Processing math: 100%

Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
St000110: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [.,.]
=> [1] => 1
[[],[]]
=> [[.,.],.]
=> [1,2] => 1
[[[]]]
=> [.,[.,.]]
=> [2,1] => 2
[[],[],[]]
=> [[[.,.],.],.]
=> [1,2,3] => 1
[[],[[]]]
=> [[.,.],[.,.]]
=> [3,1,2] => 3
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => 2
[[[],[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => 3
[[[[]]]]
=> [.,[.,[.,.]]]
=> [3,2,1] => 6
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => 1
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => 4
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => 3
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => 6
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => 12
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => 2
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => 8
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => 3
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => 6
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => 4
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 12
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => 8
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => 12
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 24
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => 1
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => 5
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => 4
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => 10
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => 20
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => 3
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => 15
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => 6
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => 12
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => 10
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => 30
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => 20
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => 30
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => 60
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => 2
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => 10
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => 8
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => 20
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => 40
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => 3
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => 6
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => 15
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => 30
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => 4
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => 12
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => 8
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => 12
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => 24
Description
The number of permutations less than or equal to a permutation in left weak order. This is the same as the number of permutations less than or equal to the given permutation in right weak order.
Matching statistic: St000063
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000063: Integer partitions ⟶ ℤResult quality: 54% values known / values provided: 75%distinct values known / distinct values provided: 54%
Values
[[]]
=> [.,.]
=> [1,0]
=> []
=> 1
[[],[]]
=> [[.,.],.]
=> [1,1,0,0]
=> []
=> 1
[[[]]]
=> [.,[.,.]]
=> [1,0,1,0]
=> [1]
=> 2
[[],[],[]]
=> [[[.,.],.],.]
=> [1,1,1,0,0,0]
=> []
=> 1
[[],[[]]]
=> [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> [2]
=> 3
[[[]],[]]
=> [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> [1]
=> 2
[[[],[]]]
=> [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> [1,1]
=> 3
[[[[]]]]
=> [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> [2,1]
=> 6
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> []
=> 1
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 4
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 3
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 6
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 12
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 2
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 8
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 3
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 6
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 4
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 12
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 8
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 12
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 24
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> 1
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 5
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 4
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 10
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 20
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 3
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 15
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 6
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 12
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 10
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 30
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> 20
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> 30
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 60
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 2
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 10
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 8
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> 20
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 40
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 3
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 6
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 15
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 30
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 4
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> 12
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> 8
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> 12
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 24
[[],[],[],[[],[[]]]]
=> [[[[.,.],.],.],[[.,.],[.,.]]]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [6,4,4]
=> ? = 105
[[],[],[],[[[[]]]]]
=> [[[[.,.],.],.],[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [6,5,4]
=> ? = 210
[[],[],[[],[],[[]]]]
=> [[[.,.],.],[[[.,.],.],[.,.]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [6,3,3,3]
=> ? = 140
[[],[],[[],[[]],[]]]
=> [[[.,.],.],[[[.,.],[.,.]],.]]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [5,3,3,3]
=> ? = 105
[[],[],[[],[[],[]]]]
=> [[[.,.],.],[[.,.],[[.,.],.]]]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [5,5,3,3]
=> ? = 210
[[],[],[[],[[[]]]]]
=> [[[.,.],.],[[.,.],[.,[.,.]]]]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [6,5,3,3]
=> ? = 420
[[],[],[[[]],[],[]]]
=> [[[.,.],.],[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [4,3,3,3]
=> ? = 70
[[],[],[[[[[]]]]]]
=> [[[.,.],.],[.,[.,[.,[.,.]]]]]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3]
=> ? = 840
[[],[[],[]],[[],[]]]
=> [[[.,.],[[.,.],.]],[[.,.],.]]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [5,5,2,2]
=> ? = 126
[[],[[],[[],[[]]]]]
=> [[.,.],[[.,.],[[.,.],[.,.]]]]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,2]
=> ? = 630
[[],[[],[[[]],[]]]]
=> [[.,.],[[.,.],[[.,[.,.]],.]]]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,2]
=> ? = 420
[[],[[],[[[[]]]]]]
=> [[.,.],[[.,.],[.,[.,[.,.]]]]]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,2]
=> ? = 1260
[[],[[[[[[]]]]]]]
=> [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2]
=> ? = 2520
[[[[[[[[]]]]]]]]
=> [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> ? = 5040
[[],[],[],[],[],[[[]]]]
=> [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [7,6]
=> ? = 56
[[],[],[],[],[[],[],[]]]
=> [[[[[.,.],.],.],.],[[[.,.],.],.]]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [5,5,5]
=> ? = 56
[[],[],[],[],[[],[[]]]]
=> [[[[[.,.],.],.],.],[[.,.],[.,.]]]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [7,5,5]
=> ? = 168
[[],[],[],[],[[[[]]]]]
=> [[[[[.,.],.],.],.],[.,[.,[.,.]]]]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [7,6,5]
=> ? = 336
[[],[],[],[[],[],[],[]]]
=> [[[[.,.],.],.],[[[[.,.],.],.],.]]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [4,4,4,4]
=> ? = 70
[[],[],[],[[],[],[[]]]]
=> [[[[.,.],.],.],[[[.,.],.],[.,.]]]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [7,4,4,4]
=> ? = 280
[[],[],[],[[],[[],[]]]]
=> [[[[.,.],.],.],[[.,.],[[.,.],.]]]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [6,6,4,4]
=> ? = 420
[[],[],[],[[],[[[]]]]]
=> [[[[.,.],.],.],[[.,.],[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4]
=> ? = 840
[[],[],[],[[[[[]]]]]]
=> [[[[.,.],.],.],[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4]
=> ? = 1680
[[],[],[[[]]],[[],[]]]
=> [[[[.,.],.],[.,[.,.]]],[[.,.],.]]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,1,0,0]
=> [6,6,4,3]
=> ? = 560
[[],[],[[],[],[[],[]]]]
=> [[[.,.],.],[[[.,.],.],[[.,.],.]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [6,6,3,3,3]
=> ? = 560
[[],[],[[],[],[[[]]]]]
=> [[[.,.],.],[[[.,.],.],[.,[.,.]]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,3,3]
=> ? = 1120
[[],[],[[],[[],[]],[]]]
=> [[[.,.],.],[[[.,.],[[.,.],.]],.]]
