searching the database
Your data matches 201 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000113
St000113: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 1
['A',2]
=> 2
['B',2]
=> 2
['G',2]
=> 2
['A',3]
=> 3
['B',3]
=> 3
['C',3]
=> 3
['A',4]
=> 4
['B',4]
=> 4
['C',4]
=> 4
['F',4]
=> 4
['A',5]
=> 5
['B',5]
=> 5
['C',5]
=> 5
['D',5]
=> 5
['A',6]
=> 6
['B',6]
=> 6
['C',6]
=> 6
['D',6]
=> 6
['E',6]
=> 6
['A',7]
=> 7
['B',7]
=> 7
['C',7]
=> 7
['D',7]
=> 7
['E',7]
=> 7
['A',8]
=> 8
['B',8]
=> 8
['C',8]
=> 8
['D',8]
=> 8
['E',8]
=> 8
Description
The rank of the Cartan type.
The rank of a Cartan type $X_n$ is equal to the rank of the corresponding Cartan matrix.
Matching statistic: St000068
Mp00148: Finite Cartan types —to root poset⟶ Posets
St000068: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000068: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> 3
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> 3
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> 4
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> 4
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> 4
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> 4
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> 5
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> 5
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> 5
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> 5
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> 6
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> 6
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> 6
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> 6
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> 6
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> 7
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> 7
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> 7
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> 7
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> 7
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> 8
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> 8
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> 8
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> 8
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> 8
Description
The number of minimal elements in a poset.
Matching statistic: St000527
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
St000527: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000527: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> 3
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> 3
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> 4
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> 4
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> 4
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> 4
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> 5
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> 5
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> 5
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> 5
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> 6
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> 6
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> 6
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> 6
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> 6
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> 7
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> 7
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> 7
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> 7
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> 7
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> 8
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> 8
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> 8
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> 8
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> 8
Description
The width of the poset.
This is the size of the poset's longest antichain, also called Dilworth number.
Matching statistic: St000069
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2)],3)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> 3
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,6),(3,8),(4,5),(4,8),(5,1),(5,7),(6,3),(6,4),(8,2),(8,7)],9)
=> 3
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,6),(3,8),(4,5),(4,8),(5,1),(5,7),(6,3),(6,4),(8,2),(8,7)],9)
=> 3
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(0,5),(0,6),(3,2),(3,8),(4,1),(4,9),(5,3),(5,7),(6,4),(6,7),(7,8),(7,9)],10)
=> 4
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,9),(3,15),(4,14),(5,6),(5,14),(6,7),(6,10),(7,8),(7,13),(8,2),(8,11),(9,4),(9,5),(10,13),(10,15),(13,11),(13,12),(14,3),(14,10),(15,1),(15,12)],16)
=> 4
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,9),(3,15),(4,14),(5,6),(5,14),(6,7),(6,10),(7,8),(7,13),(8,2),(8,11),(9,4),(9,5),(10,13),(10,15),(13,11),(13,12),(14,3),(14,10),(15,1),(15,12)],16)
