searching the database
Your data matches 140 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000662
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00025: Dyck paths āto 132-avoiding permutationā¶ Permutations
St000662: Permutations ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
St000662: Permutations ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => 2
[1,0,1,1,0,0]
=> [2,3,1] => 1
[1,1,0,0,1,0]
=> [3,1,2] => 1
[1,1,0,1,0,0]
=> [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 3
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 1
Description
The staircase size of the code of a permutation.
The code $c(\pi)$ of a permutation $\pi$ of length $n$ is given by the sequence $(c_1,\ldots,c_{n})$ with $c_i = |\{j > i : \pi(j) < \pi(i)\}|$. This is a bijection between permutations and all sequences $(c_1,\ldots,c_n)$ with $0 \leq c_i \leq n-i$.
The staircase size of the code is the maximal $k$ such that there exists a subsequence $(c_{i_k},\ldots,c_{i_1})$ of $c(\pi)$ with $c_{i_j} \geq j$.
This statistic is mapped through [[Mp00062]] to the number of descents, showing that together with the number of inversions [[St000018]] it is Euler-Mahonian.
Matching statistic: St000783
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00027: Dyck paths āto partitionā¶ Integer partitions
St000783: Integer partitions ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
St000783: Integer partitions ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[1,0]
=> []
=> 0
[1,0,1,0]
=> [1]
=> 1
[1,1,0,0]
=> []
=> 0
[1,0,1,0,1,0]
=> [2,1]
=> 2
[1,0,1,1,0,0]
=> [1,1]
=> 1
[1,1,0,0,1,0]
=> [2]
=> 1
[1,1,0,1,0,0]
=> [1]
=> 1
[1,1,1,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> 2
[1,1,0,0,1,1,0,0]
=> [2,2]
=> 2
[1,1,0,1,0,0,1,0]
=> [3,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [2,1]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [3]
=> 1
[1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,1,1,0,1,0,0,0]
=> [1]
=> 1
[1,1,1,1,0,0,0,0]
=> []
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 1
Description
The side length of the largest staircase partition fitting into a partition.
For an integer partition $(\lambda_1\geq \lambda_2\geq\dots)$ this is the largest integer $k$ such that $\lambda_i > k-i$ for $i\in\{1,\dots,k\}$.
In other words, this is the length of a longest (strict) north-east chain of cells in the Ferrers diagram of the partition, using the English convention. Equivalently, this is the maximal number of non-attacking rooks that can be placed on the Ferrers diagram.
This is also the maximal number of occurrences of a colour in a proper colouring of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic records the largest part occurring in any of these partitions.
Matching statistic: St000021
(load all 16 compositions to match this statistic)
(load all 16 compositions to match this statistic)
Mp00025: Dyck paths āto 132-avoiding permutationā¶ Permutations
Mp00062: Permutations āLehmer-code to major-code bijectionā¶ Permutations
St000021: Permutations ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00062: Permutations āLehmer-code to major-code bijectionā¶ Permutations
St000021: Permutations ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => 2
[1,0,1,1,0,0]
=> [2,3,1] => [1,3,2] => 1
[1,1,0,0,1,0]
=> [3,1,2] => [2,3,1] => 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => 3
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,4,3,2] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [2,4,3,1] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [2,1,4,3] => 2
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,2,4,3] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [3,4,2,1] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [3,1,4,2] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [3,2,4,1] => 2
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => 2
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,3,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,3,1,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,5,4,3,2] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [2,5,4,3,1] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [2,1,5,4,3] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,2,5,4,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [3,5,4,2,1] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [3,1,5,4,2] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [3,2,5,4,1] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [3,2,1,5,4] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,3,2,5,4] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,5,4,1] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,3,1,5,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [2,1,3,5,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,2,3,5,4] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [4,5,3,2,1] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [4,1,5,3,2] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [4,2,5,3,1] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [4,2,1,5,3] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,4,2,5,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [4,3,5,2,1] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [4,3,1,5,2] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [4,3,2,5,1] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,4,3,2,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [2,4,3,5,1] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [2,4,3,1,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [2,1,4,3,5] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,2,4,3,5] => 1
Description
The number of descents of a permutation.
This can be described as an occurrence of the vincular mesh pattern ([2,1], {(1,0),(1,1),(1,2)}), i.e., the middle column is shaded, see [3].
