searching the database
Your data matches 40 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000041
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St000041: Perfect matchings ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St000041: Perfect matchings ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1,0]
=> [(1,2)]
=> 0
[.,[.,.]]
=> [1,1,0,0]
=> [(1,4),(2,3)]
=> 1
[[.,.],.]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> 0
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 3
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> 2
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 0
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 6
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> 5
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> 4
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> 4
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> 3
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> 3
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 2
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> 2
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> 3
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> 2
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> 1
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> 10
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> 9
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> 8
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> 8
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> 7
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> 7
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> 6
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> 6
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> 5
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> 7
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> 6
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> 5
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> 5
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> 6
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> 5
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> 4
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> 4
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> 3
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> 4
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> 3
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> 3
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> 4
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> 3
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> 2
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> 2
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> 1
Description
The number of nestings of a perfect matching.
This is the number of pairs of edges ((a,b),(c,d)) such that a≤c≤d≤b. i.e., the edge (c,d) is nested inside (a,b).
Matching statistic: St000391
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000391: Binary words ⟶ ℤResult quality: 96% ●values known / values provided: 100%●distinct values known / distinct values provided: 96%
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000391: Binary words ⟶ ℤResult quality: 96% ●values known / values provided: 100%●distinct values known / distinct values provided: 96%
Values
[.,.]
=> [1] => [1] => => ? = 0
[.,[.,.]]
=> [2,1] => [2,1] => 1 => 1
[[.,.],.]
=> [1,2] => [1,2] => 0 => 0
[.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => 11 => 3
[.,[[.,.],.]]
=> [2,3,1] => [2,3,1] => 01 => 2
[[.,.],[.,.]]
=> [1,3,2] => [3,1,2] => 10 => 1
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => 10 => 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => 00 => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => 111 => 6
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [3,4,2,1] => 011 => 5
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [4,2,3,1] => 101 => 4
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [3,2,4,1] => 101 => 4
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [2,3,4,1] => 001 => 3
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [4,3,1,2] => 110 => 3
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [3,4,1,2] => 010 => 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [2,4,1,3] => 010 => 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [4,1,2,3] => 100 => 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => 110 => 3
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [2,3,1,4] => 010 => 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [3,1,2,4] => 100 => 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => 100 => 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => 000 => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => 1111 => 10
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [4,5,3,2,1] => 0111 => 9
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [5,3,4,2,1] => 1011 => 8
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [4,3,5,2,1] => 1011 => 8
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [3,4,5,2,1] => 0011 => 7
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [5,4,2,3,1] => 1101 => 7
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [4,5,2,3,1] => 0101 => 6
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [3,5,2,4,1] => 0101 => 6
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [5,2,3,4,1] => 1001 => 5
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [4,3,2,5,1] => 1101 => 7
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [3,4,2,5,1] => 0101 => 6
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [4,2,3,5,1] => 1001 => 5
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [3,2,4,5,1] => 1001 => 5
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [2,3,4,5,1] => 0001 => 4
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [5,4,3,1,2] => 1110 => 6
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [4,5,3,1,2] => 0110 => 5
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [5,3,4,1,2] => 1010 => 4
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [4,3,5,1,2] => 1010 => 4
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [3,4,5,1,2] => 0010 => 3
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [5,2,4,1,3] => 1010 => 4
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [2,4,5,1,3] => 0010 => 3
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [5,4,1,2,3] => 1100 => 3
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [4,5,1,2,3] => 0100 => 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [3,2,5,1,4] => 1010 => 4
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [2,3,5,1,4] => 0010 => 3
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [3,5,1,2,4] => 0100 => 2
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [2,5,1,3,4] => 0100 => 2
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [5,1,2,3,4] => 1000 => 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,3,2,1,5] => 1110 => 6
[[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]],.]
=> [10,9,8,7,6,5,4,3,2,1,11] => [10,9,8,7,6,5,4,3,2,1,11] => 1111111110 => ? = 45
Description
The sum of the positions of the ones in a binary word.
Matching statistic: St000330
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 93% ●values known / values provided: 99%●distinct values known / distinct values provided: 93%
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 93% ●values known / values provided: 99%●distinct values known / distinct values provided: 93%
Values
[.,.]
=> [1] => [1] => [[1]]
=> 0
[.,[.,.]]
=> [2,1] => [2,1] => [[1],[2]]
=> 1
[[.,.],.]
=> [1,2] => [1,2] => [[1,2]]
=> 0
[.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => [[1],[2],[3]]
=> 3
[.,[[.,.],.]]
=> [2,3,1] => [2,3,1] => [[1,2],[3]]
=> 2
[[.,.],[.,.]]