=> 4
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(0,12),(1,18),(1,19),(4,21),(5,15),(6,14),(7,13),(8,9),(8,21),(9,6),(9,22),(10,2),(10,16),(11,3),(11,17),(12,7),(13,4),(13,8),(14,18),(14,20),(15,19),(15,20),(18,10),(18,23),(19,11),(19,23),(20,23),(21,5),(21,22),(22,1),(22,14),(22,15),(23,16),(23,17)],24)
=> 4
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(0,7),(0,8),(3,5),(3,12),(4,6),(4,13),(5,2),(5,10),(6,1),(6,11),(7,3),(7,9),(8,4),(8,9),(9,12),(9,13),(12,10),(12,14),(13,11),(13,14)],15)
=> 5
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,12),(2,13),(4,15),(5,16),(6,10),(6,13),(7,8),(7,18),(8,11),(8,19),(9,7),(9,17),(10,9),(10,20),(11,1),(11,14),(12,2),(12,6),(13,5),(13,20),(15,3),(15,22),(16,4),(16,24),(17,18),(17,24),(18,19),(18,21),(19,14),(19,23),(20,16),(20,17),(21,22),(21,23),(24,15),(24,21)],25)
=> 5
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,12),(2,13),(4,15),(5,16),(6,10),(6,13),(7,8),(7,18),(8,11),(8,19),(9,7),(9,17),(10,9),(10,20),(11,1),(11,14),(12,2),(12,6),(13,5),(13,20),(15,3),(15,22),(16,4),(16,24),(17,18),(17,24),(18,19),(18,21),(19,14),(19,23),(20,16),(20,17),(21,22),(21,23),(24,15),(24,21)],25)
=> 5
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(0,10),(1,15),(2,16),(2,17),(6,11),(6,13),(7,12),(7,13),(8,5),(8,14),(9,6),(9,7),(9,15),(10,1),(10,9),(11,16),(11,19),(12,17),(12,19),(13,8),(13,19),(15,2),(15,11),(15,12),(16,4),(16,18),(17,3),(17,18),(19,14),(19,18)],20)
=> 5
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ([(0,9),(0,10),(3,7),(3,14),(4,8),(4,15),(5,3),(5,16),(6,4),(6,17),(7,2),(7,12),(8,1),(8,13),(9,5),(9,11),(10,6),(10,11),(11,16),(11,17),(14,12),(14,19),(15,13),(15,20),(16,14),(16,18),(17,15),(17,18),(18,19),(18,20)],21)
=> 6
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(0,3),(3,4),(3,8),(4,20),(5,23),(6,21),(7,22),(8,12),(8,20),(9,2),(9,19),(10,13),(10,30),(11,9),(11,35),(12,10),(12,34),(13,15),(13,33),(14,11),(14,31),(15,14),(15,32),(20,7),(20,34),(21,5),(21,26),(22,6),(22,27),(23,1),(23,18),(24,25),(24,26),(25,28),(25,29),(26,23),(26,28),(27,21),(27,24),(28,17),(28,18),(29,16),(29,17),(30,27),(30,33),(31,29),(31,35),(32,25),(32,31),(33,24),(33,32),(34,22),(34,30),(35,16),(35,19)],36)
=> 6
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(0,3),(3,4),(3,8),(4,20),(5,23),(6,21),(7,22),(8,12),(8,20),(9,2),(9,19),(10,13),(10,30),(11,9),(11,35),(12,10),(12,34),(13,15),(13,33),(14,11),(14,31),(15,14),(15,32),(20,7),(20,34),(21,5),(21,26),(22,6),(22,27),(23,1),(23,18),(24,25),(24,26),(25,28),(25,29),(26,23),(26,28),(27,21),(27,24),(28,17),(28,18),(29,16),(29,17),(30,27),(30,33),(31,29),(31,35),(32,25),(32,31),(33,24),(33,32),(34,22),(34,30),(35,16),(35,19)],36)
=> 6
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ([(0,13),(2,25),(2,26),(5,23),(6,24),(7,14),(7,21),(8,14),(8,22),(9,12),(9,23),(10,1),(10,18),(11,10),(11,16),(12,7),(12,8),(12,15),(13,5),(13,9),(14,11),(14,28),(15,21),(15,22),(15,24),(16,17),(16,18),(19,25),(19,29),(20,26),(20,29),(21,19),(21,28),(22,20),(22,28),(23,6),(23,15),(24,2),(24,19),(24,20),(25,4),(25,27),(26,3),(26,27),(28,16),(28,29),(29,17),(29,27)],30)
=> 6
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ([(0,14),(2,24),(3,23),(6,16),(6,25),(7,17),(7,26),(8,19),(8,20),(9,3),(9,18),(10,2),(10,18),(11,8),(11,28),(11,29),(12,4),(12,21),(13,5),(13,22),(14,15),(15,9),(15,10),(16,30),(16,33),(17,30),(17,34),(18,11),(18,23),(18,24),(19,25),(19,35),(20,26),(20,35),(23,27),(23,28),(24,27),(24,29),(25,12),(25,33),(26,13),(26,34),(27,32),(28,6),(28,19),(28,32),(29,7),(29,20),(29,32),(30,1),(30,31),(32,16),(32,17),(32,35),(33,21),(33,31),(34,22),(34,31),(35,33),(35,34)],36)
=> 6
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ? = 7
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 7
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 7
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ?
=> ? = 7
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ?
=> ? = 7
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ? = 8
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 8
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 8
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ?
=> ? = 8
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ?
=> ? = 8
Description
The number of maximal elements of a poset.
Matching statistic: St000097
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> 3
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> 3
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> 4
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> 4
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> 4
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> 4
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> 5
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> 5
