.]
=> ? = 13
[[.,[[.,[.,[.,[.,.]]]],[.,.]]],.]
=> ? = 13
[[.,[[[[[[.,.],.],.],.],.],.]],.]
=> ? = 6
[[[[[.,.],[.,.]],[.,.]],[.,.]],.]
=> ? = 3
[[[[[[[.,.],.],.],.],.],[.,.]],.]
=> ? = 1
[[[.,[.,[.,[.,[.,[.,.]]]]]],.],.]
=> ? = 15
[[[.,[[[[[.,.],.],.],.],.]],.],.]
=> ? = 5
[[[[.,[.,[.,[.,[.,.]]]]],.],.],.]
=> ? = 10
[[[[.,[[[[.,.],.],.],.]],.],.],.]
=> ? = 4
Description
The sum of the sizes of the right subtrees of a binary tree.
This statistic corresponds to [[St000012]] under the Tamari Dyck path-binary tree bijection, and to [[St000018]] of the 312-avoiding permutation corresponding to the binary tree.
It is also the sum of all heights j of the coordinates (i,j) of the Dyck path corresponding to the binary tree.
Matching statistic: St000378
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000378: Integer partitions ⟶ ℤResult quality: 78% ●values known / values provided: 78%●distinct values known / distinct values provided: 83%
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000378: Integer partitions ⟶ ℤResult quality: 78% ●values known / values provided: 78%●distinct values known / distinct values provided: 83%
Values
[.,.]
=> [1,0]
=> [1,0]
=> []
=> 0
[.,[.,.]]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[[.,.],.]
=> [1,0,1,0]
=> [1,1,0,0]
=> []
=> 0
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 3
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 2
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1]
=> 1
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> 0
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 6
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 5
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 4
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 4
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 3
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 3
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 2
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 2
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 3
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 10
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 9
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 8
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 8
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 7
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 7
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> 6
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 6
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 5
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 7
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> 6
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 5
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> 5
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 6
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 5
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 4
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 4
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 3
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 4
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 3
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 3
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 4
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 3
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 2
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 2
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 1
[.,[[.,[[[[.,.],.],.],.]],.]]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [5,5,2,2]
=> ? = 10
[.,[[[.,[[.,[.,.]],.]],.],.]]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [5,4,4,1]
=> ? = 10
[.,[[[[.,[.,[.,.]]],.],.],.]]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [5,5,2,1]
=> ? = 9
[[.,.],[.,[.,[[.,[.,.]],.]]]]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [6,5,4,1,1]
=> ? = 13
[[.,.],[.,[[.,[.,.]],[.,.]]]]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [6,5,2,2,1,1]
=> ? = 11
[[.,.],[.,[[.,[.,[.,.]]],.]]]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [6,5,2,2,1]
=> ? = 12
[[.,.],[.,[[.,[[.,.],.]],.]]]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> [6,3,3,3,1]
=> ? = 11
[[.,.],[[.,[.,[.,[.,.]]]],.]]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [6,3,3,2,1]
=> ? = 11
[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,1]
=> ? = 26
[.,[.,[.,[.,[[.,[.,.]],[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,1,1]
=> ? = 24
[.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,2,1]
=> ? = 24
[.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> [1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,3,1]
=> ? = 22
[.,[.,[[.,.],[[.,.],[.,[.,.]]]]]]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,2,2,1]
=> ? = 20
[.,[.,[[[.,[.,.]],[.,.]],[.,.]]]]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,2,1,1]
=> ? = 16
[.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,3,1,1]
=> ? = 20
[.,[[[.,.],.],[[[.,.],.],[.,.]]]]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [7,4,4,4,1,1,1]
=> ? = 12
[.,[[[.,[.,.]],[.,[.,.]]],[.,.]]]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [7,5,3,2,2,1,1]
=> ? = 12
[.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,2,1]
=> ? = 22
[.,[[.,[.,[.,[[.,[.,.]],.]]]],.]]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [6,5,5,3,2,1]
=> ? = 20
[.,[[.,[[.,[.,[.,[.,.]]]],.]],.]]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,1]
=> ? = 18
[.,[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0]
=> [6,5,5,3,1]
=> ? = 16
[.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [6,5,5,2,1,1]
=> ? = 14
[.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [6,4,3,3,3,1]
=> ? = 12
[.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,0]
=> [7,4,3,3,1]
=> ? = 12
[.,[[[[.,[[[.,.],.],.]],.],.],.]]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,1,0,0,0]
=> [5,5,5,2]
=> ? = 10
[.,[[[[[.,[.,[.,.]]],.],.],.],.]]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,1,0,0,0]
=> [5,4,3,3,3]
=> ? = 10
[.,[[[[[[.,[.,.]],.],.],.],.],.]]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,1,0,0,0]
=> [5,5,5,1]
=> ? = 8
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3]
=> ? = 20
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,1,1,1]
=> ? = 19
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,1,1]
=> ? = 19
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [7,6,5,2,2,2]
=> ? = 18
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [7,6,5,2,2,2,1]
=> ? = 18
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [7,6,5,2,2,1]
=> ? = 18
[[.,.],[[.,.],[[.,.],[[.,.],.]]]]