Matching statistic: St000024
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00030: Dyck paths āzeta mapā¶ Dyck paths
Mp00099: Dyck paths ābounce pathā¶ Dyck paths
St000024: Dyck paths ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00099: Dyck paths ābounce pathā¶ Dyck paths
St000024: Dyck paths ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
Description
The number of double up and double down steps of a Dyck path.
In other words, this is the number of double rises (and, equivalently, the number of double falls) of a Dyck path.
Matching statistic: St000245
(load all 22 compositions to match this statistic)
(load all 22 compositions to match this statistic)
Mp00031: Dyck paths āto 312-avoiding permutationā¶ Permutations
Mp00062: Permutations āLehmer-code to major-code bijectionā¶ Permutations
St000245: Permutations ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00062: Permutations āLehmer-code to major-code bijectionā¶ Permutations
St000245: Permutations ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [1,2] => 1
[1,1,0,0]
=> [2,1] => [2,1] => 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 2
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 3
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,1,3] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,4,2,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,3,2,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,4,3] => 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,1,3,2] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,1,4,3] => 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,4,3,2] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,1,2,4] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,5,1,3,4] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [2,4,1,3,5] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,3,5,1,4] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [5,2,4,1,3] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [3,2,5,1,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [2,5,4,1,3] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,5,2,3,4] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,4,2,3,5] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,3,5,2,4] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,1,4,2,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,3,2,4,5] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,5,3,4] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,4,3,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,5,4] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,1,2,4,3] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,1,3,2,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,1,2,5,4] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [2,5,1,4,3] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,1,3,2] => 1
Description
The number of ascents of a permutation.
Matching statistic: St000672
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00031: Dyck paths āto 312-avoiding permutationā¶ Permutations
Mp00175: Permutations āinverse Foata bijectionā¶ Permutations
St000672: Permutations ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00175: Permutations āinverse Foata bijectionā¶ Permutations
St000672: Permutations ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [1,2] => 1
[1,1,0,0]
=> [2,1] => [2,1] => 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 2
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 3
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,4,1,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,4,1,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,3,4,1] => 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,2,3,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,5,1,2,3] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [3,5,1,2,4] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,4,1,2,5] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [3,4,5,1,2] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [5,3,4,1,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [4,3,5,1,2] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [4,5,3,1,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,5,1,3,4] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,4,1,3,5] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,4,5,1,3] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,2,4,1,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4,5] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,3,5,1,4] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,3,4,1] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,2,3,1,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [4,2,3,5,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [4,5,2,3,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,2,3,1] => 1
Description
The number of minimal elements in Bruhat order not less than the permutation.
The minimal elements in question are biGrassmannian, that is
$$1\dots r\ \ a+1\dots b\ \ r+1\dots a\ \ b+1\dots$$
for some $(r,a,b)$.
This is also the size of Fulton's essential set of the reverse permutation, according to [ex.4.7, 2].
Matching statistic: St000018
Mp00030: Dyck paths āzeta mapā¶ Dyck paths
Mp00099: Dyck paths ābounce pathā¶ Dyck paths
Mp00119: Dyck paths āto 321-avoiding permutation (Krattenthaler)ā¶ Permutations
St000018: Permutations ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00099: Dyck paths ābounce pathā¶ Dyck paths
Mp00119: Dyck paths āto 321-avoiding permutation (Krattenthaler)ā¶ Permutations
St000018: Permutations ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 3
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
Description
The number of inversions of a permutation.