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> 5
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> 5
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ([(1,2),(1,7),(1,16),(1,18),(1,20),(2,6),(2,15),(2,17),(2,19),(3,6),(3,7),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(4,5),(4,11),(4,12),(4,14),(4,15),(4,17),(4,18),(4,19),(4,20),(5,11),(5,12),(5,13),(5,16),(5,17),(5,18),(5,19),(5,20),(6,7),(6,9),(6,11),(6,13),(6,16),(6,18),(6,20),(7,10),(7,12),(7,14),(7,15),(7,17),(7,19),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(9,10),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(10,11),(10,13),(10,15),(10,16),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,17),(11,19),(11,20),(12,13),(12,16),(12,18),(12,19),(12,20),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(14,16),(14,17),(14,18),(14,19),(14,20),(15,16),(15,18),(15,20),(16,17),(16,19),(17,18),(17,20),(18,19),(19,20)],21)
=> 6
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> 6
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> 6
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ([(2,7),(3,5),(3,7),(3,20),(4,11),(4,12),(4,20),(4,23),(4,27),(4,28),(4,29),(5,11),(5,12),(5,23),(5,27),(5,28),(5,29),(6,8),(6,18),(6,19),(6,25),(6,26),(6,27),(6,28),(6,29),(7,11),(7,12),(7,23),(7,27),(7,28),(7,29),(8,19),(8,21),(8,22),(8,24),(8,25),(8,26),(8,28),(8,29),(9,18),(9,19),(9,21),(9,22),(9,24),(9,25),(9,26),(9,27),(9,28),(9,29),(10,11),(10,12),(10,13),(10,14),(10,15),(10,18),(10,19),(10,23),(10,27),(10,28),(10,29),(11,12),(11,15),(11,17),(11,20),(11,22),(11,24),(11,26),(12,14),(12,16),(12,20),(12,21),(12,24),(12,25),(13,16),(13,17),(13,20),(13,21),(13,22),(13,24),(13,25),(13,26),(13,27),(13,28),(13,29),(14,15),(14,17),(14,20),(14,22),(14,23),(14,24),(14,26),(14,27),(14,28),(14,29),(15,16),(15,20),(15,21),(15,23),(15,24),(15,25),(15,27),(15,28),(15,29),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,26),(16,27),(16,28),(16,29),(17,18),(17,19),(17,21),(17,23),(17,24),(17,25),(17,27),(17,28),(17,29),(18,20),(18,21),(18,22),(18,24),(18,25),(18,26),(18,28),(18,29),(19,20),(19,21),(19,22),(19,24),(19,25),(19,26),(19,29),(20,23),(20,27),(20,28),(20,29),(21,22),(21,23),(21,26),(21,27),(21,28),(21,29),(22,23),(22,25),(22,27),(22,28),(22,29),(23,24),(23,25),(23,26),(24,27),(24,28),(24,29),(25,26),(25,27),(25,28),(25,29),(26,27),(26,28),(26,29)],30)
=> 6
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ([(3,18),(3,19),(4,5),(4,19),(5,18),(6,10),(6,11),(6,18),(6,19),(6,24),(7,15),(7,16),(7,27),(7,32),(7,33),(7,34),(7,35),(8,9),(8,11),(8,18),(8,23),(8,24),(8,26),(8,29),(8,31),(8,33),(8,35),(9,10),(9,19),(9,23),(9,24),(9,25),(9,28),(9,30),(9,32),(9,34),(10,11),(10,18),(10,23),(10,26),(10,29),(10,31),(10,33),(10,35),(11,19),(11,23),(11,25),(11,28),(11,30),(11,32),(11,34),(12,23),(12,25),(12,26),(12,28),(12,29),(12,30),(12,31),(12,32),(12,33),(12,34),(12,35),(13,14),(13,16),(13,20),(13,22),(13,27),(13,28),(13,30),(13,32),(13,33),(13,34),(13,35),(14,15),(14,20),(14,21),(14,27),(14,29),(14,31),(14,32),(14,33),(14,34),(14,35),(15,16),(15,20),(15,22),(15,27),(15,28),(15,30),(15,32),(15,34),(15,35),(16,20),(16,21),(16,27),(16,29),(16,31),(16,33),(16,34),(16,35),(17,20),(17,21),(17,22),(17,27),(17,28),(17,29),(17,30),(17,31),(17,32),(17,33),(17,34),(17,35),(18,19),(18,23),(18,25),(18,28),(18,30),(18,32),(18,34),(19,23),(19,26),(19,29),(19,31),(19,33),(19,35),(20,23),(20,25),(20,26),(20,30),(20,31),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,25),(21,26),(21,28),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,23),(22,25),(22,26),(22,29),(22,30),(22,31),(22,32),(22,33),(22,34),(22,35),(23,24),(23,27),(23,28),(23,29),(24,25),(24,26),(24,28),(24,29),(24,30),(24,31),(24,32),(24,33),(24,34),(24,35),(25,26),(25,27),(25,28),(25,29),(25,31),(25,33),(25,35),(26,27),(26,28),(26,29),(26,30),(26,32),(26,34),(27,30),(27,31),(27,32),(27,33),(27,34),(27,35),(28,29),(28,31),(28,33),(28,35),(29,30),(29,32),(29,34),(30,31),(30,33),(30,35),(31,32),(31,34),(32,33),(32,35),(33,34),(34,35)],36)
=> 6
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ? = 7
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 7
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 7
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ?
=> ? = 7
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ?
=> ? = 7
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ? = 8
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 8
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 8
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ?
=> ? = 8
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ?
=> ? = 8
Description
The order of the largest clique of the graph.
A clique in a graph $G$ is a subset $U \subseteq V(G)$ such that any pair of vertices in $U$ are adjacent. I.e. the subgraph induced by $U$ is a complete graph.