=> [1,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0]
=> [5,5,3,3,3]
=> ? = 336
[[],[],[[],[[],[[]]]]]
=> [[[.,.],.],[[.,.],[[.,.],[.,.]]]]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,5,3,3]
=> ? = 1680
[[],[],[[],[[[[]]]]]]
=> [[[.,.],.],[[.,.],[.,[.,[.,.]]]]]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,3]
=> ? = 3360
[[],[],[[[],[],[[]]]]]
=> [[[.,.],.],[.,[[[.,.],.],[.,.]]]]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,4,4,3]
=> ? = 1120
[[],[],[[[[],[],[]]]]]
=> [[[.,.],.],[.,[.,[[[.,.],.],.]]]]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [5,5,5,4,3]
=> ? = 1120
[[],[],[[[[[[]]]]]]]
=> [[[.,.],.],[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3]
=> ? = 6720
[[],[[]],[[[],[]],[]]]
=> [[[.,.],[.,.]],[[.,[[.,.],.]],.]]
=> [1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> [5,5,4,4,2]
=> ? = 630
[[],[[],[[],[]]],[[]]]
=> [[[.,.],[[.,.],[[.,.],.]]],[.,.]]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0,1,0]
=> [7,4,4,2,2]
=> ? = 720
[[],[[[[[]]]]],[[]]]
=> [[[.,.],[.,[.,[.,[.,.]]]]],[.,.]]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,2]
=> ? = 2880
[[],[[],[],[],[[],[]]]]
=> [[.,.],[[[[.,.],.],.],[[.,.],.]]]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [6,6,2,2,2,2]
=> ? = 420
[[],[[],[[],[],[],[]]]]
=> [[.,.],[[.,.],[[[[.,.],.],.],.]]]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [4,4,4,4,2,2]
=> ? = 420
[[],[[],[[],[[],[]]]]]
=> [[.,.],[[.,.],[[.,.],[[.,.],.]]]]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [6,6,4,4,2,2]
=> ? = 2520
[[],[[],[[],[[[]]]]]]
=> [[.,.],[[.,.],[[.,.],[.,[.,.]]]]]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,2,2]
=> ? = 5040
[[],[[],[[[[[]]]]]]]
=> [[.,.],[[.,.],[.,[.,[.,[.,.]]]]]]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,2]
=> ? = 10080
[[],[[[],[[[[]]]]]]]
=> [[.,.],[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,3,2]
=> ? = 10080
[[],[[[[],[[[]]]]]]]
=> [[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,3,2]
=> ? = 10080
[[],[[[[[],[[]]]]]]]
=> [[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,3,2]
=> ? = 10080
[[],[[[[[[],[]]]]]]]
=> [[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,3,2]
=> ? = 10080
[[],[[[[[[[]]]]]]]]
=> [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2]
=> ? = 20160
[[[]],[],[[[]],[],[]]]
=> [[[.,[.,.]],.],[[[.,[.,.]],.],.]]
=> [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> [5,4,4,4,1]
=> ? = 280
[[[]],[[]],[[]],[[]]]
=> [[[[.,[.,.]],[.,.]],[.,.]],[.,.]]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0]
=> [7,5,3,1]
=> ? = 384
[[[]],[[]],[[[[]]]]]
=> [[[.,[.,.]],[.,.]],[.,[.,[.,.]]]]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,1]
=> ? = 2688
[[[]],[[[]]],[[],[]]]
=> [[[.,[.,.]],[.,[.,.]]],[[.,.],.]]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,1,0,0]
=> [6,6,4,3,1]
=> ? = 1120
[[[]],[[[[]]]],[[]]]
=> [[[.,[.,.]],[.,[.,[.,.]]]],[.,.]]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,1]
=> ? = 1920
Description
The number of linear extensions of a certain poset defined for an integer partition. The poset is constructed in David Speyer's answer to Matt Fayers' question [3]. The value at the partition λ also counts cover-inclusive Dyck tilings of λμ, summed over all μ, as noticed by Philippe Nadeau in a comment. This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00065: Permutations permutation posetPosets
St000100: Posets ⟶ ℤResult quality: 53% values known / values provided: 67%distinct values known / distinct values provided: 53%
Values
[[]]
=> [.,.]
