Processing math: 100%

Your data matches 26 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000147
Mp00105: Binary words complementBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => 1 => [1,1] => [1,1]
=> 1
1 => 0 => [2] => [2]
=> 2
00 => 11 => [1,1,1] => [1,1,1]
=> 1
01 => 10 => [1,2] => [2,1]
=> 2
10 => 01 => [2,1] => [2,1]
=> 2
11 => 00 => [3] => [3]
=> 3
000 => 111 => [1,1,1,1] => [1,1,1,1]
=> 1
001 => 110 => [1,1,2] => [2,1,1]
=> 2
010 => 101 => [1,2,1] => [2,1,1]
=> 2
011 => 100 => [1,3] => [3,1]
=> 3
100 => 011 => [2,1,1] => [2,1,1]
=> 2
101 => 010 => [2,2] => [2,2]
=> 2
110 => 001 => [3,1] => [3,1]
=> 3
111 => 000 => [4] => [4]
=> 4
0000 => 1111 => [1,1,1,1,1] => [1,1,1,1,1]
=> 1
0001 => 1110 => [1,1,1,2] => [2,1,1,1]
=> 2
0010 => 1101 => [1,1,2,1] => [2,1,1,1]
=> 2
0011 => 1100 => [1,1,3] => [3,1,1]
=> 3
0100 => 1011 => [1,2,1,1] => [2,1,1,1]
=> 2
0101 => 1010 => [1,2,2] => [2,2,1]
=> 2
0110 => 1001 => [1,3,1] => [3,1,1]
=> 3
0111 => 1000 => [1,4] => [4,1]
=> 4
1000 => 0111 => [2,1,1,1] => [2,1,1,1]
=> 2
1001 => 0110 => [2,1,2] => [2,2,1]
=> 2
1010 => 0101 => [2,2,1] => [2,2,1]
=> 2
1011 => 0100 => [2,3] => [3,2]
=> 3
1100 => 0011 => [3,1,1] => [3,1,1]
=> 3
1101 => 0010 => [3,2] => [3,2]
=> 3
1110 => 0001 => [4,1] => [4,1]
=> 4
1111 => 0000 => [5] => [5]
=> 5
00000 => 11111 => [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 1
00001 => 11110 => [1,1,1,1,2] => [2,1,1,1,1]
=> 2
00010 => 11101 => [1,1,1,2,1] => [2,1,1,1,1]
=> 2
00011 => 11100 => [1,1,1,3] => [3,1,1,1]
=> 3
00100 => 11011 => [1,1,2,1,1] => [2,1,1,1,1]
=> 2
00101 => 11010 => [1,1,2,2] => [2,2,1,1]
=> 2
00110 => 11001 => [1,1,3,1] => [3,1,1,1]
=> 3
00111 => 11000 => [1,1,4] => [4,1,1]
=> 4
01000 => 10111 => [1,2,1,1,1] => [2,1,1,1,1]
=> 2
01001 => 10110 => [1,2,1,2] => [2,2,1,1]
=> 2
01010 => 10101 => [1,2,2,1] => [2,2,1,1]
=> 2
01011 => 10100 => [1,2,3] => [3,2,1]
=> 3
01100 => 10011 => [1,3,1,1] => [3,1,1,1]
=> 3
01101 => 10010 => [1,3,2] => [3,2,1]
=> 3
01110 => 10001 => [1,4,1] => [4,1,1]
=> 4
01111 => 10000 => [1,5] => [5,1]
=> 5
10000 => 01111 => [2,1,1,1,1] => [2,1,1,1,1]
=> 2
10001 => 01110 => [2,1,1,2] => [2,2,1,1]
=> 2
10010 => 01101 => [2,1,2,1] => [2,2,1,1]
=> 2
10011 => 01100 => [2,1,3] => [3,2,1]
=> 3
Description
The largest part of an integer partition.
St000392: Binary words ⟶ ℤResult quality: 88% values known / values provided: 88%distinct values known / distinct values provided: 92%
Values
0 => 0 = 1 - 1
1 => 1 = 2 - 1
00 => 0 = 1 - 1
01 => 1 = 2 - 1
10 => 1 = 2 - 1
11 => 2 = 3 - 1
000 => 0 = 1 - 1
001 => 1 = 2 - 1
010 => 1 = 2 - 1
011 => 2 = 3 - 1
100 => 1 = 2 - 1
101 => 1 = 2 - 1
110 => 2 = 3 - 1
111 => 3 = 4 - 1
0000 => 0 = 1 - 1
0001 => 1 = 2 - 1
0010 => 1 = 2 - 1
0011 => 2 = 3 - 1
0100 => 1 = 2 - 1
0101 => 1 = 2 - 1
0110 => 2 = 3 - 1
0111 => 3 = 4 - 1
1000 => 1 = 2 - 1
1001 => 1 = 2 - 1
1010 => 1 = 2 - 1
1011 => 2 = 3 - 1
1100 => 2 = 3 - 1
1101 => 2 = 3 - 1
1110 => 3 = 4 - 1
1111 => 4 = 5 - 1
00000 => 0 = 1 - 1
00001 => 1 = 2 - 1
00010 => 1 = 2 - 1
00011 => 2 = 3 - 1
00100 => 1 = 2 - 1
00101 => 1 = 2 - 1
00110 => 2 = 3 - 1
00111 => 3 = 4 - 1
01000 => 1 = 2 - 1
01001 => 1 = 2 - 1
01010 => 1 = 2 - 1
01011 => 2 = 3 - 1
01100 => 2 = 3 - 1
01101 => 2 = 3 - 1
01110 => 3 = 4 - 1
01111 => 4 = 5 - 1
10000 => 1 = 2 - 1
10001 => 1 = 2 - 1
10010 => 1 = 2 - 1
10011 => 2 = 3 - 1
1111111111 => ? = 11 - 1
1100000001 => ? = 3 - 1
1011111111 => ? = 9 - 1
1010000001 => ? = 2 - 1
1000000101 => ? = 2 - 1