=> [1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4]
=> ? = 12
[[.,.],[[.,[.,.]],[.,[.,[.,.]]]]]
=> [1,0,1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [7,4,4,3,3,2,1]
=> ? = 13
[[.,.],[[.,[.,[.,[.,.]]]],[.,.]]]
=> [1,0,1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [7,4,4,3,2,1,1]
=> ? = 13
[[.,.],[[[.,[.,.]],[.,.]],[.,.]]]
=> [1,0,1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [7,5,2,2,1,1,1]
=> ? = 9
[[.,[.,.]],[[.,[[.,[.,.]],.]],.]]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,4,3,3,1]
=> ? = 10
[[.,[.,.]],[[[.,[.,.]],[.,.]],.]]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0,1,0]
=> [7,5,2,1,1]
=> ? = 8
[[.,[.,[.,.]]],[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [7,4,3,2,2,1,1]
=> ? = 9
[[.,[.,[[.,.],.]]],[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0,1,0]
=> [7,6,3,2]
=> ? = 10
[[.,[[.,.],[.,.]]],[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [7,4,2,2,1,1,1]
=> ? = 8
[[.,[[.,.],[.,.]]],[[.,[.,.]],.]]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [7,4,2,2,1,1]
=> ? = 8
[[.,[[.,[.,.]],.]],[[.,.],[.,.]]]
=> [1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [7,4,2,1,1,1,1]
=> ? = 8
[[.,[[.,[.,.]],.]],[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [7,4,2,1,1,1]
=> ? = 8
[[.,[[[.,.],.],.]],[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,4,2,2,2,2]
=> ? = 6
[[[.,[.,.]],[.,.]],[.,[.,[.,.]]]]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,4,3,3,2,1]
=> ? = 8
[[[.,[.,.]],[.,.]],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [7,3,2,2,1,1,1]
=> ? = 6
[[[.,[.,.]],[.,.]],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [7,3,2,2,1,1]
=> ? = 6
[[.,[[.,[.,.]],[.,.]]],[.,[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [6,4,3,3,2,2,1]
=> ? = 9
Description
The diagonal inversion number of an integer partition.
The dinv of a partition is the number of cells c in the diagram of an integer partition \lambda for which \operatorname{arm}(c)-\operatorname{leg}(c) \in \{0,1\}.
See also exercise 3.19 of [2].
This statistic is equidistributed with the length of the partition, see [3].
Matching statistic: St000012
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00016: Binary trees —left-right symmetry⟶ Binary trees
Mp00012: Binary trees —to Dyck path: up step, left tree, down step, right tree⟶ Dyck paths
St000012: Dyck paths ⟶ ℤResult quality: 70% ●values known / values provided: 74%●distinct values known / distinct values provided: 70%
Mp00012: Binary trees —to Dyck path: up step, left tree, down step, right tree⟶ Dyck paths
St000012: Dyck paths ⟶ ℤResult quality: 70% ●values known / values provided: 74%●distinct values known / distinct values provided: 70%
Values
[.,.]