=> [1,3,2] => [3,1,2] => [[1,3],[2]]
=> 1
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => [[1,3],[2]]
=> 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [[1,2,3]]
=> 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => [[1],[2],[3],[4]]
=> 6
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [3,4,2,1] => [[1,2],[3],[4]]
=> 5
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [4,2,3,1] => [[1,3],[2],[4]]
=> 4
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [3,2,4,1] => [[1,3],[2],[4]]
=> 4
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [2,3,4,1] => [[1,2,3],[4]]
=> 3
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [4,3,1,2] => [[1,4],[2],[3]]
=> 3
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [3,4,1,2] => [[1,2],[3,4]]
=> 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [2,4,1,3] => [[1,2],[3,4]]
=> 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [4,1,2,3] => [[1,3,4],[2]]
=> 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => [[1,4],[2],[3]]
=> 3
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [2,3,1,4] => [[1,2,4],[3]]
=> 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [3,1,2,4] => [[1,3,4],[2]]
=> 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => [[1,3,4],[2]]
=> 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [[1],[2],[3],[4],[5]]
=> 10
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [4,5,3,2,1] => [[1,2],[3],[4],[5]]
=> 9
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [5,3,4,2,1] => [[1,3],[2],[4],[5]]
=> 8
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [4,3,5,2,1] => [[1,3],[2],[4],[5]]
=> 8
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [3,4,5,2,1] => [[1,2,3],[4],[5]]
=> 7
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [5,4,2,3,1] => [[1,4],[2],[3],[5]]
=> 7
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [4,5,2,3,1] => [[1,2],[3,4],[5]]
=> 6
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [3,5,2,4,1] => [[1,2],[3,4],[5]]
=> 6
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [5,2,3,4,1] => [[1,3,4],[2],[5]]
=> 5
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [4,3,2,5,1] => [[1,4],[2],[3],[5]]
=> 7
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [3,4,2,5,1] => [[1,2,4],[3],[5]]
=> 6
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [4,2,3,5,1] => [[1,3,4],[2],[5]]
=> 5
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [3,2,4,5,1] => [[1,3,4],[2],[5]]
=> 5
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [2,3,4,5,1] => [[1,2,3,4],[5]]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [5,4,3,1,2] => [[1,5],[2],[3],[4]]
=> 6
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [4,5,3,1,2] => [[1,2],[3,5],[4]]
=> 5
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [5,3,4,1,2] => [[1,3],[2,5],[4]]
=> 4
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [4,3,5,1,2] => [[1,3],[2,5],[4]]
=> 4
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [3,4,5,1,2] => [[1,2,3],[4,5]]
=> 3
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [5,2,4,1,3] => [[1,3],[2,5],[4]]
=> 4
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [2,4,5,1,3] => [[1,2,3],[4,5]]
=> 3
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [5,4,1,2,3] => [[1,4,5],[2],[3]]
=> 3
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [4,5,1,2,3] => [[1,2,5],[3,4]]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [3,2,5,1,4] => [[1,3],[2,5],[4]]
=> 4
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [2,3,5,1,4] => [[1,2,3],[4,5]]
=> 3
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [3,5,1,2,4] => [[1,2,5],[3,4]]
=> 2
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [2,5,1,3,4] => [[1,2,5],[3,4]]
=> 2
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [5,1,2,3,4] => [[1,3,4,5],[2]]
=> 1
[[.,.],[[[[[[.,[.,.]],.],.],.],.],.]]
=> [1,4,3,5,6,7,8,9,2] => [4,3,5,6,7,8,9,1,2] => [[1,3,4,5,6,7],[2,9],[8]]
=> ? = 8
[[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]],.]
=> [10,9,8,7,6,5,4,3,2,1,11] => [10,9,8,7,6,5,4,3,2,1,11] => [[1,11],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 45
[[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]],.]
=> [7,6,8,5,4,3,2,1,9] => [7,6,8,5,4,3,2,1,9] => [[1,3,9],[2],[4],[5],[6],[7],[8]]
=> ? = 26
Description
The (standard) major index of a standard tableau.
A descent of a standard tableau T is an index i such that i+1 appears in a row strictly below the row of i. The (standard) major index is the the sum of the descents.
Matching statistic: St000008
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00071: Permutations —descent composition⟶ Integer compositions
St000008: Integer compositions ⟶ ℤResult quality: 82% ●values known / values provided: 98%●distinct values known / distinct values provided: 82%
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00071: Permutations —descent composition⟶ Integer compositions
St000008: Integer compositions ⟶ ℤResult quality: 82% ●values known / values provided: 98%●distinct values known / distinct values provided: 82%
Values
[.,.]
=> [1] => [1] => [1] => 0
[.,[.,.]]
=> [2,1] => [2,1] => [1,1] => 1
[[.,.],.]
=> [1,2] => [1,2] => [2] => 0
[.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => [1,1,1] => 3
[.,[[.,.],.]]
=> [2,3,1] => [2,3,1] => [2,1] => 2
[[.,.],[.,.]]
=> [1,3,2] => [3,1,2] => [1,2] => 1
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => [1,2] => 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [3] => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => [1,1,1,1] => 6
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [3,4,2,1] => [2,1,1] => 5
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [4,2,3,1] => [1,2,1] => 4
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [3,2,4,1] => [1,2,1] => 4
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [2,3,4,1] => [3,1] => 3
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [4,3,1,2] => [1,1,2] => 3
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [3,4,1,2] => [2,2] => 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [2,4,1,3] => [2,2] => 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [4,1,2,3] => [1,3] => 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => [1,1,2] => 3
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [2,3,1,4] => [2,2] => 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [3,1,2,4] => [1,3] => 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => [1,3] => 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [4] => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1] => 10
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [4,5,3,2,1] => [2,1,1,1] => 9
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [5,3,4,2,1] => [1,2,1,1] => 8
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [4,3,5,2,1] => [1,2,1,1] => 8
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [3,4,5,2,1] => [3,1,1] => 7
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [5,4,2,3,1] => [1,1,2,1] => 7
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [4,5,2,3,1] => [2,2,1] => 6
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [3,5,2,4,1] => [2,2,1] => 6
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [5,2,3,4,1] => [1,3,1] => 5
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [4,3,2,5,1] => [1,1,2,1] => 7
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [3,4,2,5,1] => [2,2,1] => 6
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [4,2,3,5,1] => [1,3,1] => 5
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [3,2,4,5,1] => [1,3,1] => 5
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [2,3,4,5,1] => [4,1] => 4
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,2] => 6
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [4,5,3,1,2] => [2,1,2] => 5
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [5,3,4,1,2] => [1,2,2] => 4
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [4,3,5,1,2] => [1,2,2] => 4
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [3,4,5,1,2] => [3,2] => 3
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [5,2,4,1,3] => [1,2,2] => 4
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [2,4,5,1,3] => [3,2] => 3
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [5,4,1,2,3] => [1,1,3] => 3
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [4,5,1,2,3] => [2,3] => 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [3,2,5,1,4] => [1,2,2] => 4
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [2,3,5,1,4] => [3,2] => 3
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [3,5,1,2,4] => [2,3] => 2
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [2,5,1,3,4] => [2,3] => 2
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [5,1,2,3,4] => [1,4] => 1
[[[[[[[[[.,.],.],.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7,8,9] => [1,2,3,4,5,6,7,8,9] => [9] => ? = 0
[[.,.],[[[[[[[.,.],.],.],.],.],.],.]]