1000000011 => ? = 3 - 1
10000101010 => ? = 2 - 1
10111011110 => ? = 5 - 1
11110111110 => ? = 6 - 1
10111101110 => ? = 5 - 1
10001000000 => ? = 2 - 1
11101011110 => ? = 5 - 1
11011101110 => ? = 4 - 1
10101010110 => ? = 3 - 1
11101101110 => ? = 4 - 1
10100000000 => ? = 2 - 1
10101011010 => ? = 3 - 1
11101110110 => ? = 4 - 1
11111111010 => ? = 9 - 1
=> ? = 1 - 1
11010101010 => ? = 3 - 1
11010101000 => ? = 3 - 1
11010101100 => ? = 3 - 1
11010100100 => ? = 3 - 1
11010010100 => ? = 3 - 1
11011010100 => ? = 3 - 1
11001010100 => ? = 3 - 1
10101010100 => ? = 2 - 1
0110000000 => ? = 3 - 1
0110000110 => ? = 3 - 1
0110011000 => ? = 3 - 1
0110011110 => ? = 5 - 1
0110010010 => ? = 3 - 1
0111100000 => ? = 5 - 1
0111100110 => ? = 5 - 1
0111111000 => ? = 7 - 1
0111111110 => ? = 9 - 1
0111110010 => ? = 6 - 1
0111001000 => ? = 4 - 1
0111000010 => ? = 4 - 1
0100100000 => ? = 2 - 1
0100100110 => ? = 3 - 1
0100111000 => ? = 4 - 1
0100111110 => ? = 6 - 1
0100110010 => ? = 3 - 1
0100001000 => ? = 2 - 1
0100001110 => ? = 4 - 1
0100011010 => ? = 3 - 1
0101101000 => ? = 3 - 1
0101100010 => ? = 3 - 1
Description
The length of the longest run of ones in a binary word.
Mp00105: Binary words complementBinary words
Mp00178: Binary words to compositionInteger compositions
St000381: Integer compositions ⟶ ℤResult quality: 35% values known / values provided: 35%distinct values known / distinct values provided: 83%
Values
0 => 1 => [1,1] => 1
1 => 0 => [2] => 2
00 => 11 => [1,1,1] => 1
01 => 10 => [1,2] => 2
10 => 01 => [2,1] => 2
11 => 00 => [3] => 3
000 => 111 => [1,1,1,1] => 1
001 => 110 => [1,1,2] => 2
010 => 101 => [1,2,1] => 2
011 => 100 => [1,3] => 3
100 => 011 => [2,1,1] => 2
101 => 010 => [2,2] => 2
110 => 001 => [3,1] => 3
111 => 000 => [4] => 4
0000 => 1111 => [1,1,1,1,1] => 1
0001 => 1110 => [1,1,1,2] => 2
0010 => 1101 => [1,1,2,1] => 2
0011 => 1100 => [1,1,3] => 3
0100 => 1011 => [1,2,1,1] => 2
0101 => 1010 => [1,2,2] => 2
0110 => 1001 => [1,3,1] => 3
0111 => 1000 => [1,4] => 4
1000 => 0111 => [2,1,1,1] => 2
1001 => 0110 => [2,1,2] => 2
1010 => 0101 => [2,2,1] => 2
1011 => 0100 => [2,3] => 3
1100 => 0011 => [3,1,1] => 3
1101 => 0010 => [3,2] => 3
1110 => 0001 => [4,1] => 4
1111 => 0000 => [5] => 5
00000 => 11111 => [1,1,1,1,1,1] => 1
00001 => 11110 => [1,1,1,1,2] => 2
00010 => 11101 => [1,1,1,2,1] => 2
00011 => 11100 => [1,1,1,3] => 3
00100 => 11011 => [1,1,2,1,1] => 2
00101 => 11010 => [1,1,2,2] => 2
00110 => 11001 => [1,1,3,1] => 3
00111 => 11000 => [1,1,4] => 4
01000 => 10111 => [1,2,1,1,1] => 2
01001 => 10110 => [1,2,1,2] => 2
01010 => 10101 => [1,2,2,1] => 2
01011 => 10100 => [1,2,3] => 3
01100 => 10011 => [1,3,1,1] => 3
01101 => 10010 => [1,3,2] => 3
01110 => 10001 => [1,4,1] => 4
01111 => 10000 => [1,5] => 5
10000 => 01111 => [2,1,1,1,1] => 2
10001 => 01110 => [2,1,1,2] => 2
10010 => 01101 => [2,1,2,1] => 2
10011 => 01100 => [2,1,3] => 3
000000001 => 111111110 => [1,1,1,1,1,1,1,1,2] => ? = 2
000000010 => 111111101 => [1,1,1,1,1,1,1,2,1] => ? = 2
000000011 => 111111100 => [1,1,1,1,1,1,1,3] => ? = 3
000000100 => 111111011 => [1,1,1,1,1,1,2,1,1] => ? = 2
000000110 => 111111001 => [1,1,1,1,1,1,3,1] => ? = 3
000000111 => 111111000 => [1,1,1,1,1,1,4] => ? = 4
000001000 => 111110111 => [1,1,1,1,1,2,1,1,1] => ? = 2
000001001 => 111110110 => [1,1,1,1,1,2,1,2] => ? = 2
000001010 => 111110101 => [1,1,1,1,1,2,2,1] => ? = 2
000001011 => 111110100 => [1,1,1,1,1,2,3] => ? = 3
000001100 => 111110011 => [1,1,1,1,1,3,1,1] => ? = 3