=> [.,.]
=> [1,0]
=> 0
[.,[.,.]]
=> [[.,.],.]
=> [1,1,0,0]
=> 1
[[.,.],.]
=> [.,[.,.]]
=> [1,0,1,0]
=> 0
[.,[.,[.,.]]]
=> [[[.,.],.],.]
=> [1,1,1,0,0,0]
=> 3
[.,[[.,.],.]]
=> [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> 2
[[.,.],[.,.]]
=> [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 1
[[.,[.,.]],.]
=> [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> 1
[[[.,.],.],.]
=> [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> 0
[.,[.,[.,[.,.]]]]
=> [[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> 6
[.,[.,[[.,.],.]]]
=> [[[.,[.,.]],.],.]
=> [1,1,1,0,1,0,0,0]
=> 5
[.,[[.,.],[.,.]]]
=> [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> 4
[.,[[.,[.,.]],.]]
=> [[.,[[.,.],.]],.]
=> [1,1,0,1,1,0,0,0]
=> 4
[.,[[[.,.],.],.]]
=> [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> 3
[[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> 3
[[.,.],[[.,.],.]]
=> [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 2
[[.,[.,.]],[.,.]]
=> [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 2
[[[.,.],.],[.,.]]
=> [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[[.,[.,[.,.]]],.]
=> [.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> 3
[[.,[[.,.],.]],.]
=> [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> 2
[[[.,.],[.,.]],.]
=> [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 1
[[[.,[.,.]],.],.]
=> [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> 1
[[[[.,.],.],.],.]
=> [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],.],.]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10
[.,[.,[.,[[.,.],.]]]]
=> [[[[.,[.,.]],.],.],.]
=> [1,1,1,1,0,1,0,0,0,0]
=> 9
[.,[.,[[.,.],[.,.]]]]
=> [[[[.,.],[.,.]],.],.]
=> [1,1,1,1,0,0,1,0,0,0]
=> 8
[.,[.,[[.,[.,.]],.]]]
=> [[[.,[[.,.],.]],.],.]
=> [1,1,1,0,1,1,0,0,0,0]
=> 8
[.,[.,[[[.,.],.],.]]]
=> [[[.,[.,[.,.]]],.],.]
=> [1,1,1,0,1,0,1,0,0,0]
=> 7
[.,[[.,.],[.,[.,.]]]]
=> [[[[.,.],.],[.,.]],.]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[.,[[.,.],[[.,.],.]]]
=> [[[.,[.,.]],[.,.]],.]
=> [1,1,1,0,1,0,0,1,0,0]
=> 6
[.,[[.,[.,.]],[.,.]]]
=> [[[.,.],[[.,.],.]],.]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[.,[[[.,.],.],[.,.]]]
=> [[[.,.],[.,[.,.]]],.]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[.,[[.,[.,[.,.]]],.]]
=> [[.,[[[.,.],.],.]],.]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7
[.,[[.,[[.,.],.]],.]]
=> [[.,[[.,[.,.]],.]],.]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
[.,[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5
[.,[[[.,[.,.]],.],.]]
=> [[.,[.,[[.,.],.]]],.]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
[.,[[[[.,.],.],.],.]]
=> [[.,[.,[.,[.,.]]]],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,0,0,0,1,0]
=> 6
[[.,.],[.,[[.,.],.]]]
=> [[[.,[.,.]],.],[.,.]]
=> [1,1,1,0,1,0,0,0,1,0]
=> 5
[[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> [1,1,1,0,0,1,0,0,1,0]
=> 4
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,1,0,0,0,1,0]
=> 4
[[.,.],[[[.,.],.],.]]
=> [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
[[.,[.,.]],[.,[.,.]]]
=> [[[.,.],.],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[[.,[.,.]],[[.,.],.]]
=> [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 3
[[[.,.],.],[.,[.,.]]]
=> [[[.,.],.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
[[[.,.],.],[[.,.],.]]