=> [1] => ([],1)
=> ? = 1
[[],[]]
=> [[.,.],.]
=> [1,2] => ([(0,1)],2)
=> 1
[[[]]]
=> [.,[.,.]]
=> [2,1] => ([],2)
=> 2
[[],[],[]]
=> [[[.,.],.],.]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[[],[[]]]
=> [[.,.],[.,.]]
=> [3,1,2] => ([(1,2)],3)
=> 3
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 2
[[[],[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => ([(1,2)],3)
=> 3
[[[[]]]]
=> [.,[.,[.,.]]]
=> [3,2,1] => ([],3)
=> 6
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> 4
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> 6
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => ([(2,3)],4)
=> 12
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 2
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> 8
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 6
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> 4
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => ([(2,3)],4)
=> 12
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> 8
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(2,3)],4)
=> 12
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([],4)
=> 24
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> 5
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> 10
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 20
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 3
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 15
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> 6
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 12
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> 10
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 30
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 20
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> 30
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => ([(3,4)],5)
=> 60
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> 10
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> 8
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> 20
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 40
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 3
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> 6
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> 15
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> 30
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 12
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> 8
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 12
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 24
[[[],[],[],[]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 5
[[],[],[],[],[],[[]]]
=> [[[[[[.,.],.],.],.],.],[.,.]]
=> [7,1,2,3,4,5,6] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7)
=> ? = 7
[[],[],[],[],[[],[]]]
=> [[[[[.,.],.],.],.],[[.,.],.]]
=> [6,7,1,2,3,4,5] => ([(0,6),(1,3),(4,5),(5,2),(6,4)],7)
=> ? = 21
[[],[],[],[],[[[]]]]
=> [[[[[.,.],.],.],.],[.,[.,.]]]
=> [7,6,1,2,3,4,5] => ([(2,6),(4,5),(5,3),(6,4)],7)
=> ? = 42
[[],[],[],[[]],[[]]]
=> [[[[[.,.],.],.],[.,.]],[.,.]]
=> [7,5,1,2,3,4,6] => ([(1,3),(2,6),(3,5),(4,6),(5,4)],7)
=> ? = 35
[[],[],[],[[],[],[]]]
=> [[[[.,.],.],.],[[[.,.],.],.]]
=> [5,6,7,1,2,3,4] => ([(0,5),(1,6),(4,3),(5,4),(6,2)],7)
=> ? = 35
[[],[],[],[[],[[]]]]
=> [[[[.,.],.],.],[[.,.],[.,.]]]
=> [7,5,6,1,2,3,4] => ([(1,6),(2,4),(5,3),(6,5)],7)
=> ? = 105
[[],[],[],[[[[]]]]]
=> [[[[.,.],.],.],[.,[.,[.,.]]]]
=> [7,6,5,1,2,3,4] => ([(3,4),(4,6),(6,5)],7)
=> ? = 210
[[],[],[[]],[],[[]]]
=> [[[[[.,.],.],[.,.]],.],[.,.]]
=> [7,4,1,2,3,5,6] => ([(1,6),(2,3),(3,5),(5,6),(6,4)],7)
=> ? = 28
[[],[],[[],[],[[]]]]
=> [[[.,.],.],[[[.,.],.],[.,.]]]
=> [7,4,5,6,1,2,3] => ([(1,6),(2,5),(5,3),(6,4)],7)
=> ? = 140
[[],[],[[],[[]],[]]]
=> [[[.,.],.],[[[.,.],[.,.]],.]]
=> [6,4,5,7,1,2,3] => ([(0,6),(1,3),(2,4),(3,5),(4,6)],7)
=> ? = 105
[[],[],[[],[[],[]]]]
=> [[[.,.],.],[[.,.],[[.,.],.]]]
=> [6,7,4,5,1,2,3] => ([(0,5),(1,4),(2,6),(6,3)],7)
=> ? = 210
[[],[],[[],[[[]]]]]
=> [[[.,.],.],[[.,.],[.,[.,.]]]]
=> [7,6,4,5,1,2,3] => ([(2,4),(3,5),(5,6)],7)
=> ? = 420
[[],[],[[[]],[],[]]]
=> [[[.,.],.],[[[.,[.,.]],.],.]]
=> [5,4,6,7,1,2,3] => ([(0,6),(1,6),(2,3),(3,5),(6,4)],7)
=> ? = 70
[[],[],[[[[[]]]]]]
=> [[[.,.],.],[.,[.,[.,[.,.]]]]]
=> [7,6,5,4,1,2,3] => ([(4,5),(5,6)],7)
=> ? = 840
[[],[[]],[],[],[[]]]
=> [[[[[.,.],[.,.]],.],.],[.,.]]
=> [7,3,1,2,4,5,6] => ([(1,6),(2,3),(3,6),(4,5),(6,4)],7)
=> ? = 21
[[],[[],[]],[],[[]]]
=> [[[[.,.],[[.,.],.]],.],[.,.]]
=> [7,3,4,1,2,5,6] => ([(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ? = 42
[[],[[],[]],[[],[]]]
=> [[[.,.],[[.,.],.]],[[.,.],.]]
=> [6,7,3,4,1,2,5] => ([(0,5),(1,4),(2,3),(4,6),(5,6)],7)
=> ? = 126
[[],[[],[],[],[],[]]]
=> [[.,.],[[[[[.,.],.],.],.],.]]