000001101 => 111110010 => [1,1,1,1,1,3,2] => ? = 3
000001110 => 111110001 => [1,1,1,1,1,4,1] => ? = 4
000001111 => 111110000 => [1,1,1,1,1,5] => ? = 5
000010000 => 111101111 => [1,1,1,1,2,1,1,1,1] => ? = 2
000010010 => 111101101 => [1,1,1,1,2,1,2,1] => ? = 2
000010011 => 111101100 => [1,1,1,1,2,1,3] => ? = 3
000010101 => 111101010 => [1,1,1,1,2,2,2] => ? = 2
000010110 => 111101001 => [1,1,1,1,2,3,1] => ? = 3
000010111 => 111101000 => [1,1,1,1,2,4] => ? = 4
000011000 => 111100111 => [1,1,1,1,3,1,1,1] => ? = 3
000011001 => 111100110 => [1,1,1,1,3,1,2] => ? = 3
000011010 => 111100101 => [1,1,1,1,3,2,1] => ? = 3
000011100 => 111100011 => [1,1,1,1,4,1,1] => ? = 4
000011101 => 111100010 => [1,1,1,1,4,2] => ? = 4
000011111 => 111100000 => [1,1,1,1,6] => ? = 6
000100000 => 111011111 => [1,1,1,2,1,1,1,1,1] => ? = 2
000100001 => 111011110 => [1,1,1,2,1,1,1,2] => ? = 2
000100010 => 111011101 => [1,1,1,2,1,1,2,1] => ? = 2
000100011 => 111011100 => [1,1,1,2,1,1,3] => ? = 3
000100100 => 111011011 => [1,1,1,2,1,2,1,1] => ? = 2
000100101 => 111011010 => [1,1,1,2,1,2,2] => ? = 2
000100110 => 111011001 => [1,1,1,2,1,3,1] => ? = 3
000100111 => 111011000 => [1,1,1,2,1,4] => ? = 4
000101000 => 111010111 => [1,1,1,2,2,1,1,1] => ? = 2
000101001 => 111010110 => [1,1,1,2,2,1,2] => ? = 2
000101010 => 111010101 => [1,1,1,2,2,2,1] => ? = 2
000101011 => 111010100 => [1,1,1,2,2,3] => ? = 3
000101100 => 111010011 => [1,1,1,2,3,1,1] => ? = 3
000101101 => 111010010 => [1,1,1,2,3,2] => ? = 3
000101110 => 111010001 => [1,1,1,2,4,1] => ? = 4
000101111 => 111010000 => [1,1,1,2,5] => ? = 5
000110000 => 111001111 => [1,1,1,3,1,1,1,1] => ? = 3
000110001 => 111001110 => [1,1,1,3,1,1,2] => ? = 3
000110010 => 111001101 => [1,1,1,3,1,2,1] => ? = 3
000110011 => 111001100 => [1,1,1,3,1,3] => ? = 3
000110100 => 111001011 => [1,1,1,3,2,1,1] => ? = 3
000110101 => 111001010 => [1,1,1,3,2,2] => ? = 3
000110110 => 111001001 => [1,1,1,3,3,1] => ? = 3
000110111 => 111001000 => [1,1,1,3,4] => ? = 4
Description
The largest part of an integer composition.
Matching statistic: St000982
Mp00178: Binary words to compositionInteger compositions
Mp00094: Integer compositions to binary wordBinary words
Mp00268: Binary words zeros to flag zerosBinary words
St000982: Binary words ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 83%
Values
0 => [2] => 10 => 01 => 1
1 => [1,1] => 11 => 11 => 2
00 => [3] => 100 => 101 => 1
01 => [2,1] => 101 => 001 => 2
10 => [1,2] => 110 => 011 => 2
11 => [1,1,1] => 111 => 111 => 3
000 => [4] => 1000 => 0101 => 1
001 => [3,1] => 1001 => 1101 => 2
010 => [2,2] => 1010 => 1001 => 2
011 => [2,1,1] => 1011 => 0001 => 3
100 => [1,3] => 1100 => 1011 => 2
101 => [1,2,1] => 1101 => 0011 => 2
110 => [1,1,2] => 1110 => 0111 => 3
111 => [1,1,1,1] => 1111 => 1111 => 4
0000 => [5] => 10000 => 10101 => 1
0001 => [4,1] => 10001 => 00101 => 2
0010 => [3,2] => 10010 => 01101 => 2
0011 => [3,1,1] => 10011 => 11101 => 3
0100 => [2,3] => 10100 => 01001 => 2
0101 => [2,2,1] => 10101 => 11001 => 2
0110 => [2,1,2] => 10110 => 10001 => 3
0111 => [2,1,1,1] => 10111 => 00001 => 4
1000 => [1,4] => 11000 => 01011 => 2
1001 => [1,3,1] => 11001 => 11011 => 2
1010 => [1,2,2] => 11010 => 10011 => 2
1011 => [1,2,1,1] => 11011 => 00011 => 3
1100 => [1,1,3] => 11100 => 10111 => 3
1101 => [1,1,2,1] => 11101 => 00111 => 3
1110 => [1,1,1,2] => 11110 => 01111 => 4
1111 => [1,1,1,1,1] => 11111 => 11111 => 5
00000 => [6] => 100000 => 010101 => 1
00001 => [5,1] => 100001 => 110101 => 2