=> [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [[.,.],[[[.,.],.],.]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[[.,[[.,.],.]],[.,.]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3
[[[.,.],[.,.]],[.,.]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[[[.,[.,.]],.],[.,.]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[[[[.,.],.],.],[.,.]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [[[[[[[[.,.],.],.],.],.],.],.],.]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 28
[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [[[[[[.,[[.,.],.]],.],.],.],.],.]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? = 26
[.,[.,[.,[.,[[.,[.,.]],[.,.]]]]]]
=> [[[[[[.,.],[[.,.],.]],.],.],.],.]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 24
[.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> [[[[.,[[[[.,.],.],.],.]],.],.],.]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 24
[.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> [[[[.,[[.,[[.,.],.]],.]],.],.],.]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 22
[.,[.,[[.,.],[[.,.],[.,[.,.]]]]]]
=> [[[[[[.,.],.],[.,.]],[.,.]],.],.]
=> [1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0]
=> ? = 20
[.,[.,[[[.,[.,.]],[.,.]],[.,.]]]]
=> [[[[.,.],[[.,.],[[.,.],.]]],.],.]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> ? = 16
[.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [[[[[[.,.],[.,.]],.],.],[.,.]],.]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0]
=> ? = 20
[.,[[[.,.],.],[[[.,.],.],[.,.]]]]
=> [[[[.,.],[.,[.,.]]],[.,[.,.]]],.]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0]
=> ? = 12
[.,[[[.,[.,.]],[.,[.,.]]],[.,.]]]
=> [[[.,.],[[[.,.],.],[[.,.],.]]],.]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 12
[.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> [[.,[[[[[[.,.],.],.],.],.],.]],.]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 22
[.,[[.,[.,[.,[[.,[.,.]],.]]]],.]]
=> [[.,[[[[.,[[.,.],.]],.],.],.]],.]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 20
[.,[[.,[[.,[.,[.,[.,.]]]],.]],.]]
=> [[.,[[.,[[[[.,.],.],.],.]],.]],.]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 18
[.,[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> [[.,[[.,[[.,[[.,.],.]],.]],.]],.]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 16
[.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> [[.,[[.,[[.,.],[[.,.],.]]],.]],.]
=> [1,1,0,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> ? = 14
[.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> [[.,[[.,[[.,.],.]],[[.,.],.]]],.]
=> [1,1,0,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> ? = 12
[.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> [[.,[[.,.],[[.,[[.,.],.]],.]]],.]
=> [1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> ? = 12
[.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> [[.,[[.,.],[[.,.],[[.,.],.]]]],.]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 10
[.,[[[[.,[[[.,.],.],.]],.],.],.]]
=> [[.,[.,[.,[[.,[.,[.,.]]],.]]]],.]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 10
[.,[[[[[.,[.,[.,.]]],.],.],.],.]]
=> [[.,[.,[.,[.,[[[.,.],.],.]]]]],.]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 10
[.,[[[[[.,[[.,.],.]],.],.],.],.]]
=> [[.,[.,[.,[.,[[.,[.,.]],.]]]]],.]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 9
[.,[[[[[[.,[.,.]],.],.],.],.],.]]
=> [[.,[.,[.,[.,[.,[[.,.],.]]]]]],.]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 8
[.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 7
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 21
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> [[[[[[.,[.,.]],.],.],.],.],[.,.]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? = 20
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> [[[[[[.,.],[.,.]],.],.],.],[.,.]]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> ? = 19
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> [[[[[.,[[.,.],.]],.],.],.],[.,.]]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> ? = 19
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [[[[[.,[.,[.,.]]],.],.],.],[.,.]]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> ? = 18
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> [[[[[[.,.],.],[.,.]],.],.],[.,.]]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> ? = 18
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> [[[[.,[[[.,.],.],.]],.],.],[.,.]]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 18
[[.,.],[[.,.],[[.,.],[[.,.],.]]]]
=> [[[[.,[.,.]],[.,.]],[.,.]],[.,.]]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0]
=> ? = 12
[[.,.],[[.,[.,.]],[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],[[.,.],.]],[.,.]]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0,1,0]
=> ? = 13
[[.,.],[[.,[.,[.,[.,.]]]],[.,.]]]
