Identifier
Values
0 => [2] => [1,1,0,0] => [1,2] => 0
1 => [1,1] => [1,0,1,0] => [2,1] => 1
00 => [3] => [1,1,1,0,0,0] => [1,2,3] => 0
01 => [2,1] => [1,1,0,0,1,0] => [1,3,2] => 1
10 => [1,2] => [1,0,1,1,0,0] => [2,1,3] => 1
11 => [1,1,1] => [1,0,1,0,1,0] => [2,3,1] => 2
000 => [4] => [1,1,1,1,0,0,0,0] => [1,2,3,4] => 0
001 => [3,1] => [1,1,1,0,0,0,1,0] => [1,2,4,3] => 1
010 => [2,2] => [1,1,0,0,1,1,0,0] => [1,3,2,4] => 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0] => [1,3,4,2] => 2
100 => [1,3] => [1,0,1,1,1,0,0,0] => [2,1,3,4] => 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0] => [2,1,4,3] => 1
110 => [1,1,2] => [1,0,1,0,1,1,0,0] => [2,3,1,4] => 2
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0] => [2,3,4,1] => 3
0000 => [5] => [1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,2,3,5,4] => 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,2,4,3,5] => 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,2,4,5,3] => 2
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,3,2,4,5] => 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4] => 1
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,3,4,2,5] => 2
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,3,4,5,2] => 3
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0] => [2,1,3,4,5] => 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [2,1,3,5,4] => 1
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [2,1,4,3,5] => 1
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [2,1,4,5,3] => 2
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [2,3,1,4,5] => 2
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [2,3,1,5,4] => 2
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [2,3,4,1,5] => 3
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,1] => 4
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,2,3,4,5,6] => 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,2,3,4,6,5] => 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,2,3,5,4,6] => 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,2,3,5,6,4] => 2
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,2,4,3,5,6] => 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,2,4,3,6,5] => 1
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,2,4,5,3,6] => 2
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,2,4,5,6,3] => 3
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,4,5,6] => 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,3,2,4,6,5] => 1
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,3,2,5,4,6] => 1
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,3,2,5,6,4] => 2
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,3,4,2,5,6] => 2
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,3,4,2,6,5] => 2
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,3,4,5,2,6] => 3
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,3,4,5,6,2] => 4
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [2,1,3,4,5,6] => 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [2,1,3,4,6,5] => 1
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [2,1,3,5,4,6] => 1
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [2,1,3,5,6,4] => 2
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [2,1,4,3,5,6] => 1
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [2,1,4,3,6,5] => 1
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [2,1,4,5,3,6] => 2
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [2,1,4,5,6,3] => 3
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [2,3,1,4,5,6] => 2
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [2,3,1,4,6,5] => 2
11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [2,3,1,5,4,6] => 2
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [2,3,1,5,6,4] => 2
11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [2,3,4,1,5,6] => 3
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [2,3,4,1,6,5] => 3
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [2,3,4,5,1,6] => 4
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,6,1] => 5
000000 => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7] => 0
000001 => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,2,3,4,5,7,6] => 1
000010 => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,2,3,4,6,5,7] => 1
000011 => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => [1,2,3,4,6,7,5] => 2
000100 => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => 1
000101 => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => [1,2,3,5,4,7,6] => 1
000110 => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => [1,2,3,5,6,4,7] => 2
000111 => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0] => [1,2,3,5,6,7,4] => 3
001000 => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => 1
001001 => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => [1,2,4,3,5,7,6] => 1
001010 => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0] => [1,2,4,3,6,5,7] => 1
001011 => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0] => [1,2,4,3,6,7,5] => 2
001100 => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,2,4,5,3,6,7] => 2
001101 => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0] => [1,2,4,5,3,7,6] => 2
001110 => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [1,2,4,5,6,3,7] => 3
001111 => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [1,2,4,5,6,7,3] => 4
010000 => [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => 1
010001 => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,3,2,4,5,7,6] => 1
010010 => [2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => 1
010011 => [2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0] => [1,3,2,4,6,7,5] => 2
010100 => [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0] => [1,3,2,5,4,6,7] => 1