00010 => [4,2] => 100010 => 100101 => 2
00011 => [4,1,1] => 100011 => 000101 => 3
00100 => [3,3] => 100100 => 101101 => 2
00101 => [3,2,1] => 100101 => 001101 => 2
00110 => [3,1,2] => 100110 => 011101 => 3
00111 => [3,1,1,1] => 100111 => 111101 => 4
01000 => [2,4] => 101000 => 101001 => 2
01001 => [2,3,1] => 101001 => 001001 => 2
01010 => [2,2,2] => 101010 => 011001 => 2
01011 => [2,2,1,1] => 101011 => 111001 => 3
01100 => [2,1,3] => 101100 => 010001 => 3
01101 => [2,1,2,1] => 101101 => 110001 => 3
01110 => [2,1,1,2] => 101110 => 100001 => 4
01111 => [2,1,1,1,1] => 101111 => 000001 => 5
10000 => [1,5] => 110000 => 101011 => 2
10001 => [1,4,1] => 110001 => 001011 => 2
10010 => [1,3,2] => 110010 => 011011 => 2
10011 => [1,3,1,1] => 110011 => 111011 => 3
000000001 => [9,1] => 1000000001 => 1101010101 => ? = 2
000000011 => [8,1,1] => 1000000011 => ? => ? = 3
000000100 => [7,3] => 1000000100 => 1011010101 => ? = 2
000000101 => [7,2,1] => 1000000101 => ? => ? = 2
000000110 => [7,1,2] => 1000000110 => 0111010101 => ? = 3
000000111 => [7,1,1,1] => 1000000111 => 1111010101 => ? = 4
000001000 => [6,4] => 1000001000 => ? => ? = 2
000001001 => [6,3,1] => 1000001001 => ? => ? = 2
000001011 => [6,2,1,1] => 1000001011 => ? => ? = 3
000001100 => [6,1,3] => 1000001100 => ? => ? = 3
000001110 => [6,1,1,2] => 1000001110 => 1000010101 => ? = 4
000001111 => [6,1,1,1,1] => 1000001111 => ? => ? = 5
000010000 => [5,5] => 1000010000 => ? => ? = 2
000010001 => [5,4,1] => 1000010001 => ? => ? = 2
000010010 => [5,3,2] => 1000010010 => ? => ? = 2
000010011 => [5,3,1,1] => 1000010011 => ? => ? = 3
000010100 => [5,2,3] => 1000010100 => ? => ? = 2
000010101 => [5,2,2,1] => 1000010101 => ? => ? = 2
000010110 => [5,2,1,2] => 1000010110 => 1000110101 => ? = 3
000010111 => [5,2,1,1,1] => 1000010111 => ? => ? = 4
000011000 => [5,1,4] => 1000011000 => ? => ? = 3
000011001 => [5,1,3,1] => 1000011001 => 1101110101 => ? = 3
000011010 => [5,1,2,2] => 1000011010 => ? => ? = 3
000011011 => [5,1,2,1,1] => 1000011011 => ? => ? = 3
000011100 => [5,1,1,3] => 1000011100 => ? => ? = 4
000011101 => [5,1,1,2,1] => 1000011101 => ? => ? = 4
000011111 => [5,1,1,1,1,1] => 1000011111 => 1111110101 => ? = 6
000100000 => [4,6] => 1000100000 => ? => ? = 2
000100001 => [4,5,1] => 1000100001 => ? => ? = 2
000100010 => [4,4,2] => 1000100010 => ? => ? = 2
000100011 => [4,4,1,1] => 1000100011 => ? => ? = 3
000100100 => [4,3,3] => 1000100100 => ? => ? = 2
000100110 => [4,3,1,2] => 1000100110 => ? => ? = 3
000100111 => [4,3,1,1,1] => 1000100111 => ? => ? = 4
000101000 => [4,2,4] => 1000101000 => ? => ? = 2
000101001 => [4,2,3,1] => 1000101001 => ? => ? = 2
000101010 => [4,2,2,2] => 1000101010 => ? => ? = 2
000101100 => [4,2,1,3] => 1000101100 => ? => ? = 3
000101101 => [4,2,1,2,1] => 1000101101 => ? => ? = 3
000101110 => [4,2,1,1,2] => 1000101110 => 0111100101 => ? = 4
000101111 => [4,2,1,1,1,1] => 1000101111 => ? => ? = 5
000110000 => [4,1,5] => 1000110000 => ? => ? = 3
000110010 => [4,1,3,2] => 1000110010 => ? => ? = 3
000110011 => [4,1,3,1,1] => 1000110011 => ? => ? = 3
000110100 => [4,1,2,3] => 1000110100 => ? => ? = 3
000110101 => [4,1,2,2,1] => 1000110101 => ? => ? = 3
000110111 => [4,1,2,1,1,1] => 1000110111 => 1111000101 => ? = 4
000111000 => [4,1,1,4] => 1000111000 => ? => ? = 4
000111001 => [4,1,1,3,1] => 1000111001 => ? => ? = 4
000111010 => [4,1,1,2,2] => 1000111010 => 0110000101 => ? = 4
Description
The length of the longest constant subword.