This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Matching statistic: St000157
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00025: Dyck paths āto 132-avoiding permutationā¶ Permutations
Mp00175: Permutations āinverse Foata bijectionā¶ Permutations
Mp00070: Permutations āRobinson-Schensted recording tableauā¶ Standard tableaux
St000157: Standard tableaux ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00175: Permutations āinverse Foata bijectionā¶ Permutations
Mp00070: Permutations āRobinson-Schensted recording tableauā¶ Standard tableaux
St000157: Standard tableaux ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [[1]]
=> 0
[1,0,1,0]
=> [2,1] => [2,1] => [[1],[2]]
=> 1
[1,1,0,0]
=> [1,2] => [1,2] => [[1,2]]
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => [[1],[2],[3]]
=> 2
[1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => [[1,2],[3]]
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => [[1,2],[3]]
=> 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => [[1,3],[2]]
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [[1,2,3]]
=> 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => [[1],[2],[3],[4]]
=> 3
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => [[1,2],[3],[4]]
=> 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [2,4,3,1] => [[1,2],[3],[4]]
=> 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [[1,3],[2],[4]]
=> 2
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => [[1,2,3],[4]]
=> 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,4,3,2] => [[1,2],[3],[4]]
=> 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [3,1,4,2] => [[1,3],[2,4]]
=> 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [2,1,4,3] => [[1,3],[2,4]]
=> 2
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => [[1,4],[2],[3]]
=> 2
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => [[1,2,4],[3]]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => [[1,2,3],[4]]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,3,2,4] => [[1,2,4],[3]]
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [[1,3,4],[2]]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => [[1],[2],[3],[4],[5]]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => [[1,2],[3],[4],[5]]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [3,5,4,2,1] => [[1,2],[3],[4],[5]]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => [[1,3],[2],[4],[5]]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => [[1,2,3],[4],[5]]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [2,5,4,3,1] => [[1,2],[3],[4],[5]]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [4,2,5,3,1] => [[1,3],[2,4],[5]]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [3,2,5,4,1] => [[1,3],[2,4],[5]]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => [[1,4],[2],[3],[5]]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => [[1,2,4],[3],[5]]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,5,4,1] => [[1,2,3],[4],[5]]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,4,3,5,1] => [[1,2,4],[3],[5]]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => [[1,3,4],[2],[5]]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => [[1,2,3,4],[5]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,5,4,3,2] => [[1,2],[3],[4],[5]]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [4,1,5,3,2] => [[1,3],[2,4],[5]]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [3,1,5,4,2] => [[1,3],[2,4],[5]]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [4,3,1,5,2] => [[1,4],[2,5],[3]]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,4,1,5,2] => [[1,2,4],[3,5]]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [2,1,5,4,3] => [[1,3],[2,4],[5]]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [4,2,1,5,3] => [[1,4],[2,5],[3]]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [3,2,1,5,4] => [[1,4],[2,5],[3]]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => [[1,2,5],[3],[4]]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [2,3,1,5,4] => [[1,2,4],[3,5]]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [2,4,3,1,5] => [[1,2,5],[3],[4]]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => [[1,3,5],[2],[4]]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => [[1,2,3,5],[4]]
=> 1
Description
The number of descents of a standard tableau.
Entry $i$ of a standard Young tableau is a descent if $i+1$ appears in a row below the row of $i$.
Matching statistic: St000214
Mp00030: Dyck paths āzeta mapā¶ Dyck paths
Mp00099: Dyck paths ābounce pathā¶ Dyck paths
Mp00023: Dyck paths āto non-crossing permutationā¶ Permutations
St000214: Permutations ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00099: Dyck paths ābounce pathā¶ Dyck paths
Mp00023: Dyck paths āto non-crossing permutationā¶ Permutations
St000214: Permutations ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
Description
The number of adjacencies of a permutation.
An adjacency of a permutation $\pi$ is an index $i$ such that $\pi(i)-1 = \pi(i+1)$. Adjacencies are also known as ''small descents''.
This can be also described as an occurrence of the bivincular pattern ([2,1], {((0,1),(1,0),(1,1),(1,2),(2,1)}), i.e., the middle row and the middle column are shaded, see [3].
Matching statistic: St000272
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00026: Dyck paths āto ordered treeā¶ Ordered trees
Mp00047: Ordered trees āto posetā¶ Posets
Mp00198: Posets āincomparability graphā¶ Graphs
St000272: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00047: Ordered trees āto posetā¶ Posets
Mp00198: Posets āincomparability graphā¶ Graphs
St000272: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[1,0]
=> [[]]
=> ([(0,1)],2)
=> ([],2)
=> 0
[1,0,1,0]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[1,1,0,0]
=> [[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[1,0,1,0,1,0]
=> [[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,0]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,0]
=> [[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[1,1,0,1,0,0]
=> [[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1
[1,1,1,0,0,0]
=> [[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,0]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0]
=> [[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,0]
=> [[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,0,1,0]
=> [[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,0]
=> [[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,0,0,1,0]
=> [[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,0]
=> [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,0]
=> [[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 1
[1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
[1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 1
[1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1
[1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [[[],[],[[]]]]
=> ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [[[],[[]],[]]]
=> ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [[[],[[],[]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [[[],[[[]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 1
Description
The treewidth of a graph.