=> [3,4,5,6,7,1,2] => ([(0,6),(1,3),(4,5),(5,2),(6,4)],7)
=> ? = 21
[[],[[],[[],[[]]]]]
=> [[.,.],[[.,.],[[.,.],[.,.]]]]
=> [7,5,6,3,4,1,2] => ([(1,6),(2,5),(3,4)],7)
=> ? = 630
[[],[[],[[[]],[]]]]
=> [[.,.],[[.,.],[[.,[.,.]],.]]]
=> [6,5,7,3,4,1,2] => ([(0,6),(1,6),(2,5),(3,4)],7)
=> ? = 420
[[],[[],[[[[]]]]]]
=> [[.,.],[[.,.],[.,[.,[.,.]]]]]
=> [7,6,5,3,4,1,2] => ([(3,6),(4,5)],7)
=> ? = 1260
[[],[[[[[[]]]]]]]
=> [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> [7,6,5,4,3,1,2] => ([(5,6)],7)
=> ? = 2520
[[[]],[],[],[],[[]]]
=> [[[[[.,[.,.]],.],.],.],[.,.]]
=> [7,2,1,3,4,5,6] => ([(1,6),(2,6),(3,5),(5,4),(6,3)],7)
=> ? = 14
[[[]],[[]],[],[[]]]
=> [[[[.,[.,.]],[.,.]],.],[.,.]]
=> [7,4,2,1,3,5,6] => ([(1,6),(2,5),(3,5),(5,6),(6,4)],7)
=> ? = 56
[[[],[]],[],[],[[]]]
=> [[[[.,[[.,.],.]],.],.],[.,.]]
=> [7,2,3,1,4,5,6] => ([(1,6),(2,3),(3,6),(4,5),(6,4)],7)
=> ? = 21
[[[[]]],[],[],[[]]]
=> [[[[.,[.,[.,.]]],.],.],[.,.]]
=> [7,3,2,1,4,5,6] => ([(1,6),(2,6),(3,6),(4,5),(6,4)],7)
=> ? = 42
[[[],[],[]],[],[[]]]
=> [[[.,[[[.,.],.],.]],.],[.,.]]
=> [7,2,3,4,1,5,6] => ([(1,6),(2,3),(3,5),(5,6),(6,4)],7)
=> ? = 28
[[[[]],[]],[],[[]]]
=> [[[.,[[.,[.,.]],.]],.],[.,.]]
=> [7,3,2,4,1,5,6] => ([(1,6),(2,5),(3,5),(5,6),(6,4)],7)
=> ? = 56
[[[],[],[],[]],[[]]]
=> [[.,[[[[.,.],.],.],.]],[.,.]]
=> [7,2,3,4,5,1,6] => ([(1,3),(2,6),(3,5),(4,6),(5,4)],7)
=> ? = 35
[[[],[],[],[],[],[]]]
=> [.,[[[[[[.,.],.],.],.],.],.]]
=> [2,3,4,5,6,7,1] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7)
=> ? = 7
[[[],[],[],[[]],[]]]
=> [.,[[[[[.,.],.],.],[.,.]],.]]
=> [6,2,3,4,5,7,1] => ([(1,3),(2,6),(3,5),(4,6),(5,4)],7)
=> ? = 35
[[[],[],[[]],[],[]]]
=> [.,[[[[[.,.],.],[.,.]],.],.]]
=> [5,2,3,4,6,7,1] => ([(1,6),(2,3),(3,5),(5,6),(6,4)],7)
=> ? = 28
[[[],[[]],[],[],[]]]
=> [.,[[[[[.,.],[.,.]],.],.],.]]
=> [4,2,3,5,6,7,1] => ([(1,6),(2,3),(3,6),(4,5),(6,4)],7)
=> ? = 21
[[[],[[],[]],[],[]]]
=> [.,[[[[.,.],[[.,.],.]],.],.]]
=> [4,5,2,3,6,7,1] => ([(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ? = 42
[[[[]],[],[],[],[]]]
=> [.,[[[[[.,[.,.]],.],.],.],.]]
=> [3,2,4,5,6,7,1] => ([(1,6),(2,6),(3,5),(5,4),(6,3)],7)
=> ? = 14
[[[[]],[[]],[],[]]]
=> [.,[[[[.,[.,.]],[.,.]],.],.]]
=> [5,3,2,4,6,7,1] => ([(1,6),(2,5),(3,5),(5,6),(6,4)],7)
=> ? = 56
[[[[],[]],[],[],[]]]
=> [.,[[[[.,[[.,.],.]],.],.],.]]
=> [3,4,2,5,6,7,1] => ([(1,6),(2,3),(3,6),(4,5),(6,4)],7)
=> ? = 21
[[[[[]]],[],[],[]]]
=> [.,[[[[.,[.,[.,.]]],.],.],.]]
=> [4,3,2,5,6,7,1] => ([(1,6),(2,6),(3,6),(4,5),(6,4)],7)
=> ? = 42
[[[[],[],[]],[],[]]]
=> [.,[[[.,[[[.,.],.],.]],.],.]]
=> [3,4,5,2,6,7,1] => ([(1,6),(2,3),(3,5),(5,6),(6,4)],7)
=> ? = 28
[[[[[]],[]],[],[]]]
=> [.,[[[.,[[.,[.,.]],.]],.],.]]