Matching statistic: St000098
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> 3
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> 3
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> 4
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> 4
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> 4
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> 4
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> 5
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> 5
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> 5
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> 5
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ([(1,2),(1,7),(1,16),(1,18),(1,20),(2,6),(2,15),(2,17),(2,19),(3,6),(3,7),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(4,5),(4,11),(4,12),(4,14),(4,15),(4,17),(4,18),(4,19),(4,20),(5,11),(5,12),(5,13),(5,16),(5,17),(5,18),(5,19),(5,20),(6,7),(6,9),(6,11),(6,13),(6,16),(6,18),(6,20),(7,10),(7,12),(7,14),(7,15),(7,17),(7,19),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(9,10),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(10,11),(10,13),(10,15),(10,16),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,17),(11,19),(11,20),(12,13),(12,16),(12,18),(12,19),(12,20),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(14,16),(14,17),(14,18),(14,19),(14,20),(15,16),(15,18),(15,20),(16,17),(16,19),(17,18),(17,20),(18,19),(19,20)],21)
=> 6
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> 6
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> 6
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ([(2,7),(3,5),(3,7),(3,20),(4,11),(4,12),(4,20),(4,23),(4,27),(4,28),(4,29),(5,11),(5,12),(5,23),(5,27),(5,28),(5,29),(6,8),(6,18),(6,19),(6,25),(6,26),(6,27),(6,28),(6,29),(7,11),(7,12),(7,23),(7,27),(7,28),(7,29),(8,19),(8,21),(8,22),(8,24),(8,25),(8,26),(8,28),(8,29),(9,18),(9,19),(9,21),(9,22),(9,24),(9,25),(9,26),(9,27),(9,28),(9,29),(10,11),(10,12),(10,13),(10,14),(10,15),(10,18),(10,19),(10,23),(10,27),(10,28),(10,29),(11,12),(11,15),(11,17),(11,20),(11,22),(11,24),(11,26),(12,14),(12,16),(12,20),(12,21),(12,24),(12,25),(13,16),(13,17),(13,20),(13,21),(13,22),(13,24),(13,25),(13,26),(13,27),(13,28),(13,29),(14,15),(14,17),(14,20),(14,22),(14,23),(14,24),(14,26),(14,27),(14,28),(14,29),(15,16),(15,20),(15,21),(15,23),(15,24),(15,25),(15,27),(15,28),(15,29),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,26),(16,27),(16,28),(16,29),(17,18),(17,19),(17,21),(17,23),(17,24),(17,25),(17,27),(17,28),(17,29),(18,20),(18,21),(18,22),(18,24),(18,25),(18,26),(18,28),(18,29),(19,20),(19,21),(19,22),(19,24),(19,25),(19,26),(19,29),(20,23),(20,27),(20,28),(20,29),(21,22),(21,23),(21,26),(21,27),(21,28),(21,29),(22,23),(22,25),(22,27),(22,28),(22,29),(23,24),(23,25),(23,26),(24,27),(24,28),(24,29),(25,26),(25,27),(25,28),(25,29),(26,27),(26,28),(26,29)],30)
=> 6
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ([(3,18),(3,19),(4,5),(4,19),(5,18),(6,10),(6,11),(6,18),(6,19),(6,24),(7,15),(7,16),(7,27),(7,32),(7,33),(7,34),(7,35),(8,9),(8,11),(8,18),(8,23),(8,24),(8,26),(8,29),(8,31),(8,33),(8,35),(9,10),(9,19),(9,23),(9,24),(9,25),(9,28),(9,30),(9,32),(9,34),(10,11),(10,18),(10,23),(10,26),(10,29),(10,31),(10,33),(10,35),(11,19),(11,23),(11,25),(11,28),(11,30),(11,32),(11,34),(12,23),(12,25),(12,26),(12,28),(12,29),(12,30),(12,31),(12,32),(12,33),(12,34),(12,35),(13,14),(13,16),(13,20),(13,22),(13,27),(13,28),(13,30),(13,32),(13,33),(13,34),(13,35),(14,15),(14,20),(14,21),(14,27),(14,29),(14,31),(14,32),(14,33),(14,34),(14,35),(15,16),(15,20),(15,22),(15,27),(15,28),(15,30),(15,32),(15,34),(15,35),(16,20),(16,21),(16,27),(16,29),(16,31),(16,33),(16,34),(16,35),(17,20),(17,21),(17,22),(17,27),(17,28),(17,29),(17,30),(17,31),(17,32),(17,33),(17,34),(17,35),(18,19),(18,23),(18,25),(18,28),(18,30),(18,32),(18,34),(19,23),(19,26),(19,29),(19,31),(19,33),(19,35),(20,23),(20,25),(20,26),(20,30),(20,31),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,25),(21,26),(21,28),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,23),(22,25),(22,26),(22,29),(22,30),(22,31),(22,32),(22,33),(22,34),(22,35),(23,24),(23,27),(23,28),(23,29),(24,25),(24,26),(24,28),(24,29),(24,30),(24,31),(24,32),(24,33),(24,34),(24,35),(25,26),(25,27),(25,28),(25,29),(25,31),(25,33),(25,35),(26,27),(26,28),(26,29),(26,30),(26,32),(26,34),(27,30),(27,31),(27,32),(27,33),(27,34),(27,35),(28,29),(28,31),(28,33),(28,35),(29,30),(29,32),(29,34),(30,31),(30,33),(30,35),(31,32),(31,34),(32,33),(32,35),(33,34),(34,35)],36)
=> 6
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ? = 7
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 7
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 7
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ?
=> ? = 7
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ?
=> ? = 7
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ? = 8
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 8
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 8
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ?
=> ? = 8
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ?
=> ? = 8
Description
The chromatic number of a graph.