=> [1,3,4,5,6,7,8,9,2] => [3,4,5,6,7,8,9,1,2] => [7,2] => ? = 7
[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7,8,9,10] => [1,2,3,4,5,6,7,8,9,10] => [10] => ? = 0
[[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],.]
=> [8,7,6,5,4,3,2,1,9] => [8,7,6,5,4,3,2,1,9] => [1,1,1,1,1,1,1,2] => ? = 28
[[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]],.]
=> [9,8,7,6,5,4,3,2,1,10] => [9,8,7,6,5,4,3,2,1,10] => [1,1,1,1,1,1,1,1,2] => ? = 36
[[.,.],[[[[[[[[.,.],.],.],.],.],.],.],.]]
=> [1,3,4,5,6,7,8,9,10,2] => [3,4,5,6,7,8,9,10,1,2] => [8,2] => ? = 8
[[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,9,8,7,6,5,4,3,2] => [9,8,7,6,5,4,3,1,2] => [1,1,1,1,1,1,1,2] => ? = 28
[[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]],.]
=> [7,8,6,5,4,3,2,1,9] => [7,8,6,5,4,3,2,1,9] => [2,1,1,1,1,1,2] => ? = 27
[[.,.],[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> [1,10,9,8,7,6,5,4,3,2] => [10,9,8,7,6,5,4,3,1,2] => [1,1,1,1,1,1,1,1,2] => ? = 36
[[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]],.]
=> [10,9,8,7,6,5,4,3,2,1,11] => [10,9,8,7,6,5,4,3,2,1,11] => [1,1,1,1,1,1,1,1,1,2] => ? = 45
[[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]],.]
=> [7,6,8,5,4,3,2,1,9] => [7,6,8,5,4,3,2,1,9] => [1,2,1,1,1,1,2] => ? = 26
Description
The major index of the composition.
The descents of a composition [c1,c2,…,ck] are the partial sums c1,c1+c2,…,c1+⋯+ck−1, excluding the sum of all parts. The major index of a composition is the sum of its descents.
For details about the major index see [[Permutations/Descents-Major]].
Matching statistic: St001161
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St001161: Dyck paths ⟶ ℤResult quality: 79% ●values known / values provided: 95%●distinct values known / distinct values provided: 79%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St001161: Dyck paths ⟶ ℤResult quality: 79% ●values known / values provided: 95%●distinct values known / distinct values provided: 79%
Values
[.,.]
=> [1,0]
=> [1,0]
=> [1,0]
=> 0
[.,[.,.]]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[[.,.],.]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 0
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 6
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 5
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 4
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 4
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 10
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 9
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 8
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 8
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 7
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 7
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 7
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 6
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 5
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 7
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 18
[[.,.],[[[[[[.,.],.],.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6
[[[.,.],.],[[[[[.,.],.],.],.],.]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 5
[[[[.,.],.],.],[[[[.,.],.],.],.]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[[[[[.,.],.],.],.],[[[.,.],.],.]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[[.,[.,[.,[.,[[[.,.],.],.]]]]],.]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 18
[[[[[[[[.,.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
[.,[[[[[[[[.,.],.],.],.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 8
[[[[[[[[[.,.],.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 0
[[.,.],[[[[[[[.,.],.],.],.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> ? = 7
[.,[[[[[[[[[.,.],.],.],.],.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 9
[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
[[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 28
[[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 36
[[[[[[[[.,.],.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
[[[[[[[[[.,.],.],.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 1
[[.,.],[[[[[[.,[.,.]],.],.],.],.],.]]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 8
[[.,.],[[[[[[[[.,.],.],.],.],.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> ? = 8
[[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 28
[[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]],.]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 27
[[.,.],[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 36
[[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 45
[[.,[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 35
[[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]],.]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 26
Description
The major index north count of a Dyck path.
The descent set des(D) of a Dyck path D=D1⋯D2n with Di∈{N,E} is given by all indices i such that Di=E and Di+1=N. This is, the positions of the valleys of D.
The '''major index''' of a Dyck path is then the sum of the positions of the valleys, ∑i∈des(D)i, see [[St000027]].
The '''major index north count''' is given by ∑i∈des(D)#{j≤i∣Dj=N}.
Matching statistic: St000947
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000947: Dyck paths ⟶ ℤResult quality: 79% ●values known / values provided: 95%●distinct values known / distinct values provided: 79%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000947: Dyck paths ⟶ ℤResult quality: 79% ●values known / values provided: 95%●distinct values known / distinct values provided: 79%
Values
[.,.]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 0
[.,[.,.]]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[[.,.],.]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 0
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 6
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 5
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 4
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 4
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 10
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 9
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 8
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 8
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 7
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 7
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 7
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 6
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 5
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[.,[.,[.,[.,.]]]],.]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 6
[.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 7
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 18
[[.,.],[[[[[[.,.],.],.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6
[[[.,.],.],[[[[[.,.],.],.],.],.]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 5
[[[[.,.],.],.],[[[[.,.],.],.],.]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[[[[[.,.],.],.],.],[[[.,.],.],.]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[[.,[.,[.,[.,[[[.,.],.],.]]]]],.]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 18
[[[[[[[[.,.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
[.,[[[[[[[[.,.],.],.],.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 8
[[[[[[[[[.,.],.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 0
[[.,.],[[[[[[[.,.],.],.],.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> ? = 7
[.,[[[[[[[[[.,.],.],.],.],.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 9
[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? = 0
[[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 28
[[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 36
[[[[[[[[.,.],.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
[[[[[[[[[.,.],.],.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 1
[[.,.],[[[[[[.,[.,.]],.],.],.],.],.]]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 8
[[.,.],[[[[[[[[.,.],.],.],.],.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> ? = 8
[[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 28
[[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]],.]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 27
[[.,.],[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 36
[[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 45
[[.,[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 35
[[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]],.]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 26
Description
The major index east count of a Dyck path.