Mp00105: Binary words complementBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000013: Dyck paths ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 83%
Values
0 => 1 => [1,1] => [1,0,1,0]
=> 1
1 => 0 => [2] => [1,1,0,0]
=> 2
00 => 11 => [1,1,1] => [1,0,1,0,1,0]
=> 1
01 => 10 => [1,2] => [1,0,1,1,0,0]
=> 2
10 => 01 => [2,1] => [1,1,0,0,1,0]
=> 2
11 => 00 => [3] => [1,1,1,0,0,0]
=> 3
000 => 111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
001 => 110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
010 => 101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
011 => 100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 3
100 => 011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
101 => 010 => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
110 => 001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
111 => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 4
0000 => 1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
0001 => 1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2
0010 => 1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
0011 => 1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
0100 => 1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
0101 => 1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
0110 => 1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 3
0111 => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4
1000 => 0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
1001 => 0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
1010 => 0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
1011 => 0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
1100 => 0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
1101 => 0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
1110 => 0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
1111 => 0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 5
00000 => 11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
00001 => 11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> 2
00010 => 11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
00011 => 11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 3
00100 => 11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2
00101 => 11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
00110 => 11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3
00111 => 11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> 4
01000 => 10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2
01001 => 10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
01010 => 10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
01011 => 10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> 3
01100 => 10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
01101 => 10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 3
01110 => 10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 4
01111 => 10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
10000 => 01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 2
10001 => 01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
10010 => 01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 2
10011 => 01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> 3
0001010 => 1110101 => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
0001011 => 1110100 => [1,1,1,2,3] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
0001100 => 1110011 => [1,1,1,3,1,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
0001110 => 1110001 => [1,1,1,4,1] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4
0010010 => 1101101 => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
0010011 => 1101100 => [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 3
0010100 => 1101011 => [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
0010110 => 1101001 => [1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 3
0011001 => 1100110 => [1,1,3,1,2] => [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 3
0011010 => 1100101 => [1,1,3,2,1] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 3
0011100 => 1100011 => [1,1,4,1,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 4
0100010 => 1011101 => [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
0100011 => 1011100 => [1,2,1,1,3] => [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 3
0100100 => 1011011 => [1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2
0100101 => 1011010 => [1,2,1,2,2] => [1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
0100110 => 1011001 => [1,2,1,3,1] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 3
0101000 => 1010111 => [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
0101001 => 1010110 => [1,2,2,1,2] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
0101100 => 1010011 => [1,2,3,1,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
0110001 => 1001110 => [1,3,1,1,2] => [1,0,1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 3
0110010 => 1001101 => [1,3,1,2,1] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 3
0110100 => 1001011 => [1,3,2,1,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 3
0111000 => 1000111 => [1,4,1,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
0111011 => 1000100 => [1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4
1000101 => 0111010 => [2,1,1,2,2] => [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
1000110 => 0111001 => [2,1,1,3,1] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 3
1001000 => 0110111 => [2,1,2,1,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
1001001 => 0110110 => [2,1,2,1,2] => [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
1001010 => 0110101 => [2,1,2,2,1] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
1001100 => 0110011 => [2,1,3,1,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
1010001 => 0101110 => [2,2,1,1,2] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
1010010 => 0101101 => [2,2,1,2,1] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
1010100 => 0101011 => [2,2,2,1,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
1011011 => 0100100 => [2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 3
1100010 => 0011101 => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 3
1100100 => 0011011 => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 3
1100111 => 0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
1101000 => 0010111 => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 3
1101011 => 0010100 => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
1101101 => 0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 3
1110011 => 0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
1110110 => 0001001 => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 4
1111001 => 0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 5
1111010 => 0000101 => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 5
00000010 => 11111101 => [1,1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
00000100 => 11111011 => [1,1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2
00000110 => 11111001 => [1,1,1,1,1,3,1] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 3
00001000 => 11110111 => [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
00001001 => 11110110 => [1,1,1,1,2,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
00001010 => 11110101 => [1,1,1,1,2,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
Description
The height of a Dyck path. The height of a Dyck path D of semilength n is defined as the maximal height of a peak of D. The height of D at position i is the number of up-steps minus the number of down-steps before position i.
Mp00105: Binary words complementBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000444: Dyck paths ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 58%
Values
0 => 1 => [1,1] => [1,0,1,0]
=> 1
1 => 0 => [2] => [1,1,0,0]
=> 2
00 => 11 => [1,1,1] => [1,0,1,0,1,0]
=> 1
01 => 10 => [1,2] => [1,0,1,1,0,0]
=> 2
10 => 01 => [2,1] => [1,1,0,0,1,0]
=> 2
11 => 00 => [3] => [1,1,1,0,0,0]
=> 3
000 => 111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
001 => 110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
010 => 101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
011 => 100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 3
100 => 011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
101 => 010 => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
110 => 001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
111 => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 4
0000 => 1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
0001 => 1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2
0010 => 1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
0011 => 1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
0100 => 1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
0101 => 1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
0110 => 1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 3
0111 => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4
1000 => 0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
1001 => 0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
1010 => 0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
1011 => 0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
1100 => 0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
1101 => 0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
1110 => 0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
1111 => 0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 5
00000 => 11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
00001 => 11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> 2
00010 => 11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
00011 => 11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 3
00100 => 11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2
00101 => 11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
00110 => 11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3
00111 => 11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> 4
01000 => 10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2
01001 => 10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
01010 => 10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
01011 => 10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> 3
01100 => 10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
01101 => 10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 3
01110 => 10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 4
01111 => 10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
10000 => 01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 2
10001 => 01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
10010 => 01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 2
10011 => 01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> 3
1100000 => 0011111 => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 3
1100001 => 0011110 => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
1100010 => 0011101 => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 3
1100011 => 0011100 => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 3
1100100 => 0011011 => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 3
1100101 => 0011010 => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
1100110 => 0011001 => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 3
1100111 => 0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
1101000 => 0010111 => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 3
1101001 => 0010110 => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
1101010 => 0010101 => [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
1101011 => 0010100 => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
1101100 => 0010011 => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
1101101 => 0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 3
1101110 => 0010001 => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4
1101111 => 0010000 => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
1110000 => 0001111 => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4
1110001 => 0001110 => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 4
1110010 => 0001101 => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 4
1110011 => 0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
1110100 => 0001011 => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 4
1110101 => 0001010 => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 4
1110110 => 0001001 => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 4
1110111 => 0001000 => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
1111000 => 0000111 => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 5
1111001 => 0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 5
1111010 => 0000101 => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 5
1111011 => 0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 5
1111100 => 0000011 => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 6
1111101 => 0000010 => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6
1111110 => 0000001 => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 7
1111111 => 0000000 => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8
00000000 => 11111111 => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
00000001 => 11111110 => [1,1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
00000010 => 11111101 => [1,1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
00000011 => 11111100 => [1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 3
00000100 => 11111011 => [1,1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2
00000101 => 11111010 => [1,1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
00000110 => 11111001 => [1,1,1,1,1,3,1] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 3
00000111 => 11111000 => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
00001000 => 11110111 => [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
00001001 => 11110110 => [1,1,1,1,2,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
00001010 => 11110101 => [1,1,1,1,2,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
00001011 => 11110100 => [1,1,1,1,2,3] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
00001100 => 11110011 => [1,1,1,1,3,1,1] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
00001101 => 11110010 => [1,1,1,1,3,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 3
00001110 => 11110001 => [1,1,1,1,4,1] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4
00001111 => 11110000 => [1,1,1,1,5] => [1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
00010000 => 11101111 => [1,1,1,2,1,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
00010001 => 11101110 => [1,1,1,2,1,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
Description
The length of the maximal rise of a Dyck path.