The minimal number of colors needed to color the vertices of the graph such that no two vertices which share an edge have the same color.
Matching statistic: St000533
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000533: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 75%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000533: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 75%
Values
['A',1]
=> ([],1)
=> [1]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> 3
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> 3
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> 3
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> 4
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> 4
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> 4
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> 4
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [5,4,3,2,1]
=> 5
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> 5
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> 5
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [7,5,4,3,1]
=> 5
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [6,5,4,3,2,1]
=> 6
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> 6
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> 6
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> [9,7,5,5,3,1]
=> 6
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> [11,8,7,5,4,1]
=> 6
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ? = 7
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 7
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 7
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ?
=> ? = 7
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ?
=> ? = 7
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ? = 8
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 8
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 8
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ?
=> ? = 8
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ?
=> ? = 8
Description
The minimum of the number of parts and the size of the first part of an integer partition.
This is also an upper bound on the maximal number of non-attacking rooks that can be placed on the Ferrers board.
Matching statistic: St000783
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000783: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 75%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000783: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 75%
Values
['A',1]
=> ([],1)
=> [1]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> 3
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> 3
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> 3
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> 4
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> 4
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> 4
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> 4
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [5,4,3,2,1]
=> 5
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> 5
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> 5
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [7,5,4,3,1]
=> 5
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [6,5,4,3,2,1]
=> 6
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> 6
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> 6
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> [9,7,5,5,3,1]
=> 6
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> [11,8,7,5,4,1]
=> 6
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ? = 7
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 7
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 7
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ?
=> ? = 7
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ?
=> ? = 7
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ? = 8
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 8
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 8
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ?
=> ? = 8
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ?
=> ? = 8
Description
The side length of the largest staircase partition fitting into a partition.
For an integer partition $(\lambda_1\geq \lambda_2\geq\dots)$ this is the largest integer $k$ such that $\lambda_i > k-i$ for $i\in\{1,\dots,k\}$.
In other words, this is the length of a longest (strict) north-east chain of cells in the Ferrers diagram of the partition, using the English convention. Equivalently, this is the maximal number of non-attacking rooks that can be placed on the Ferrers diagram.
This is also the maximal number of occurrences of a colour in a proper colouring of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic records the largest part occurring in any of these partitions.
Matching statistic: St000146
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000146: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 75%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000146: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 75%
Values
['A',1]
=> ([],1)
=> [1]
=> -1 = 1 - 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 0 = 2 - 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 0 = 2 - 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> 0 = 2 - 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> 1 = 3 - 2
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> 1 = 3 - 2
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> 1 = 3 - 2
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> 2 = 4 - 2
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> 2 = 4 - 2
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> 2 = 4 - 2
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> 2 = 4 - 2
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [5,4,3,2,1]
=> 3 = 5 - 2
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> 3 = 5 - 2
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> 3 = 5 - 2
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [7,5,4,3,1]
=> 3 = 5 - 2
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [6,5,4,3,2,1]
=> 4 = 6 - 2
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> 4 = 6 - 2
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> 4 = 6 - 2
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> [9,7,5,5,3,1]
=> 4 = 6 - 2
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> [11,8,7,5,4,1]
=> 4 = 6 - 2
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ? = 7 - 2
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 7 - 2
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ? = 7 - 2
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ?
=> ? = 7 - 2
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ?
=> ? = 7 - 2
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ? = 8 - 2
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 8 - 2
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ? = 8 - 2
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ?
=> ? = 8 - 2
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ?
=> ? = 8 - 2
Description
The Andrews-Garvan crank of a partition.
If $\pi$ is a partition, let $l(\pi)$ be its length (number of parts), $\omega(\pi)$ be the number of parts equal to 1, and $\mu(\pi)$ be the number of parts larger than $\omega(\pi)$. The crank is then defined by
$$
c(\pi) =
\begin{cases}
l(\pi) &\text{if \(\omega(\pi)=0\)}\\
\mu(\pi) - \omega(\pi) &\text{otherwise}.
\end{cases}
$$
This statistic was defined in [1] to explain Ramanujan's partition congruence $$p(11n+6) \equiv 0 \pmod{11}$$ in the same way as the Dyson rank ([[St000145]]) explains the congruences $$p(5n+4) \equiv 0 \pmod{5}$$ and $$p(7n+5) \equiv 0 \pmod{7}.$$
Matching statistic: St001484
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001484: Integer partitions ⟶ ℤResult quality: 60% ●values known / values provided: 60%●distinct values known / distinct values provided: 75%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001484: Integer partitions ⟶ ℤResult quality: 60% ●values known / values provided: 60%●distinct values known / distinct values provided: 75%
Values
['A',1]
=> ([],1)
=> [1]
=> []
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> 1 = 2 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 1 = 2 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2 = 3 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [3,1]
=> 2 = 3 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [3,1]
=> 2 = 3 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [3,2,1]
=> 3 = 4 - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> [5,3,1]
=> 3 = 4 - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> [5,3,1]
=> 3 = 4 - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> [7,5,1]
=> 3 = 4 - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [5,4,3,2,1]
=> [4,3,2,1]
=> 4 = 5 - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [7,5,3,1]
=> 4 = 5 - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [7,5,3,1]
=> 4 = 5 - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [7,5,4,3,1]
=> [5,4,3,1]
=> 4 = 5 - 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [6,5,4,3,2,1]
=> [5,4,3,2,1]
=> 5 = 6 - 1
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> [9,7,5,3,1]
=> 5 = 6 - 1
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> [11,9,7,5,3,1]
=> [9,7,5,3,1]
=> 5 = 6 - 1
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> [9,7,5,5,3,1]
=> [7,5,5,3,1]
=> ? = 6 - 1
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> [11,8,7,5,4,1]
=> [8,7,5,4,1]
=> ? = 6 - 1
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ?