The descent set des(D) of a Dyck path D=D1⋯D2n with Di∈{N,E} is given by all indices i such that Di=E and Di+1=N. This is, the positions of the valleys of D.
The '''major index''' of a Dyck path is then the sum of the positions of the valleys, ∑i∈des(D)i, see [[St000027]].
The '''major index east count''' is given by ∑i∈des(D)#{j≤i∣Dj=E}.
Matching statistic: St000012
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
St000012: Dyck paths ⟶ ℤResult quality: 79% ●values known / values provided: 94%●distinct values known / distinct values provided: 79%
St000012: Dyck paths ⟶ ℤResult quality: 79% ●values known / values provided: 94%●distinct values known / distinct values provided: 79%
Values
[.,.]
=> [1,0]
=> 0
[.,[.,.]]
=> [1,1,0,0]
=> 1
[[.,.],.]
=> [1,0,1,0]
=> 0
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> 3
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> 2
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 1
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> 1
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> 0
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> 6
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> 5
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 4
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> 4
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> 3
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 3
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 2
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 2
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 1
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> 3
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> 2
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 1
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> 1
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 9
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 8
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> 8
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> 7
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> 6
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 6
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> 5
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 4
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> 4
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 3
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[.,[[[[[.,[.,[.,.]]],.],.],.],.]]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 10
[.,[[[[[.,[[.,.],.]],.],.],.],.]]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 9
[.,[[[[[[.,[.,.]],.],.],.],.],.]]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 8
[.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 7
[[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 21
[[.,[.,[.,[.,[.,[[.,.],.]]]]]],.]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? = 20
[[.,[.,[.,[.,[[.,.],[.,.]]]]]],.]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> ? = 19
[[.,[.,[.,[.,[[.,[.,.]],.]]]]],.]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> ? = 19
[[.,[.,[.,[.,[[[.,.],.],.]]]]],.]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> ? = 18
[[.,[.,[.,[[.,.],[.,[.,.]]]]]],.]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 18
[[.,[.,[.,[[.,[.,[.,.]]],.]]]],.]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> ? = 18
[.,[[[[[[[[.,.],.],.],.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 8
[[[[[[[[[.,.],.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[.,.],[[[[[[[.,.],.],.],.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 7
[.,[[[[[[[[[.,.],.],.],.],.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 9
[[[[[[[[[[.,.],.],.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 28
[[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 36
[[[[[[[[.,.],.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[[[[[[[[[.,.],.],.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[[.,.],[[[[[[.,[.,.]],.],.],.],.],.]]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 8
[[.,.],[[[[[[[[.,.],.],.],.],.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 8
[[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 28
[[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]],.]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> ? = 27
[[.,.],[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 36
[[.,[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 45
[[.,[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]],.]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 35
[[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]],.]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> ? = 26
Description
The area of a Dyck path.
This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic.
1. Dyck paths are bijection with '''area sequences''' (a1,…,an) such that a1=0,ak+1≤ak+1.
2. The generating function Dn(q)=∑D∈Dnqarea(D) satisfy the recurrence Dn+1(q)=∑qkDk(q)Dn−k(q).
3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of q,t-Catalan numbers.
Matching statistic: St000378
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000378: Integer partitions ⟶ ℤResult quality: 76% ●values known / values provided: 76%●distinct values known / distinct values provided: 93%
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000378: Integer partitions ⟶ ℤResult quality: 76% ●values known / values provided: 76%●distinct values known / distinct values provided: 93%
Values
[.,.]
=> [1,0]
=> [1,0]
=> []
=> 0
[.,[.,.]]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[[.,.],.]
=> [1,0,1,0]
=> [1,1,0,0]
=> []
=> 0
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 3
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 2
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1]
=> 1
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> 0
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 6
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 5
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 4
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 4
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 3
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 3
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 2
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 2
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 3
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 10
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 9
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 8
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 8
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 7
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 7
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> 6
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 6
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 5
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 7
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> 6
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 5
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> 5
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 6
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 5
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 4
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 4
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 3
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 4
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 3
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 3
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 4
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 3
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 2
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 2
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 17
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1]
=> ? = 18
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [6,5,3,3,1]
=> ? = 17
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,4,3,1]
=> ? = 16
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2]
=> ? = 16
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,1]
=> ? = 15
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> ? = 15
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2]
=> ? = 14
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,1]