=> [4,3,5,2,6,7,1] => ([(1,6),(2,5),(3,5),(5,6),(6,4)],7)
=> ? = 56
[[[[],[],[],[]],[]]]
=> [.,[[.,[[[[.,.],.],.],.]],.]]
=> [3,4,5,6,2,7,1] => ([(1,3),(2,6),(3,5),(4,6),(5,4)],7)
=> ? = 35
[[[[[[[[]]]]]]]]
=> [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ([],7)
=> ? = 5040
[[],[],[],[],[],[],[[]]]
=> [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [8,1,2,3,4,5,6,7] => ([(1,7),(3,4),(4,6),(5,3),(6,2),(7,5)],8)
=> ? = 8
[[],[],[],[],[],[[]],[]]
=> [[[[[[[.,.],.],.],.],.],[.,.]],.]
=> [7,1,2,3,4,5,6,8] => ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 7
[[],[],[],[],[],[[],[]]]
=> [[[[[[.,.],.],.],.],.],[[.,.],.]]
=> [7,8,1,2,3,4,5,6] => ([(0,7),(1,3),(4,6),(5,4),(6,2),(7,5)],8)
=> ? = 28
[[],[],[],[],[],[[[]]]]
=> [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> [8,7,1,2,3,4,5,6] => ([(2,7),(4,6),(5,4),(6,3),(7,5)],8)
=> ? = 56
[[],[],[],[],[[]],[],[]]
=> [[[[[[[.,.],.],.],.],[.,.]],.],.]
=> [6,1,2,3,4,5,7,8] => ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ? = 6
[[],[],[],[],[[],[]],[]]
=> [[[[[[.,.],.],.],.],[[.,.],.]],.]
=> [6,7,1,2,3,4,5,8] => ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 21
[[],[],[],[],[[],[],[]]]
=> [[[[[.,.],.],.],.],[[[.,.],.],.]]
=> [6,7,8,1,2,3,4,5] => ([(0,7),(1,6),(4,5),(5,3),(6,4),(7,2)],8)
=> ? = 56
Description
The number of linear extensions of a poset.
Mp00048: Ordered trees left-right symmetryOrdered trees
Mp00328: Ordered trees DeBruijn-Morselt plane tree automorphismOrdered trees
St000085: Ordered trees ⟶ ℤResult quality: 56% values known / values provided: 63%distinct values known / distinct values provided: 56%
Values
[[]]
=> [[]]
=> [[]]
=> 1
[[],[]]
=> [[],[]]
=> [[[]]]
=> 1
[[[]]]
=> [[[]]]
=> [[],[]]
=> 2
[[],[],[]]
=> [[],[],[]]
=> [[[[]]]]
=> 1
[[],[[]]]
=> [[[]],[]]
=> [[],[[]]]
=> 3
[[[]],[]]
=> [[],[[]]]
=> [[[],[]]]
=> 2
[[[],[]]]
=> [[[],[]]]
=> [[[]],[]]
=> 3
[[[[]]]]
=> [[[[]]]]
=> [[],[],[]]
=> 6
[[],[],[],[]]
=> [[],[],[],[]]
=> [[[[[]]]]]
=> 1
[[],[],[[]]]
=> [[[]],[],[]]
=> [[],[[[]]]]
=> 4
[[],[[]],[]]
=> [[],[[]],[]]
=> [[[],[[]]]]
=> 3
[[],[[],[]]]
=> [[[],[]],[]]
=> [[[]],[[]]]
=> 6
[[],[[[]]]]
=> [[[[]]],[]]
=> [[],[],[[]]]
=> 12
[[[]],[],[]]
=> [[],[],[[]]]
=> [[[[],[]]]]
=> 2
[[[]],[[]]]
=> [[[]],[[]]]
=> [[],[[],[]]]
=> 8
[[[],[]],[]]
=> [[],[[],[]]]
=> [[[[]],[]]]
=> 3
[[[[]]],[]]
=> [[],[[[]]]]
=> [[[],[],[]]]
=> 6
[[[],[],[]]]
=> [[[],[],[]]]
=> [[[[]]],[]]
=> 4
[[[],[[]]]]
=> [[[[]],[]]]
=> [[],[[]],[]]
=> 12
[[[[]],[]]]
=> [[[],[[]]]]
=> [[[],[]],[]]
=> 8
[[[[],[]]]]
=> [[[[],[]]]]
=> [[[]],[],[]]
=> 12
[[[[[]]]]]
=> [[[[[]]]]]
=> [[],[],[],[]]
=> 24
[[],[],[],[],[]]
=> [[],[],[],[],[]]
=> [[[[[[]]]]]]
=> 1
[[],[],[],[[]]]
=> [[[]],[],[],[]]
=> [[],[[[[]]]]]
=> 5
[[],[],[[]],[]]
=> [[],[[]],[],[]]
=> [[[],[[[]]]]]
=> 4