Mp00105: Binary words complementBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000442: Dyck paths ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 58%
Values
0 => 1 => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
1 => 0 => [2] => [1,1,0,0]
=> 1 = 2 - 1
00 => 11 => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
01 => 10 => [1,2] => [1,0,1,1,0,0]
=> 1 = 2 - 1
10 => 01 => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
11 => 00 => [3] => [1,1,1,0,0,0]
=> 2 = 3 - 1
000 => 111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
001 => 110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
010 => 101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
011 => 100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
100 => 011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
101 => 010 => [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
110 => 001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
111 => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
0000 => 1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
0001 => 1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
0010 => 1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
0011 => 1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
0100 => 1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
0101 => 1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
0110 => 1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
0111 => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
1000 => 0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
1001 => 0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1 = 2 - 1
1010 => 0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 2 - 1
1011 => 0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 3 - 1
1100 => 0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 3 - 1
1101 => 0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
1110 => 0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 3 = 4 - 1
1111 => 0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
00000 => 11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
00001 => 11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
00010 => 11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
00011 => 11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
00100 => 11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
00101 => 11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
00110 => 11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
00111 => 11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
01000 => 10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
01001 => 10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 1 = 2 - 1
01010 => 10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 1 = 2 - 1
01011 => 10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> 2 = 3 - 1
01100 => 10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 2 = 3 - 1
01101 => 10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
01110 => 10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 3 = 4 - 1
01111 => 10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
10000 => 01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
10001 => 01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
10010 => 01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
10011 => 01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
1100000 => 0011111 => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 3 - 1
1100001 => 0011110 => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3 - 1
1100010 => 0011101 => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 3 - 1
1100011 => 0011100 => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 3 - 1
1100100 => 0011011 => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 3 - 1
1100101 => 0011010 => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3 - 1
1100110 => 0011001 => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 3 - 1
1100111 => 0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4 - 1
1101000 => 0010111 => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 3 - 1
1101001 => 0010110 => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3 - 1
1101010 => 0010101 => [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3 - 1
1101011 => 0010100 => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3 - 1
1101100 => 0010011 => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3 - 1
1101101 => 0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 3 - 1
1101110 => 0010001 => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4 - 1
1101111 => 0010000 => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5 - 1
1110000 => 0001111 => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
1110001 => 0001110 => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 4 - 1
1110010 => 0001101 => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 4 - 1
1110011 => 0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4 - 1
1110100 => 0001011 => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 4 - 1
1110101 => 0001010 => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 4 - 1
1110110 => 0001001 => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 4 - 1
1110111 => 0001000 => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4 - 1
1111000 => 0000111 => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
1111001 => 0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 5 - 1
1111010 => 0000101 => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 5 - 1
1111011 => 0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 5 - 1
1111100 => 0000011 => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 6 - 1
1111101 => 0000010 => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6 - 1
1111110 => 0000001 => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 7 - 1
1111111 => 0000000 => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8 - 1
00000000 => 11111111 => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
00000001 => 11111110 => [1,1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
00000010 => 11111101 => [1,1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2 - 1
00000011 => 11111100 => [1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 3 - 1
00000100 => 11111011 => [1,1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
00000101 => 11111010 => [1,1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2 - 1
00000110 => 11111001 => [1,1,1,1,1,3,1] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 3 - 1
00000111 => 11111000 => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4 - 1
00001000 => 11110111 => [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
00001001 => 11110110 => [1,1,1,1,2,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2 - 1
00001010 => 11110101 => [1,1,1,1,2,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2 - 1
00001011 => 11110100 => [1,1,1,1,2,3] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3 - 1
00001100 => 11110011 => [1,1,1,1,3,1,1] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3 - 1
00001101 => 11110010 => [1,1,1,1,3,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 3 - 1
00001110 => 11110001 => [1,1,1,1,4,1] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4 - 1
00001111 => 11110000 => [1,1,1,1,5] => [1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5 - 1
00010000 => 11101111 => [1,1,1,2,1,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
00010001 => 11101110 => [1,1,1,2,1,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
Description
The maximal area to the right of an up step of a Dyck path.