=> ? = 15
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,1,1]
=> ? = 14
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [5,5,4,2,1,1]
=> ? = 13
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,1,1]
=> ? = 13
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1]
=> ? = 17
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,1]
=> ? = 16
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [5,5,4,2,1]
=> ? = 15
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,1]
=> ? = 15
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [5,5,3,3,1]
=> ? = 14
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2]
=> ? = 14
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2]
=> ? = 13
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,1]
=> ? = 13
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [5,5,4,2]
=> ? = 12
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2]
=> ? = 14
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [5,5,3,2,2]
=> ? = 13
[.,[.,[[[[.,[.,.]],.],.],.]]]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,2]
=> ? = 12
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2]
=> ? = 14
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [6,5,3,1,1,1]
=> ? = 12
[.,[[.,.],[[.,[.,[.,.]]],.]]]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [6,5,3,1,1]
=> ? = 13
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [6,4,4,1,1]
=> ? = 12
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,0]
=> [5,5,4,1,1]
=> ? = 11
[.,[[.,.],[[[.,[.,.]],.],.]]]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,2,2]
=> ? = 11
[.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> ? = 13
[.,[[.,[.,.]],[.,[[.,.],.]]]]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,2]
=> ? = 12
[.,[[.,[.,.]],[[.,.],[.,.]]]]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,1,1]
=> ? = 11
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [6,5,3,1]
=> ? = 11
[.,[[.,[.,.]],[[[.,.],.],.]]]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0,1,0]
=> [6,4,4,1]
=> ? = 10
[.,[[[.,.],.],[[.,[.,.]],.]]]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [6,5,2,2]
=> ? = 10
[.,[[.,[.,[.,.]]],[.,[.,.]]]]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> ? = 12
[.,[[.,[.,[.,.]]],[[.,.],.]]]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2]
=> ? = 11
[.,[[.,[[.,.],.]],[.,[.,.]]]]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,5,3,2,2,1]
=> ? = 11
[.,[[[.,.],[.,.]],[.,[.,.]]]]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,2,2,1]
=> ? = 10
[.,[[[.,.],[.,.]],[[.,.],.]]]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,3,3,2]
=> ? = 9
[.,[[[.,[.,.]],.],[.,[.,.]]]]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,2,1]
=> ? = 10
[.,[[[.,[.,.]],.],[[.,.],.]]]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,0,0]
=> [5,5,4,1]
=> ? = 9
[.,[[.,[.,[.,[.,.]]]],[.,.]]]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1,1]
=> ? = 13
[.,[[.,[.,[[.,.],.]]],[.,.]]]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [5,5,3,2,1,1]
=> ? = 12
[.,[[.,[[.,.],[.,.]]],[.,.]]]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [6,4,3,1,1,1]
=> ? = 11
[.,[[.,[[.,[.,.]],.]],[.,.]]]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,1,1]
=> ? = 11
[.,[[.,[[[.,.],.],.]],[.,.]]]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [5,5,3,1,1,1]
=> ? = 10
[.,[[[.,.],[.,[.,.]]],[.,.]]]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [6,4,2,2,1,1]
=> ? = 10
[.,[[[.,.],[[.,.],.]],[.,.]]]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [5,5,2,2,1,1]
=> ? = 9
Description
The diagonal inversion number of an integer partition.
The dinv of a partition is the number of cells c in the diagram of an integer partition λ for which arm(c)−leg(c)∈{0,1}.
See also exercise 3.19 of [2].
This statistic is equidistributed with the length of the partition, see [3].
Matching statistic: St001397
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00018: Binary trees —left border symmetry⟶ Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001397: Posets ⟶ ℤResult quality: 73% ●values known / values provided: 73%●distinct values known / distinct values provided: 79%
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001397: Posets ⟶ ℤResult quality: 73% ●values known / values provided: 73%●distinct values known / distinct values provided: 79%
Values
[.,.]
=> [.,.]
=> [1] => ([],1)
=> 0
[.,[.,.]]
=> [.,[.,.]]
=> [2,1] => ([],2)
=> 1
[[.,.],.]
=> [[.,.],.]
=> [1,2] => ([(0,1)],2)
=> 0
[.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> [3,2,1] => ([],3)
=> 3
[.,[[.,.],.]]
=> [.,[[.,.],.]]
=> [2,3,1] => ([(1,2)],3)
=> 2
[[.,.],[.,.]]
=> [[.,[.,.]],.]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 1
[[.,[.,.]],.]
=> [[.,.],[.,.]]
=> [1,3,2] => ([(0,1),(0,2)],3)
=> 1
[[[.,.],.],.]
=> [[[.,.],.],.]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 0
[.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([],4)
=> 6
[.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(2,3)],4)
=> 5
[.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> 4
[.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> 4
[.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> 3
[[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 1
[[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 3
[[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> 2
[[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> 1
[[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([],5)
=> 10
[.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(3,4)],5)
=> 9
[.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 8
[.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(2,3),(2,4)],5)
=> 8
[.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> 7
[.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 7
[.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 6
[.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 6
[.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 5
[.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> 7
[.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> 6
[.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> 5
[.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> 5
[.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 6
[[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 5
[[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> 4
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 3
[[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 3
[[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> 3
[[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 4
[[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 3
[[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 2
[[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
[[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => ([(3,6),(4,5),(5,6)],7)
=> ? = 17
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [4,6,5,3,7,2,1] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 15
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [.,[.,[[.,[[[.,.],.],.]],.]]]
=> [4,5,6,3,7,2,1] => ([(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 14
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [4,5,3,7,6,2,1] => ([(2,5),(2,6),(3,4),(4,5),(4,6)],7)
=> ? = 14
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [.,[.,[[[.,[[.,.],.]],.],.]]]
=> [4,5,3,6,7,2,1] => ([(2,6),(3,4),(4,6),(6,5)],7)
=> ? = 13
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [4,3,7,6,5,2,1] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 15
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [.,[.,[[.,.],[[[.,.],.],.]]]]
=> [3,5,6,7,4,2,1] => ([(2,4),(2,6),(5,3),(6,5)],7)
=> ? = 14
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> [.,[.,[[[.,.],.],[[.,.],.]]]]
=> [3,4,6,7,5,2,1] => ([(2,6),(5,4),(6,3),(6,5)],7)
=> ? = 13
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> [.,[.,[[[[.,.],.],[.,.]],.]]]
=> [3,4,6,5,7,2,1] => ([(2,3),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 12
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => ([(2,6),(4,5),(5,3),(6,4)],7)
=> ? = 11
[.,[[.,.],[[.,.],[[.,.],.]]]]
=> [.,[[.,[[.,[[.,.],.]],.]],.]]
=> [4,5,3,6,2,7,1] => ([(1,6),(2,5),(3,4),(4,6),(6,5)],7)
=> ? = 12
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> [.,[[.,[[.,.],[[.,.],.]]],.]]