=> [[[.,.],[[[[.,.],.],.],.]],[.,.]]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 13
[[.,.],[[[.,[.,.]],[.,.]],[.,.]]]
=> [[[.,.],[[.,.],[[.,.],.]]],[.,.]]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 9
[[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
=> [[[[[[.,.],.],.],.],.],[[.,.],.]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 16
[[.,[.,.]],[[.,[[.,[.,.]],.]],.]]
=> [[.,[[.,[[.,.],.]],.]],[[.,.],.]]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> ? = 10
[[.,[.,.]],[[[.,[.,.]],[.,.]],.]]
=> [[.,[[.,.],[[.,.],.]]],[[.,.],.]]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> ? = 8
[[[.,.],.],[.,[.,[[[.,.],.],.]]]]
=> [[[[.,[.,[.,.]]],.],.],[.,[.,.]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> ? = 12
[[.,[.,[.,.]]],[.,[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],.],[[[.,.],.],.]]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 13
[[.,[.,[.,.]]],[[.,[.,.]],[.,.]]]
=> [[[.,.],[[.,.],.]],[[[.,.],.],.]]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 9
[[[[.,.],.],.],[[[[.,.],.],.],.]]
=> [[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4
[[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[[[[.,.],.],.],.]]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 12
[[.,[.,[[.,.],.]]],[.,[[.,.],.]]]
=> [[[.,[.,.]],.],[[[.,[.,.]],.],.]]
=> [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> ? = 10
[[.,[[.,.],[.,.]]],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[[[.,.],[.,.]],.]]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 8
[[.,[[.,.],[.,.]]],[[.,[.,.]],.]]
=> [[.,[[.,.],.]],[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> ? = 8
[[.,[[.,[.,.]],.]],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[[.,[[.,.],.]],.]]
=> [1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 8
[[.,[[.,[.,.]],.]],[[.,[.,.]],.]]
=> [[.,[[.,.],.]],[[.,[[.,.],.]],.]]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> ? = 8
[[.,[[[.,.],.],.]],[[[.,.],.],.]]
=> [[.,[.,[.,.]]],[[.,[.,[.,.]]],.]]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 6
[[[.,[.,.]],[.,.]],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[[.,.],[[.,.],.]]]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 8
[[[.,[.,.]],[.,.]],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[[.,.],[[.,.],.]]]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 6
Description
The area of a Dyck path.
This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic.
1. Dyck paths are bijection with '''area sequences''' (a_1,\ldots,a_n) such that a_1 = 0, a_{k+1} \leq a_k + 1.
2. The generating function \mathbf{D}_n(q) = \sum_{D \in \mathfrak{D}_n} q^{\operatorname{area}(D)} satisfy the recurrence \mathbf{D}_{n+1}(q) = \sum q^k \mathbf{D}_k(q) \mathbf{D}_{n-k}(q).
3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of q,t-Catalan numbers.
The following 30 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000041The number of nestings of a perfect matching. St000067The inversion number of the alternating sign matrix. St000081The number of edges of a graph. St000076The rank of the alternating sign matrix in the alternating sign matrix poset. St000057The Shynar inversion number of a standard tableau. St001397Number of pairs of incomparable elements in a finite poset. St000332The positive inversions of an alternating sign matrix. St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St000795The mad of a permutation. St001428The number of B-inversions of a signed permutation. St000833The comajor index of a permutation. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St000004The major index of a permutation. St000005The bounce statistic of a Dyck path. St000006The dinv of a Dyck path. St000042The number of crossings of a perfect matching. St000233The number of nestings of a set partition. St000305The inverse major index of a permutation. St000496The rcs statistic of a set partition. St001311The cyclomatic number of a graph. St001718The number of non-empty open intervals in a poset. St000123The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. St000450The number of edges minus the number of vertices plus 2 of a graph. St001772The number of occurrences of the signed pattern 12 in a signed permutation. St001862The number of crossings of a signed permutation. St000359The number of occurrences of the pattern 23-1. St000136The dinv of a parking function. St000194The number of primary dinversion pairs of a labelled dyck path corresponding to a parking function. St001433The flag major index of a signed permutation. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!