=> ? = 7 - 1
['B',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ?
=> ? = 7 - 1
['C',7]
=> ([(0,28),(1,27),(2,28),(2,47),(3,45),(3,46),(4,46),(4,47),(5,45),(5,48),(6,27),(6,48),(8,25),(9,23),(10,24),(11,26),(12,13),(13,7),(14,21),(15,22),(16,18),(17,16),(18,20),(19,17),(20,15),(21,19),(22,13),(23,11),(23,35),(24,9),(24,34),(25,10),(25,33),(26,12),(26,22),(27,14),(28,8),(28,36),(29,30),(29,33),(30,31),(30,41),(31,34),(31,42),(32,30),(32,43),(33,24),(33,31),(34,23),(34,40),(35,15),(35,26),(36,25),(36,29),(37,29),(37,32),(38,32),(38,39),(39,19),(39,43),(40,20),(40,35),(41,16),(41,42),(42,18),(42,40),(43,17),(43,41),(44,21),(44,39),(45,38),(45,44),(46,37),(46,38),(47,36),(47,37),(48,14),(48,44)],49)
=> ?
=> ?
=> ? = 7 - 1
['D',7]
=> ([(0,34),(1,33),(2,27),(3,31),(3,37),(4,30),(4,31),(5,27),(5,30),(6,33),(6,34),(6,37),(8,26),(9,25),(10,14),(11,41),(12,41),(13,39),(14,7),(15,16),(16,14),(17,20),(17,39),(18,21),(18,39),(19,22),(20,23),(20,40),(21,24),(21,40),(22,29),(23,11),(23,38),(24,12),(24,38),(25,10),(25,16),(26,9),(26,32),(27,19),(28,22),(28,36),(29,11),(29,12),(30,19),(30,28),(31,28),(31,35),(32,15),(32,25),(33,13),(33,17),(34,13),(34,18),(35,20),(35,21),(35,36),(36,23),(36,24),(36,29),(37,17),(37,18),(37,35),(38,32),(38,41),(39,8),(39,40),(40,26),(40,38),(41,15)],42)
=> ?
=> ?
=> ? = 7 - 1
['E',7]
=> ([(0,49),(1,40),(2,41),(3,40),(3,46),(4,46),(4,52),(5,41),(5,51),(6,49),(6,51),(6,52),(7,9),(9,8),(10,48),(11,39),(12,24),(13,14),(13,47),(14,27),(15,22),(15,34),(16,23),(16,33),(17,60),(18,57),(19,56),(20,58),(21,13),(21,58),(22,11),(22,62),(23,10),(23,61),(24,7),(25,38),(26,24),(27,26),(28,17),(28,59),(29,28),(29,53),(30,42),(31,19),(31,53),(32,18),(32,60),(33,15),(33,35),(33,61),(34,21),(34,62),(35,22),(35,54),(36,37),(36,56),(37,18),(37,55),(38,12),(38,26),(39,25),(40,30),(41,45),(42,17),(42,32),(43,36),(43,44),(43,53),(44,32),(44,37),(44,59),(45,19),(45,36),(46,30),(46,50),(47,27),(47,38),(48,20),(48,21),(49,29),(49,31),(50,28),(50,42),(50,44),(51,31),(51,43),(51,45),(52,29),(52,43),(52,50),(53,16),(53,56),(53,59),(54,20),(54,62),(55,57),(55,61),(56,23),(56,55),(57,54),(58,25),(58,47),(59,33),(59,55),(59,60),(60,35),(60,57),(61,34),(61,48),(61,54),(62,39),(62,58)],63)
=> ?
=> ?
=> ? = 7 - 1
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ?
=> ? = 8 - 1
['B',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ?