=> [3,5,6,4,2,7,1] => ([(1,6),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ? = 12
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> [.,[[.,[[[.,.],[.,.]],.]],.]]
=> [3,5,4,6,2,7,1] => ([(1,5),(2,3),(2,4),(3,6),(4,6),(6,5)],7)
=> ? = 11
[.,[[.,.],[[[.,[.,.]],.],.]]]
=> [.,[[.,[[[.,.],.],[.,.]]],.]]
=> [3,4,6,5,2,7,1] => ([(1,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 11
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [.,[[.,[[.,.],[.,.]]],[.,.]]]
=> [3,5,4,2,7,6,1] => ([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 11
[.,[[.,[.,.]],[[[.,.],.],.]]]
=> [.,[[.,[[[.,.],.],.]],[.,.]]]
=> [3,4,5,2,7,6,1] => ([(1,5),(1,6),(2,3),(3,4),(4,5),(4,6)],7)
=> ? = 10
[.,[[[.,.],.],[[.,[.,.]],.]]]
=> [.,[[[.,[[.,.],[.,.]]],.],.]]
=> [3,5,4,2,6,7,1] => ([(1,6),(2,3),(2,4),(3,6),(4,6),(6,5)],7)
=> ? = 10
[.,[[[.,.],.],[[[.,.],.],.]]]
=> [.,[[[.,[[[.,.],.],.]],.],.]]
=> [3,4,5,2,6,7,1] => ([(1,6),(2,3),(3,5),(5,6),(6,4)],7)
=> ? = 9
[.,[[.,[.,[.,.]]],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],[.,[.,.]]]]
=> [4,3,2,7,6,5,1] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 12
[.,[[.,[.,[.,.]]],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],[.,[.,.]]]]
=> [3,4,2,7,6,5,1] => ([(1,4),(1,5),(1,6),(2,3),(3,4),(3,5),(3,6)],7)
=> ? = 11
[.,[[.,[[.,.],.]],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],[[.,.],.]]]
=> [3,4,2,6,7,5,1] => ([(1,5),(1,6),(2,4),(4,5),(4,6),(6,3)],7)
=> ? = 10
[.,[[[.,.],[.,.]],[[.,.],.]]]
=> [.,[[[.,[[.,.],.]],[.,.]],.]]
=> [3,4,2,6,5,7,1] => ([(1,5),(1,6),(2,3),(3,5),(3,6),(5,4),(6,4)],7)
=> ? = 9
[.,[[[.,[.,.]],.],[[.,.],.]]]
=> [.,[[[.,[[.,.],.]],.],[.,.]]]
=> [3,4,2,5,7,6,1] => ([(1,6),(2,3),(3,6),(6,4),(6,5)],7)
=> ? = 9
[.,[[[[.,.],.],.],[[.,.],.]]]
=> [.,[[[[.,[[.,.],.]],.],.],.]]
=> [3,4,2,5,6,7,1] => ([(1,6),(2,3),(3,6),(4,5),(6,4)],7)
=> ? = 8
[.,[[.,[.,[.,[.,.]]]],[.,.]]]
=> [.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> [3,2,7,6,5,4,1] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 13
[.,[[.,[.,[[.,.],.]]],[.,.]]]
=> [.,[[.,[.,.]],[.,[[.,.],.]]]]
=> [3,2,6,7,5,4,1] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(6,3)],7)
=> ? = 12
[.,[[.,[[.,.],[.,.]]],[.,.]]]
=> [.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [3,2,6,5,7,4,1] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3),(6,3)],7)
=> ? = 11
[.,[[[.,.],[.,[.,.]]],[.,.]]]
=> [.,[[[.,[.,.]],[.,[.,.]]],.]]
=> [3,2,6,5,4,7,1] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 10
[.,[[.,[[.,[[.,.],.]],.]],.]]
=> [.,[[.,.],[[.,.],[[.,.],.]]]]
=> [2,4,6,7,5,3,1] => ([(1,4),(1,6),(5,3),(6,2),(6,5)],7)
=> ? = 12
[.,[[.,[[[.,.],[.,.]],.]],.]]
=> [.,[[.,.],[[[.,.],[.,.]],.]]]
=> [2,4,6,5,7,3,1] => ([(1,2),(1,5),(3,6),(4,6),(5,3),(5,4)],7)
=> ? = 11
[.,[[.,[[[.,[.,.]],.],.]],.]]
=> [.,[[.,.],[[[.,.],.],[.,.]]]]
=> [2,4,5,7,6,3,1] => ([(1,4),(1,5),(5,6),(6,2),(6,3)],7)
=> ? = 11
[.,[[.,[[[[.,.],.],.],.]],.]]
=> [.,[[.,.],[[[[.,.],.],.],.]]]
=> [2,4,5,6,7,3,1] => ([(1,3),(1,6),(4,5),(5,2),(6,4)],7)
=> ? = 10
[.,[[[.,.],[[.,[.,.]],.]],.]]
=> [.,[[[.,.],[[.,.],[.,.]]],.]]
=> [2,4,6,5,3,7,1] => ([(1,4),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3)],7)
=> ? = 10
[.,[[[.,.],[[[.,.],.],.]],.]]
=> [.,[[[.,.],[[[.,.],.],.]],.]]
=> [2,4,5,6,3,7,1] => ([(1,3),(1,5),(2,6),(3,6),(4,2),(5,4)],7)
=> ? = 9
[.,[[[.,[.,.]],[[.,.],.]],.]]
=> [.,[[[.,.],[[.,.],.]],[.,.]]]
=> [2,4,5,3,7,6,1] => ([(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,2)],7)
=> ? = 9
[.,[[[[[.,.],.],.],[.,.]],.]]
=> [.,[[[[[.,.],[.,.]],.],.],.]]
=> [2,4,3,5,6,7,1] => ([(1,3),(1,4),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 7
[.,[[[.,[.,[[.,.],.]]],.],.]]