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000684: Dyck paths ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 67%
Values
0 => [2] => [1,1,0,0]
=> 1
1 => [1,1] => [1,0,1,0]
=> 2
00 => [3] => [1,1,1,0,0,0]
=> 1
01 => [2,1] => [1,1,0,0,1,0]
=> 2
10 => [1,2] => [1,0,1,1,0,0]
=> 2
11 => [1,1,1] => [1,0,1,0,1,0]
=> 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 2
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 3
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 2
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 4
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 2
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 3
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 4
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 2
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 3
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 4
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 5
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 2
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 3
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 2
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 2
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> 3
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 4
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 2
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> 3
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> 3
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 3
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 4
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 5
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 2
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 2
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
0000000 => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
0000001 => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
0000010 => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2
0000011 => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 3
0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 2
0000101 => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 2
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 3
0000111 => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
0001000 => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
0001001 => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 2
0001010 => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
0001011 => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 3
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 3
0001101 => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 3
0001110 => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 4
0010000 => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 2
0010001 => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 2
0010011 => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
0010100 => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 2
0010101 => [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
0010110 => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
0010111 => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
0011001 => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 3
0011010 => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
0011011 => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 3
0011100 => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4
0011101 => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 4
0100000 => [2,6] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
0100001 => [2,5,1] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
0100010 => [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
0100011 => [2,4,1,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 3
0100100 => [2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
0100101 => [2,3,2,1] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2
0100110 => [2,3,1,2] => [1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 3
0100111 => [2,3,1,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 4
0101000 => [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
0101001 => [2,2,3,1] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 2
0101010 => [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
0101011 => [2,2,2,1,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 3
0101100 => [2,2,1,3] => [1,1,0,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 3
0101101 => [2,2,1,2,1] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 3
0101110 => [2,2,1,1,2] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 4
0110000 => [2,1,5] => [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
0110001 => [2,1,4,1] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3
0110010 => [2,1,3,2] => [1,1,0,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 3
0110011 => [2,1,3,1,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
0110100 => [2,1,2,3] => [1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
0110101 => [2,1,2,2,1] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
Description
The global dimension of the LNakayama algebra associated to a Dyck path. An n-LNakayama algebra is a quiver algebra with a directed line as a connected quiver with n points for n2. Number those points from the left to the right by 0,1,,n1. The algebra is then uniquely determined by the dimension ci of the projective indecomposable modules at point i. Such algebras are then uniquely determined by lists of the form [c0,c1,...,cn1] with the conditions: cn1=1 and ci1ci+1 for all i. The number of such algebras is then the n1-st Catalan number Cn1. One can get also an interpretation with Dyck paths by associating the top boundary of the Auslander-Reiten quiver (which is a Dyck path) to those algebras. Example: [3,4,3,3,2,1] corresponds to the Dyck path [1,1,0,1,1,0,0,1,0,0]. Conjecture: that there is an explicit bijection between n-LNakayama algebras with global dimension bounded by m and Dyck paths with height at most m. Examples: * For m=2, the number of Dyck paths with global dimension at most m starts for n2 with 1,2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192. * For m=3, the number of Dyck paths with global dimension at most m starts for n2 with 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418.
Matching statistic: St001090
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St001090: Permutations ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 83%
Values
0 => [2] => [1,1,0,0]
=> [1,2] => 0 = 1 - 1
1 => [1,1] => [1,0,1,0]
=> [2,1] => 1 = 2 - 1
00 => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0 = 1 - 1
01 => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 1 = 2 - 1
10 => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1 = 2 - 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [2,3,1] => 2 = 3 - 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1 = 2 - 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1 = 2 - 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 2 = 3 - 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 1 = 2 - 1
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 2 = 3 - 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3 = 4 - 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0 = 1 - 1
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1 = 2 - 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1 = 2 - 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 2 = 3 - 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1 = 2 - 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 1 = 2 - 1
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 2 = 3 - 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 3 = 4 - 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1 = 2 - 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 1 = 2 - 1
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 1 = 2 - 1
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => 2 = 3 - 1
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 2 = 3 - 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => 2 = 3 - 1
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 3 = 4 - 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 4 = 5 - 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 0 = 1 - 1
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => 1 = 2 - 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => 1 = 2 - 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,2,3,5,6,4] => 2 = 3 - 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => 1 = 2 - 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => 1 = 2 - 1
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => 2 = 3 - 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,4,5,6,3] => 3 = 4 - 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => 1 = 2 - 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => 1 = 2 - 1
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => 1 = 2 - 1
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4] => 2 = 3 - 1
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => 2 = 3 - 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => 2 = 3 - 1
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => 3 = 4 - 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => 4 = 5 - 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 1 = 2 - 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => 1 = 2 - 1
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => 1 = 2 - 1
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,3,5,6,4] => 2 = 3 - 1
100001 => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2 - 1
100010 => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,3,4,6,5,7] => ? = 2 - 1
100011 => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,1,3,4,6,7,5] => ? = 3 - 1
100100 => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2 - 1
100101 => [1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,1,3,5,4,7,6] => ? = 2 - 1
100110 => [1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,1,3,5,6,4,7] => ? = 3 - 1
100111 => [1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,1,3,5,6,7,4] => ? = 4 - 1