A graph has treewidth zero if and only if it has no edges. A connected graph has treewidth at most one if and only if it is a tree. A connected graph has treewidth at most two if and only if it is a series-parallel graph.
The following 130 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000362The size of a minimal vertex cover of a graph. St000374The number of exclusive right-to-left minima of a permutation. St000377The dinv defect of an integer partition. St000394The sum of the heights of the peaks of a Dyck path minus the number of peaks. St000441The number of successions of a permutation. St000536The pathwidth of a graph. St000703The number of deficiencies of a permutation. St001176The size of a partition minus its first part. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001580The acyclic chromatic number of a graph. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001298The number of repeated entries in the Lehmer code of a permutation. St000316The number of non-left-to-right-maxima of a permutation. St000336The leg major index of a standard tableau. St001489The maximum of the number of descents and the number of inverse descents. St000325The width of the tree associated to a permutation. St000443The number of long tunnels of a Dyck path. St000470The number of runs in a permutation. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001963The tree-depth of a graph. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St000019The cardinality of the support of a permutation. St000029The depth of a permutation. St000030The sum of the descent differences of a permutations. St000053The number of valleys of the Dyck path. St000067The inversion number of the alternating sign matrix. St000120The number of left tunnels of a Dyck path. St000155The number of exceedances (also excedences) of a permutation. St000168The number of internal nodes of an ordered tree. St000211The rank of the set partition. St000228The size of a partition. St000234The number of global ascents of a permutation. St000238The number of indices that are not small weak excedances. St000306The bounce count of a Dyck path. St000331The number of upper interactions of a Dyck path. St000332The positive inversions of an alternating sign matrix. St000632The jump number of the poset. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001175The size of a partition minus the hook length of the base cell. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001274The number of indecomposable injective modules with projective dimension equal to two. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St001579The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation. St000015The number of peaks of a Dyck path. St000056The decomposition (or block) number of a permutation. St000213The number of weak exceedances (also weak excedences) of a permutation. St000240The number of indices that are not small excedances. St000738The first entry in the last row of a standard tableau. St000814The sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to Schur symmetric functions. St000991The number of right-to-left minima of a permutation. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{nā1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows:
St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001461The number of topologically connected components of the chord diagram of a permutation. St001733The number of weak left to right maxima of a Dyck path. St001809The index of the step at the first peak of maximal height in a Dyck path. St000439The position of the first down step of a Dyck path. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St000829The Ulam distance of a permutation to the identity permutation. St001480The number of simple summands of the module J^2/J^3. St000083The number of left oriented leafs of a binary tree except the first one. St000216The absolute length of a permutation. St000288The number of ones in a binary word. St000354The number of recoils of a permutation. St000442The maximal area to the right of an up step of a Dyck path. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000502The number of successions of a set partitions. St000653The last descent of a permutation. St000728The dimension of a set partition. St000795The mad of a permutation. St000809The reduced reflection length of the permutation. St000831The number of indices that are either descents or recoils. St000874The position of the last double rise in a Dyck path. St000932The number of occurrences of the pattern UDU in a Dyck path. St000957The number of Bruhat lower covers of a permutation. St001061The number of indices that are both descents and recoils of a permutation. St001076The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12). St000444The length of the maximal rise of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000702The number of weak deficiencies of a permutation. St001670The connected partition number of a graph. St000822The Hadwiger number of the graph. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001812The biclique partition number of a graph. St001432The order dimension of the partition. St001331The size of the minimal feedback vertex set. St001427The number of descents of a signed permutation. St000527The width of the poset. St000862The number of parts of the shifted shape of a permutation. St000758The length of the longest staircase fitting into an integer composition. St000731The number of double exceedences of a permutation. St000619The number of cyclic descents of a permutation. St001741The largest integer such that all patterns of this size are contained in the permutation. St000039The number of crossings of a permutation. St000185The weighted size of a partition. St000314The number of left-to-right-maxima of a permutation. St001214The aft of an integer partition. St000145The Dyson rank of a partition. St001668The number of points of the poset minus the width of the poset. St001330The hat guessing number of a graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001863The number of weak excedances of a signed permutation. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St000144The pyramid weight of the Dyck path. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001935The number of ascents in a parking function. St001946The number of descents in a parking function. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St000493The los statistic of a set partition. St000497The lcb statistic of a set partition. St001626The number of maximal proper sublattices of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database ā it's very simple and we need your support!