=> ? = 8 - 1
['C',8]
=> ([(0,33),(1,32),(2,33),(2,62),(3,60),(3,61),(4,59),(4,61),(5,60),(5,62),(6,59),(6,63),(7,32),(7,63),(9,30),(10,28),(11,27),(12,29),(13,31),(14,15),(15,8),(16,25),(17,26),(18,20),(19,18),(20,22),(21,19),(22,24),(23,21),(24,17),(25,23),(26,15),(27,13),(27,46),(28,11),(28,45),(29,10),(29,43),(30,12),(30,44),(31,14),(31,26),(32,16),(33,9),(33,47),(34,35),(34,40),(35,38),(35,43),(36,34),(36,39),(37,34),(37,44),(38,41),(38,53),(39,40),(39,55),(40,38),(40,54),(41,45),(41,56),(42,39),(42,57),(43,28),(43,41),(44,29),(44,35),(45,27),(45,52),(46,17),(46,31),(47,30),(47,37),(48,36),(48,42),(49,36),(49,37),(50,42),(50,51),(51,23),(51,57),(52,24),(52,46),(53,20),(53,56),(54,18),(54,53),(55,19),(55,54),(56,22),(56,52),(57,21),(57,55),(58,25),(58,51),(59,50),(59,58),(60,48),(60,49),(61,48),(61,50),(62,47),(62,49),(63,16),(63,58)],64)
=> ?
=> ?
=> ? = 8 - 1
['D',8]
=> ([(0,41),(1,40),(2,34),(3,45),(3,46),(4,45),(4,50),(5,44),(5,46),(6,34),(6,44),(7,40),(7,41),(7,50),(9,33),(10,31),(11,32),(12,16),(13,53),(14,54),(15,54),(16,8),(17,16),(18,22),(18,53),(19,23),(19,53),(20,24),(21,25),(22,29),(22,55),(23,30),(23,55),(24,26),(25,17),(26,39),(27,14),(27,52),(28,15),(28,52),(29,27),(29,51),(30,28),(30,51),(31,11),(31,42),(32,9),(32,36),(33,12),(33,17),(34,20),(35,38),(35,49),(36,25),(36,33),(37,24),(37,38),(38,26),(38,47),(39,14),(39,15),(40,13),(40,18),(41,13),(41,19),(42,32),(42,43),(43,21),(43,36),(44,20),(44,37),(45,35),(45,48),(46,35),(46,37),(47,27),(47,28),(47,39),(48,22),(48,23),(48,49),(49,29),(49,30),(49,47),(50,18),(50,19),(50,48),(51,42),(51,52),(52,43),(52,54),(53,10),(53,55),(54,21),(55,31),(55,51)],56)
=> ?
=> ?
=> ? = 8 - 1
['E',8]
=> ([(0,86),(1,74),(2,75),(3,93),(3,98),(4,92),(4,93),(5,74),(5,97),(6,75),(6,92),(7,86),(7,97),(7,98),(8,12),(10,11),(11,9),(12,10),(13,73),(14,91),(15,24),(15,90),(16,71),(17,70),(18,40),(19,21),(19,72),(20,23),(20,96),(21,46),(22,52),(23,84),(24,22),(24,79),(25,57),(25,66),(26,36),(26,65),(27,39),(27,68),(28,38),(28,67),(29,118),(30,100),(31,104),(32,105),(33,111),(34,113),(35,20),(35,115),(36,15),(36,101),(37,16),(37,111),(38,17),(38,112),(39,14),(39,110),(40,8),(41,55),(41,107),(42,58),(42,102),(43,34),(43,108),(44,72),(45,38),(45,106),(46,40),(47,53),(48,36),(48,104),(49,50),(50,44),(51,41),(51,100),(52,49),(53,76),(54,30),(54,102),(55,32),(55,99),(56,26),(56,48),(56,116),(57,28),(57,45),(57,114),(58,43),(58,109),(59,32),(59,113),(60,56),(60,119),(61,88),(62,45),(62,103),(63,29),(63,115),(64,31),(64,116),(65,37),(65,101),(66,35),(66,114),(67,60),(67,112),(68,25),(68,77),(68,110),(69,13),(69,83),(70,61),(71,69),(72,18),(72,46),(73,19),(73,44),(74,85),(75,47),(76,34),(76,59),(77,57),(77,62),(77,117),(78,55),(78,59),(78,108),(79,52),(79,82),(80,51),(80,87),(80,102),(81,53),(81,95),(82,49),(82,83),(83,50),(83,73),(84,31),(84,48),(85,30),(85,51),(86,42),(86,54),(87,41),(87,78),(87,109),(88,33),(88,37),(89,69),(89,82),(90,79),(90,89),(91,35),(91,63),(92,47),(92,81),(93,81),(93,94),(94,58),(94,87),(94,95),(95,43),(95,76),(95,78),(96,56),(96,64),(96,84),(97,54),(97,80),(97,85),(98,42),(98,80),(98,94),(99,105),(99,117),(100,39),(100,107),(101,90),(101,111),(102,27),(102,100),(102,109),(103,29),(103,106),(104,33),(104,101),(105,103),(106,112),(106,118),(107,99),(107,110),(108,77),(108,99),(108,113),(109,68),(109,107),(109,108),(110,66),(110,91),(110,117),(111,71),(111,89),(112,70),(112,119),(113,62),(113,105),(114,67),(114,106),(114,115),(115,60),(115,96),(115,118),(116,65),(116,88),(116,104),(117,63),(117,103),(117,114),(118,64),(118,119),(119,61),(119,116)],120)
=> ?
=> ?
=> ? = 8 - 1
Description
The number of singletons of an integer partition.