101000 => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2 - 1
101001 => [1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,4,3,5,7,6] => ? = 2 - 1
101010 => [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => ? = 2 - 1
101011 => [1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => ? = 3 - 1
101100 => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => ? = 3 - 1
101101 => [1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3,7,6] => ? = 3 - 1
101110 => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 4 - 1
101111 => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 5 - 1
110001 => [1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 3 - 1
110010 => [1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,1,4,6,5,7] => ? = 3 - 1
110011 => [1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,3,1,4,6,7,5] => ? = 3 - 1
110100 => [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => ? = 3 - 1
110101 => [1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,7,6] => ? = 3 - 1
110110 => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 3 - 1
110111 => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,1,5,6,7,4] => ? = 4 - 1
111010 => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 4 - 1
111011 => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,4,1,6,7,5] => ? = 4 - 1
0000011 => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,5,7,8,6] => ? = 3 - 1
0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,4,6,5,7,8] => ? = 2 - 1
0000101 => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,8,7] => ? = 2 - 1
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,4,6,7,5,8] => ? = 3 - 1
0000111 => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,2,3,4,6,7,8,5] => ? = 4 - 1
0001001 => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [1,2,3,5,4,6,8,7] => ? = 2 - 1
0001011 => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,7,8,6] => ? = 3 - 1
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> [1,2,3,5,6,4,7,8] => ? = 3 - 1
0001101 => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,6,4,8,7] => ? = 3 - 1
0001110 => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,6,7,4,8] => ? = 4 - 1
0010000 => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,4,3,5,6,7,8] => ? = 2 - 1
0010001 => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,4,3,5,6,8,7] => ? = 2 - 1
0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5,7,6,8] => ? = 2 - 1
0010011 => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,3,5,7,8,6] => ? = 3 - 1
0010101 => [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,8,7] => ? = 2 - 1
0010110 => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,6,7,5,8] => ? = 3 - 1
0010111 => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,6,7,8,5] => ? = 4 - 1
0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,4,5,3,6,7,8] => ? = 3 - 1
0011001 => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,4,5,3,6,8,7] => ? = 3 - 1
0011010 => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6,8] => ? = 3 - 1
0011011 => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,5,3,7,8,6] => ? = 3 - 1
0011100 => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,4,5,6,3,7,8] => ? = 4 - 1
0011101 => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,5,6,3,8,7] => ? = 4 - 1
0011110 => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,4,5,6,7,3,8] => ? = 5 - 1
0011111 => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,6,7,8,3] => ? = 6 - 1
0100001 => [2,5,1] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,3,2,4,5,6,8,7] => ? = 2 - 1
Description
The number of pop-stack-sorts needed to sort a permutation. The pop-stack sorting operator is defined as follows. Process the permutation π from left to right. If the stack is empty or its top element is smaller than the current element, empty the stack completely and append its elements to the output in reverse order. Next, push the current element onto the stack. After having processed the last entry, append the stack to the output in reverse order. A permutation is t-pop-stack sortable if it is sortable using t pop-stacks in series.
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000686: Dyck paths ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 58%
Values
0 => [2] => [1,1,0,0]
=> 1
1 => [1,1] => [1,0,1,0]
=> 2
00 => [3] => [1,1,1,0,0,0]
=> 1
01 => [2,1] => [1,1,0,0,1,0]
=> 2
10 => [1,2] => [1,0,1,1,0,0]
=> 2
11 => [1,1,1] => [1,0,1,0,1,0]
=> 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 2
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 3
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 2
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 4
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 2
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 3
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 4
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 2
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 3
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 4
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 5
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 2
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 3
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 2
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 2
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> 3
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 4
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 2
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> 3
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> 3
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 3
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 4
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 5
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 2
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 2
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
0000000 => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
0000001 => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
0000010 => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2
0000011 => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 3
0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 2
0000101 => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 2
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 3
0000111 => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
0001000 => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
0001001 => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 2
0001010 => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
0001011 => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 3
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 3
0001101 => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 3
0001110 => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 4
0001111 => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
0010000 => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 2
0010001 => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 2
0010011 => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
0010100 => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 2
0010101 => [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
0010110 => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
0010111 => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
0011001 => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 3
0011010 => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
0011011 => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 3
0011100 => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4
0011101 => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 4
0011110 => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5
0011111 => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
0100000 => [2,6] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
0100001 => [2,5,1] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
0100010 => [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
0100011 => [2,4,1,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 3
0100100 => [2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
0100101 => [2,3,2,1] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2
0100110 => [2,3,1,2] => [1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 3
0100111 => [2,3,1,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 4
0101000 => [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
0101001 => [2,2,3,1] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 2
0101010 => [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
0101011 => [2,2,2,1,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 3
0101100 => [2,2,1,3] => [1,1,0,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 3
0101101 => [2,2,1,2,1] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 3
0101110 => [2,2,1,1,2] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 4
0101111 => [2,2,1,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
0110000 => [2,1,5] => [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
0110001 => [2,1,4,1] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3
Description
The finitistic dominant dimension of a Dyck path. To every LNakayama algebra there is a corresponding Dyck path, see also [[St000684]]. We associate the finitistic dominant dimension of the algebra to the corresponding Dyck path.
The following 16 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000028The number of stack-sorts needed to sort a permutation. St000209Maximum difference of elements in cycles. St000485The length of the longest cycle of a permutation. St000844The size of the largest block in the direct sum decomposition of a permutation. St000956The maximal displacement of a permutation. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001235The global dimension of the corresponding Comp-Nakayama algebra. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St001530The depth of a Dyck path. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St000141The maximum drop size of a permutation. St000451The length of the longest pattern of the form k 1 2. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path.