=> [.,[[[.,.],.],[.,[[.,.],.]]]]
=> [2,3,6,7,5,4,1] => ([(1,6),(5,4),(6,2),(6,3),(6,5)],7)
=> ? = 11
[.,[[[.,[[.,.],[.,.]]],.],.]]
=> [.,[[[.,.],.],[[.,[.,.]],.]]]
=> [2,3,6,5,7,4,1] => ([(1,5),(3,6),(4,6),(5,2),(5,3),(5,4)],7)
=> ? = 10
[.,[[[.,[[.,[.,.]],.]],.],.]]
=> [.,[[[.,.],.],[[.,.],[.,.]]]]
=> [2,3,5,7,6,4,1] => ([(1,6),(5,3),(5,4),(6,2),(6,5)],7)
=> ? = 10
[.,[[[.,[[[.,.],.],.]],.],.]]
=> [.,[[[.,.],.],[[[.,.],.],.]]]
=> [2,3,5,6,7,4,1] => ([(1,6),(4,5),(5,3),(6,2),(6,4)],7)
=> ? = 9
[.,[[[[.,.],[.,[.,.]]],.],.]]
=> [.,[[[[.,.],.],[.,[.,.]]],.]]
=> [2,3,6,5,4,7,1] => ([(1,5),(2,6),(3,6),(4,6),(5,2),(5,3),(5,4)],7)
=> ? = 9
[.,[[[[.,.],[[.,.],.]],.],.]]
=> [.,[[[[.,.],.],[[.,.],.]],.]]
=> [2,3,5,6,4,7,1] => ([(1,5),(2,6),(3,6),(4,3),(5,2),(5,4)],7)
=> ? = 8
[.,[[[[.,[.,.]],[.,.]],.],.]]
=> [.,[[[[.,.],.],[.,.]],[.,.]]]
=> [2,3,5,4,7,6,1] => ([(1,4),(2,5),(2,6),(3,5),(3,6),(4,2),(4,3)],7)
=> ? = 8
[.,[[[[[.,.],.],[.,.]],.],.]]
=> [.,[[[[[.,.],.],[.,.]],.],.]]
=> [2,3,5,4,6,7,1] => ([(1,5),(2,6),(3,6),(5,2),(5,3),(6,4)],7)
=> ? = 7
[.,[[[[.,[[.,.],.]],.],.],.]]
=> [.,[[[[.,.],.],.],[[.,.],.]]]
=> [2,3,4,6,7,5,1] => ([(1,5),(4,3),(5,6),(6,2),(6,4)],7)
=> ? = 8
[.,[[[[[.,[.,.]],.],.],.],.]]
=> [.,[[[[[.,.],.],.],.],[.,.]]]
=> [2,3,4,5,7,6,1] => ([(1,5),(4,6),(5,4),(6,2),(6,3)],7)
=> ? = 7
[.,[[[[[[.,.],.],.],.],.],.]]
=> [.,[[[[[[.,.],.],.],.],.],.]]
=> [2,3,4,5,6,7,1] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7)
=> ? = 6
[[.,.],[[.,[[.,.],[.,.]]],.]]
=> [[.,[[.,.],[[.,[.,.]],.]]],.]
=> [2,5,4,6,3,1,7] => ([(0,6),(1,2),(1,3),(1,4),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 9
[[.,.],[[.,[[[.,.],.],.]],.]]
=> [[.,[[.,.],[[[.,.],.],.]]],.]
=> [2,4,5,6,3,1,7] => ([(0,6),(1,3),(1,5),(2,6),(3,6),(4,2),(5,4)],7)
=> ? = 8
[[.,.],[[[.,[[.,.],.]],.],.]]
=> [[.,[[[.,.],.],[[.,.],.]]],.]
=> [2,3,5,6,4,1,7] => ([(0,6),(1,5),(2,6),(3,6),(4,3),(5,2),(5,4)],7)
=> ? = 7
Description
Number of pairs of incomparable elements in a finite poset.
For a finite poset (P,≤), this is the number of unordered pairs \{x,y\} \in \binom{P}{2} with x \not\leq y and y \not\leq x.
Matching statistic: St000081
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000081: Graphs ⟶ ℤResult quality: 71% ●values known / values provided: 71%●distinct values known / distinct values provided: 79%
Mp00160: Permutations —graph of inversions⟶ Graphs
St000081: Graphs ⟶ ℤResult quality: 71% ●values known / values provided: 71%●distinct values known / distinct values provided: 79%
Values
[.,.]
=> [1] => ([],1)
=> 0
[.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> 1
[[.,.],.]
=> [1,2] => ([],2)
=> 0
[.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2
[[.,.],[.,.]]
=> [1,3,2] => ([(1,2)],3)
=> 1
[[.,[.,.]],.]
=> [2,1,3] => ([(1,2)],3)
=> 1
[[[.,.],.],.]
=> [1,2,3] => ([],3)
=> 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(2,3)],4)
=> 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(2,3)],4)
=> 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 6
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 4
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> 3
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 4
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> 3
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 2
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 2
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 17
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [4,3,6,7,5,2,1] => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 14
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [4,5,3,7,6,2,1] => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 14
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [3,5,4,7,6,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 13
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [4,3,5,7,6,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 13
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [4,3,6,5,7,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 13
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [2,5,4,7,6,3,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 12
[.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> [3,2,7,6,5,4,1] => ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 13
[.,[[.,[.,.]],[.,[[.,.],.]]]]
=> [3,2,6,7,5,4,1] => ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 12
[.,[[.,[.,.]],[[.,.],[.,.]]]]
=> [3,2,5,7,6,4,1] => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 11
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [3,2,6,5,7,4,1] => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 11
[.,[[.,[.,.]],[[[.,.],.],.]]]
=> [3,2,5,6,7,4,1] => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 10
[.,[[.,[.,[.,.]]],[.,[.,.]]]]