A singleton in an integer partition is a part that appear precisely once.
The following 191 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000010The length of the partition. St001280The number of parts of an integer partition that are at least two. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000288The number of ones in a binary word. St000291The number of descents of a binary word. St000389The number of runs of ones of odd length in a binary word. St000390The number of runs of ones in a binary word. St000292The number of ascents of a binary word. St000147The largest part of an integer partition. St000159The number of distinct parts of the integer partition. St000519The largest length of a factor maximising the subword complexity. St000053The number of valleys of the Dyck path. St000378The diagonal inversion number of an integer partition. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St000678The number of up steps after the last double rise of a Dyck path. St000759The smallest missing part in an integer partition. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001432The order dimension of the partition. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n-1}]$ by adding $c_0$ to $c_{n-1}$. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St000474Dyson's crank of a partition. St000013The height of a Dyck path. St000331The number of upper interactions of a Dyck path. St000733The row containing the largest entry of a standard tableau. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St000015The number of peaks of a Dyck path. St000144The pyramid weight of the Dyck path. St000157The number of descents of a standard tableau. St000225Difference between largest and smallest parts in a partition. St001180Number of indecomposable injective modules with projective dimension at most 1. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001530The depth of a Dyck path. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000480The number of lower covers of a partition in dominance order. St000481The number of upper covers of a partition in dominance order. St000093The cardinality of a maximal independent set of vertices of a graph. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001884The number of borders of a binary word. St000024The number of double up and double down steps of a Dyck path. St000340The number of non-final maximal constant sub-paths of length greater than one. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001267The length of the Lyndon factorization of the binary word. St000442The maximal area to the right of an up step of a Dyck path. St000183The side length of the Durfee square of an integer partition. St000307The number of rowmotion orbits of a poset. St000632The jump number of the poset. St000845The maximal number of elements covered by an element in a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000172The Grundy number of a graph. St000822The Hadwiger number of the graph. St001029The size of the core of a graph. St001116The game chromatic number of a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001581The achromatic number of a graph. St001670The connected partition number of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001734The lettericity of a graph. St001883The mutual visibility number of a graph. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St000272The treewidth of a graph. St000387The matching number of a graph. St000535The rank-width of a graph. St000536The pathwidth of a graph. St000846The maximal number of elements covering an element of a poset. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001270The bandwidth of a graph. St001271The competition number of a graph. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St001621The number of atoms of a lattice. St001689The number of celebrities in a graph. St001792The arboricity of a graph. St001812The biclique partition number of a graph. St001962The proper pathwidth of a graph. St000258The burning number of a graph. St000273The domination number of a graph. St000443The number of long tunnels of a Dyck path. St000482The (zero)-forcing number of a graph. St000544The cop number of a graph. St000636The hull number of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St001057The Grundy value of the game of creating an independent set in a graph. St001108The 2-dynamic chromatic number of a graph. St001110The 3-dynamic chromatic number of a graph. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001261The Castelnuovo-Mumford regularity of a graph. St001322The size of a minimal independent dominating set in a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001339The irredundance number of a graph. St001366The maximal multiplicity of a degree of a vertex of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001368The number of vertices of maximal degree in a graph. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001642The Prague dimension of a graph. St001716The 1-improper chromatic number of a graph. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001829The common independence number of a graph. St001963The tree-depth of a graph. St000171The degree of the graph. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000362The size of a minimal vertex cover of a graph. St000778The metric dimension of a graph. St001093The detour number of a graph. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001323The independence gap of a graph. St001331The size of the minimal feedback vertex set. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001340The cardinality of a minimal non-edge isolating set of a graph. St001349The number of different graphs obtained from the given graph by removing an edge. St001393The induced matching number of a graph. St001395The number of strictly unfriendly partitions of a graph. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001574The minimal number of edges to add or remove to make a graph regular. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001742The difference of the maximal and the minimal degree in a graph. St001743The discrepancy of a graph. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St000640The rank of the largest boolean interval in a poset. St000850The number of 1/2-balanced pairs in a poset. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000346The number of coarsenings of a partition. St000810The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to monomial symmetric functions. St001330The hat guessing number of a graph. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000454The largest eigenvalue of a graph if it is integral. St000456The monochromatic index of a connected graph. St001592The maximal number of simple paths between any two different vertices of a graph. St001644The dimension of a graph. St000143The largest repeated part of a partition. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000668The least common multiple of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001128The exponens consonantiae of a partition. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000100The number of linear extensions of a poset. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000633The size of the automorphism group of a poset. St000744The length of the path to the largest entry in a standard Young tableau. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001118The acyclic chromatic index of a graph. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001638The book thickness of a graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000455The second largest eigenvalue of a graph if it is integral. St000477The weight of a partition according to Alladi. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001877Number of indecomposable injective modules with projective dimension 2. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000310The minimal degree of a vertex of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St000741The Colin de Verdière graph invariant. St000095The number of triangles of a graph. St000286The number of connected components of the complement of a graph. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001575The minimal number of edges to add or remove to make a graph edge transitive.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!