[[],[],[[],[]]]
=> [[[],[]],[],[]]
=> [[[]],[[[]]]]
=> 10
[[],[],[[[]]]]
=> [[[[]]],[],[]]
=> [[],[],[[[]]]]
=> 20
[[],[[]],[],[]]
=> [[],[],[[]],[]]
=> [[[[],[[]]]]]
=> 3
[[],[[]],[[]]]
=> [[[]],[[]],[]]
=> [[],[[],[[]]]]
=> 15
[[],[[],[]],[]]
=> [[],[[],[]],[]]
=> [[[[]],[[]]]]
=> 6
[[],[[[]]],[]]
=> [[],[[[]]],[]]
=> [[[],[],[[]]]]
=> 12
[[],[[],[],[]]]
=> [[[],[],[]],[]]
=> [[[[]]],[[]]]
=> 10
[[],[[],[[]]]]
=> [[[[]],[]],[]]
=> [[],[[]],[[]]]
=> 30
[[],[[[]],[]]]
=> [[[],[[]]],[]]
=> [[[],[]],[[]]]
=> 20
[[],[[[],[]]]]
=> [[[[],[]]],[]]
=> [[[]],[],[[]]]
=> 30
[[],[[[[]]]]]
=> [[[[[]]]],[]]
=> [[],[],[],[[]]]
=> 60
[[[]],[],[],[]]
=> [[],[],[],[[]]]
=> [[[[[],[]]]]]
=> 2
[[[]],[],[[]]]
=> [[[]],[],[[]]]
=> [[],[[[],[]]]]
=> 10
[[[]],[[]],[]]
=> [[],[[]],[[]]]
=> [[[],[[],[]]]]
=> 8
[[[]],[[],[]]]
=> [[[],[]],[[]]]
=> [[[]],[[],[]]]
=> 20
[[[]],[[[]]]]
=> [[[[]]],[[]]]
=> [[],[],[[],[]]]
=> 40
[[[],[]],[],[]]
=> [[],[],[[],[]]]
=> [[[[[]],[]]]]
=> 3
[[[[]]],[],[]]
=> [[],[],[[[]]]]
=> [[[[],[],[]]]]
=> 6
[[[],[]],[[]]]
=> [[[]],[[],[]]]
=> [[],[[[]],[]]]
=> 15
[[[[]]],[[]]]
=> [[[]],[[[]]]]
=> [[],[[],[],[]]]
=> 30
[[[],[],[]],[]]
=> [[],[[],[],[]]]
=> [[[[[]]],[]]]
=> 4
[[[],[[]]],[]]
=> [[],[[[]],[]]]
=> [[[],[[]],[]]]
=> 12
[[[[]],[]],[]]
=> [[],[[],[[]]]]
=> [[[[],[]],[]]]
=> 8
[[[[],[]]],[]]
=> [[],[[[],[]]]]
=> [[[[]],[],[]]]
=> 12
[[[[[]]]],[]]
=> [[],[[[[]]]]]
=> [[[],[],[],[]]]
=> 24
[[],[],[],[],[],[],[]]
=> [[],[],[],[],[],[],[]]
=> [[[[[[[[]]]]]]]]
=> ? = 1
[[],[],[],[],[[]],[]]
=> [[],[[]],[],[],[],[]]
=> [[[],[[[[[]]]]]]]
=> ? = 6
[[],[],[],[],[[[]]]]
=> [[[[]]],[],[],[],[]]
=> [[],[],[[[[[]]]]]]
=> ? = 42
[[],[],[],[[]],[],[]]
=> [[],[],[[]],[],[],[]]
=> [[[[],[[[[]]]]]]]
=> ? = 5
[[],[],[],[[],[]],[]]
=> [[],[[],[]],[],[],[]]
=> [[[[]],[[[[]]]]]]
=> ? = 15
[[],[],[],[[],[],[]]]
=> [[[],[],[]],[],[],[]]
=> [[[[]]],[[[[]]]]]
=> ? = 35
[[],[],[],[[],[[]]]]
=> [[[[]],[]],[],[],[]]
=> [[],[[]],[[[[]]]]]
=> ? = 105
[[],[],[],[[[[]]]]]
=> [[[[[]]]],[],[],[]]
=> [[],[],[],[[[[]]]]]
=> ? = 210
[[],[],[[]],[],[],[]]
=> [[],[],[],[[]],[],[]]
=> [[[[[],[[[]]]]]]]
=> ? = 4
[[],[],[[],[],[]],[]]
=> [[],[[],[],[]],[],[]]
=> [[[[[]]],[[[]]]]]
=> ? = 20
[[],[],[[],[],[[]]]]
=> [[[[]],[],[]],[],[]]
=> [[],[[[]]],[[[]]]]
=> ? = 140
[[],[],[[],[[]],[]]]
=> [[[],[[]],[]],[],[]]
=> [[[],[[]]],[[[]]]]
=> ? = 105
[[],[],[[],[[],[]]]]
=> [[[[],[]],[]],[],[]]
=> [[[]],[[]],[[[]]]]
=> ? = 210
[[],[],[[],[[[]]]]]
=> [[[[[]]],[]],[],[]]
=> [[],[],[[]],[[[]]]]
=> ? = 420
[[],[],[[[]],[],[]]]
=> [[[],[],[[]]],[],[]]
=> [[[[],[]]],[[[]]]]
=> ? = 70
[[],[],[[[[[]]]]]]
=> [[[[[[]]]]],[],[]]
=> [[],[],[],[],[[[]]]]
=> ? = 840
[[],[[]],[],[],[],[]]
=> [[],[],[],[],[[]],[]]
=> [[[[[[],[[]]]]]]]
=> ? = 3
[[],[[],[]],[],[],[]]
=> [[],[],[],[[],[]],[]]