=> [4,3,2,7,6,5,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 12
[.,[[.,[.,[.,.]]],[[.,.],.]]]
=> [4,3,2,6,7,5,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 11
[.,[[.,[[.,.],.]],[.,[.,.]]]]
=> [3,4,2,7,6,5,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 11
[.,[[.,[[.,.],.]],[[.,.],.]]]
=> [3,4,2,6,7,5,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 10
[.,[[[.,.],[.,.]],[.,[.,.]]]]
=> [2,4,3,7,6,5,1] => ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 10
[.,[[[.,.],[.,.]],[[.,.],.]]]
=> [2,4,3,6,7,5,1] => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 9
[.,[[[.,[.,.]],.],[.,[.,.]]]]
=> [3,2,4,7,6,5,1] => ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 10
[.,[[[.,[.,.]],.],[[.,.],.]]]
=> [3,2,4,6,7,5,1] => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 9
[.,[[.,[.,[.,[.,.]]]],[.,.]]]
=> [5,4,3,2,7,6,1] => ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 13
[.,[[.,[.,[[.,.],.]]],[.,.]]]
=> [4,5,3,2,7,6,1] => ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 12
[.,[[.,[[.,.],[.,.]]],[.,.]]]
=> [3,5,4,2,7,6,1] => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 11
[.,[[.,[[.,[.,.]],.]],[.,.]]]
=> [4,3,5,2,7,6,1] => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 11
[.,[[.,[[[.,.],.],.]],[.,.]]]
=> [3,4,5,2,7,6,1] => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 10
[.,[[[.,.],[.,[.,.]]],[.,.]]]
=> [2,5,4,3,7,6,1] => ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 10
[.,[[[.,.],[[.,.],.]],[.,.]]]
=> [2,4,5,3,7,6,1] => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 9
[.,[[[[.,.],.],[.,.]],[.,.]]]
=> [2,3,5,4,7,6,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 8
[.,[[[.,[.,[.,.]]],.],[.,.]]]
=> [4,3,2,5,7,6,1] => ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 10
[.,[[[.,[[.,.],.]],.],[.,.]]]
=> [3,4,2,5,7,6,1] => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 9
[.,[[[[.,.],[.,.]],.],[.,.]]]
=> [2,4,3,5,7,6,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 8
[.,[[[[.,[.,.]],.],.],[.,.]]]
=> [3,2,4,5,7,6,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 8
[.,[[.,[[.,[.,.]],[.,.]]],.]]
=> [4,3,6,5,2,7,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 12
[.,[[[.,[.,.]],[.,[.,.]]],.]]
=> [3,2,6,5,4,7,1] => ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 10
[.,[[[.,[.,.]],[[.,.],.]],.]]
=> [3,2,5,6,4,7,1] => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 9
[.,[[[.,[.,[.,.]]],[.,.]],.]]
=> [4,3,2,6,5,7,1] => ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 10
[.,[[[.,[[.,.],.]],[.,.]],.]]
=> [3,4,2,6,5,7,1] => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 9
[.,[[[[.,.],[.,.]],[.,.]],.]]
=> [2,4,3,6,5,7,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 8
[.,[[[[.,[.,.]],.],[.,.]],.]]
=> [3,2,4,6,5,7,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 8
[.,[[[[.,[.,.]],[.,.]],.],.]]
=> [3,2,5,4,6,7,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 8
[[.,.],[.,[[.,[.,.]],[.,.]]]]
=> [1,5,4,7,6,3,2] => ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 11
[[.,[.,.]],[.,[.,[.,[.,.]]]]]
=> [2,1,7,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 11
[[.,[.,[.,.]]],[.,[.,[.,.]]]]
=> [3,2,1,7,6,5,4] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 9
[[[.,.],[.,.]],[.,[.,[.,.]]]]
=> [1,3,2,7,6,5,4] => ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[[[.,[.,.]],.],[.,[.,[.,.]]]]
=> [2,1,3,7,6,5,4] => ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[[.,[.,[.,[.,.]]]],[.,[.,.]]]
=> [4,3,2,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 9
[[[.,.],[.,[.,.]]],[.,[.,.]]]
=> [1,4,3,2,7,6,5] => ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> ? = 6
[[[.,[.,.]],[.,.]],[.,[.,.]]]
=> [2,1,4,3,7,6,5] => ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[[[.,.],.],[.,.]],[.,[.,.]]]
=> [1,2,4,3,7,6,5] => ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 4
[[[.,[.,[.,.]]],.],[.,[.,.]]]
=> [3,2,1,4,7,6,5] => ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> ? = 6
Description
The number of edges of a graph.
The following 30 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000246The number of non-inversions of a permutation. St000161The sum of the sizes of the right subtrees of a binary tree. St000018The number of inversions of a permutation. St000795The mad of a permutation. St000057The Shynar inversion number of a standard tableau. St000067The inversion number of the alternating sign matrix. St000076The rank of the alternating sign matrix in the alternating sign matrix poset. St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St000833The comajor index of a permutation. St000332The positive inversions of an alternating sign matrix. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St000004The major index of a permutation. St000005The bounce statistic of a Dyck path. St000006The dinv of a Dyck path. St001428The number of B-inversions of a signed permutation. St000042The number of crossings of a perfect matching. St000233The number of nestings of a set partition. St000305The inverse major index of a permutation. St000496The rcs statistic of a set partition. St001311The cyclomatic number of a graph. St001718The number of non-empty open intervals in a poset. St000123The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. St000450The number of edges minus the number of vertices plus 2 of a graph. St001772The number of occurrences of the signed pattern 12 in a signed permutation. St001862The number of crossings of a signed permutation. St000359The number of occurrences of the pattern 23-1. St000136The dinv of a parking function. St000194The number of primary dinversion pairs of a labelled dyck path corresponding to a parking function. St001433The flag major index of a signed permutation. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!