010101 => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4,7,6] => 1
010110 => [2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [1,3,2,5,6,4,7] => 2
010111 => [2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,5,6,7,4] => 3
011000 => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,3,4,2,5,6,7] => 2
011001 => [2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0] => [1,3,4,2,5,7,6] => 2
011010 => [2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [1,3,4,2,6,5,7] => 2
011011 => [2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [1,3,4,2,6,7,5] => 2
011100 => [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,3,4,5,2,6,7] => 3
011101 => [2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [1,3,4,5,2,7,6] => 3
011110 => [2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,3,4,5,6,2,7] => 4
011111 => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,3,4,5,6,7,2] => 5
100000 => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [2,1,3,4,5,6,7] => 1
110000 => [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [2,3,1,4,5,6,7] => 2
111000 => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [2,3,4,1,5,6,7] => 3
111001 => [1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [2,3,4,1,5,7,6] => 3
111100 => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [2,3,4,5,1,6,7] => 4
111101 => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [2,3,4,5,1,7,6] => 4
111110 => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [2,3,4,5,6,1,7] => 5
>>> Load all 139 entries. <<<
111111 => [1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,6,7,1] => 6
0000000 => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7,8] => 0
0000001 => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [1,2,3,4,5,6,8,7] => 1
0000010 => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0] => [1,2,3,4,5,7,6,8] => 1
0001000 => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0] => [1,2,3,5,4,6,7,8] => 1
0001010 => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0] => [1,2,3,5,4,7,6,8] => 1
0001111 => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0] => [1,2,3,5,6,7,8,4] => 4
0010100 => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0] => [1,2,4,3,6,5,7,8] => 1
0100000 => [2,6] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,3,2,4,5,6,7,8] => 1
0100010 => [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,3,2,4,5,7,6,8] => 1
0101000 => [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,5,4,6,7,8] => 1
0101010 => [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,3,2,5,4,7,6,8] => 1
0110110 => [2,1,2,1,2] => [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,3,4,2,6,7,5,8] => 2
1000000 => [1,7] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [2,1,3,4,5,6,7,8] => 1
1000001 => [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [2,1,3,4,5,6,8,7] => 1
1010101 => [1,2,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [2,1,4,3,6,5,8,7] => 1
1100011 => [1,1,4,1,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [2,3,1,4,5,7,8,6] => 2
1110111 => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [2,3,4,1,6,7,8,5] => 3
1111000 => [1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [2,3,4,5,1,6,7,8] => 4
1111100 => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [2,3,4,5,6,1,7,8] => 5
1111101 => [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [2,3,4,5,6,1,8,7] => 5
1111110 => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [2,3,4,5,6,7,1,8] => 6
1111111 => [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,6,7,8,1] => 7
00000000 => [9] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7,8,9] => 0
00000001 => [8,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0] => [1,2,3,4,5,6,7,9,8] => 1
10000000 => [1,8] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [2,1,3,4,5,6,7,8,9] => 1
11111100 => [1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [2,3,4,5,6,7,1,8,9] => 6
11111110 => [1,1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [2,3,4,5,6,7,8,1,9] => 7
11111111 => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,6,7,8,9,1] => 8
000000000 => [10] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7,8,9,10] => 0
000000001 => [9,1] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0] => [1,2,3,4,5,6,7,8,10,9] => 1
100000000 => [1,9] => [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [2,1,3,4,5,6,7,8,9,10] => 1
101010101 => [1,2,2,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [2,1,4,3,6,5,8,7,10,9] => 1
111111110 => [1,1,1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [2,3,4,5,6,7,8,9,1,10] => 8
111111111 => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,6,7,8,9,10,1] => 9
1000000000 => [1,10] => [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [2,1,3,4,5,6,7,8,9,10,11] => 1
=> [1] => [1,0] => [1] => 0
0000000001 => [10,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0] => [1,2,3,4,5,6,7,8,9,11,10] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of pop-stack-sorts needed to sort a permutation.
The pop-stack sorting operator is defined as follows. Process the permutation $\pi$ from left to right. If the stack is empty or its top element is smaller than the current element, empty the stack completely and append its elements to the output in reverse order. Next, push the current element onto the stack. After having processed the last entry, append the stack to the output in reverse order.
A permutation is $t$-pop-stack sortable if it is sortable using $t$ pop-stacks in series.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
to 321-avoiding permutation (Billey-Jockusch-Stanley)
Description
The Billey-Jockusch-Stanley bijection to 321-avoiding permutations.