=> [[[[[[]],[[]]]]]]
=> ? = 6
[[],[[],[]],[[],[]]]
=> [[[],[]],[[],[]],[]]
=> [[[]],[[[]],[[]]]]
=> ? = 126
[[],[[],[[],[]]],[]]
=> [[],[[[],[]],[]],[]]
=> [[[[]],[[]],[[]]]]
=> ? = 90
[[],[[],[[],[[]]]]]
=> [[[[[]],[]],[]],[]]
=> [[],[[]],[[]],[[]]]
=> ? = 630
[[],[[],[[[]],[]]]]
=> [[[[],[[]]],[]],[]]
=> [[[],[]],[[]],[[]]]
=> ? = 420
[[],[[],[[[[]]]]]]
=> [[[[[[]]]],[]],[]]
=> [[],[],[],[[]],[[]]]
=> ? = 1260
[[],[[[[[[]]]]]]]
=> [[[[[[[]]]]]],[]]
=> [[],[],[],[],[],[[]]]
=> ? = 2520
[[[]],[],[],[],[],[]]
=> [[],[],[],[],[],[[]]]
=> [[[[[[[],[]]]]]]]
=> ? = 2
[[[],[]],[],[],[],[]]
=> [[],[],[],[],[[],[]]]
=> [[[[[[[]],[]]]]]]
=> ? = 3
[[[[]]],[],[],[],[]]
=> [[],[],[],[],[[[]]]]
=> [[[[[[],[],[]]]]]]
=> ? = 6
[[[],[],[]],[],[],[]]
=> [[],[],[],[[],[],[]]]
=> [[[[[[[]]],[]]]]]
=> ? = 4
[[[[[]]]],[],[],[]]
=> [[],[],[],[[[[]]]]]
=> [[[[[],[],[],[]]]]]
=> ? = 24
[[[],[],[],[]],[],[]]
=> [[],[],[[],[],[],[]]]
=> [[[[[[[]]]],[]]]]
=> ? = 5
[[[[[[]]]]],[],[]]
=> [[],[],[[[[[]]]]]]
=> [[[[],[],[],[],[]]]]
=> ? = 120
[[[],[],[],[],[]],[]]
=> [[],[[],[],[],[],[]]]
=> [[[[[[[]]]]],[]]]
=> ? = 6
[[[[],[]],[[]]],[]]
=> [[],[[[]],[[],[]]]]
=> [[[],[[[]],[]],[]]]
=> ? = 90
[[[[[]]],[[]]],[]]
=> [[],[[[]],[[[]]]]]
=> [[[],[[],[],[]],[]]]
=> ? = 180
[[[[[[]]]],[]],[]]
=> [[],[[],[[[[]]]]]]
=> [[[[],[],[],[]],[]]]
=> ? = 144
[[[[],[],[[]]]],[]]
=> [[],[[[[]],[],[]]]]
=> [[[],[[[]]],[],[]]]
=> ? = 120
[[[[],[[[]]]]],[]]
=> [[],[[[[[]]],[]]]]
=> [[[],[],[[]],[],[]]]
=> ? = 360
[[[[[]],[[]]]],[]]
=> [[],[[[[]],[[]]]]]
=> [[[],[[],[]],[],[]]]
=> ? = 240
[[[[[],[]],[]]],[]]
=> [[],[[[],[[],[]]]]]
=> [[[[[]],[]],[],[]]]
=> ? = 90
[[[[[[]]],[]]],[]]
=> [[],[[[],[[[]]]]]]
=> [[[[],[],[]],[],[]]]
=> ? = 180
[[[[[],[],[]]]],[]]
=> [[],[[[[],[],[]]]]]
=> [[[[[]]],[],[],[]]]
=> ? = 120
[[[[[[]],[]]]],[]]
=> [[],[[[[],[[]]]]]]
=> [[[[],[]],[],[],[]]]
=> ? = 240
[[[[[[],[]]]]],[]]
=> [[],[[[[[],[]]]]]]
=> [[[[]],[],[],[],[]]]
=> ? = 360
[[[[[[[]]]]]],[]]
=> [[],[[[[[[]]]]]]]
=> [[[],[],[],[],[],[]]]
=> ? = 720
[[[[[[[[]]]]]]]]
=> [[[[[[[[]]]]]]]]
=> [[],[],[],[],[],[],[]]
=> ? = 5040
[[],[],[],[],[],[],[],[]]
=> [[],[],[],[],[],[],[],[]]
=> [[[[[[[[[]]]]]]]]]
=> ? = 1
[[],[],[],[],[],[[]],[]]
=> [[],[[]],[],[],[],[],[]]
=> [[[],[[[[[[]]]]]]]]
=> ? = 7
[[],[],[],[],[],[[],[]]]
=> [[[],[]],[],[],[],[],[]]
=> [[[]],[[[[[[]]]]]]]
=> ? = 28
[[],[],[],[],[],[[[]]]]
=> [[[[]]],[],[],[],[],[]]
=> [[],[],[[[[[[]]]]]]]
=> ? = 56
[[],[],[],[],[[]],[],[]]
=> [[],[],[[]],[],[],[],[]]
=> [[[[],[[[[[]]]]]]]]
=> ? = 6
Description
The number of linear extensions of the tree. We use Knuth's hook length formula for trees [pg.70, 1]. For an ordered tree T on n vertices, the number of linear extensions is n!vT|Tv|, where Tv is the number of vertices of the subtree rooted at v.
Matching statistic: St001855
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00170: Permutations to signed permutationSigned permutations
St001855: Signed permutations ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 12%
Values
[[]]
=> [.,.]
=> [1] => [1] => 1
[[],[]]
=> [[.,.],.]
=> [1,2] => [1,2] => 1
[[[]]]
=> [.,[.,.]]
=> [2,1] => [2,1] => 2
[[],[],[]]
=> [[[.,.],.],.]
=> [1,2,3] => [1,2,3] => 1
[[],[[]]]
=> [[.,.],[.,.]]
=> [3,1,2] => [3,1,2] => 3
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => 2
[[[],[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => [2,3,1] => 3
[[[[]]]]
=> [.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => 6
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => 1
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => [4,1,2,3] => 4
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => [3,1,2,4] => 3
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => [3,4,1,2] => 6
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => [4,3,1,2] => 12
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => 2
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => [4,2,1,3] => 8
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [2,3,1,4] => 3
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => 6
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [2,3,4,1] => 4
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => [4,2,3,1] => 12
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [3,2,4,1] => 8
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [3,4,2,1] => 12
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => 24
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,2,3,4,5] => 1
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [5,1,2,3,4] => ? = 5
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => [4,1,2,3,5] => ? = 4
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [4,5,1,2,3] => ? = 10
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [5,4,1,2,3] => ? = 20
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => [3,1,2,4,5] => ? = 3
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [5,3,1,2,4] => ? = 15
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => [3,4,1,2,5] => ? = 6
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => [4,3,1,2,5] => ? = 12
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [3,4,5,1,2] => ? = 10
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [5,3,4,1,2] => ? = 30
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [4,3,5,1,2] => ? = 20
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [4,5,3,1,2] => ? = 30
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [5,4,3,1,2] => ? = 60
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [2,1,3,4,5] => ? = 2
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [5,2,1,3,4] => ? = 10
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => [4,2,1,3,5] => ? = 8
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [4,5,2,1,3] => ? = 20
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [5,4,2,1,3] => ? = 40
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [2,3,1,4,5] => ? = 3
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [3,2,1,4,5] => ? = 6
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [5,2,3,1,4] => ? = 15
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [5,3,2,1,4] => ? = 30
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [2,3,4,1,5] => ? = 4
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => [4,2,3,1,5] => ? = 12
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [3,2,4,1,5] => ? = 8
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [3,4,2,1,5] => ? = 12
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,3,2,1,5] => ? = 24
[[[],[],[],[]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [2,3,4,5,1] => ? = 5
[[[],[],[[]]]]
=> [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [5,2,3,4,1] => ? = 20
[[[],[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [4,2,3,5,1] => ? = 15
[[[],[[],[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [4,5,2,3,1] => ? = 30
[[[],[[[]]]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [5,4,2,3,1] => ? = 60
[[[[]],[],[]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [3,2,4,5,1] => ? = 10
[[[[]],[[]]]]
=> [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [5,3,2,4,1] => ? = 40
[[[[],[]],[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [3,4,2,5,1] => ? = 15
[[[[[]]],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [4,3,2,5,1] => ? = 30
[[[[],[],[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [3,4,5,2,1] => ? = 20
[[[[],[[]]]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [5,3,4,2,1] => ? = 60
[[[[[]],[]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [4,3,5,2,1] => ? = 40
[[[[[],[]]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [4,5,3,2,1] => ? = 60
[[[[[[]]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => ? = 120
[[],[],[],[],[],[]]
=> [[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? = 1
[[],[],[],[],[[]]]
=> [[[[[.,.],.],.],.],[.,.]]
=> [6,1,2,3,4,5] => [6,1,2,3,4,5] => ? = 6
[[],[],[],[[]],[]]
=> [[[[[.,.],.],.],[.,.]],.]
=> [5,1,2,3,4,6] => [5,1,2,3,4,6] => ? = 5
[[],[],[],[[],[]]]
=> [[[[.,.],.],.],[[.,.],.]]
=> [5,6,1,2,3,4] => [5,6,1,2,3,4] => ? = 15
[[],[],[],[[[]]]]
=> [[[[.,.],.],.],[.,[.,.]]]
=> [6,5,1,2,3,4] => [6,5,1,2,3,4] => ? = 30
[[],[],[[]],[],[]]
=> [[[[[.,.],.],[.,.]],.],.]
=> [4,1,2,3,5,6] => [4,1,2,3,5,6] => ? = 4
[[],[],[[]],[[]]]
=> [[[[.,.],.],[.,.]],[.,.]]
=> [6,4,1,2,3,5] => [6,4,1,2,3,5] => ? = 24
[[],[],[[],[]],[]]
=> [[[[.,.],.],[[.,.],.]],.]
=> [4,5,1,2,3,6] => [4,5,1,2,3,6] => ? = 10
[[],[],[[[]]],[]]
=> [[[[.,.],.],[.,[.,.]]],.]
=> [5,4,1,2,3,6] => [5,4,1,2,3,6] => ? = 20
Description
The number of signed permutations less than or equal to a signed permutation in left weak order.