Processing math: 100%

Your data matches 91 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00047: Ordered trees to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[]
=> ([],1)
=> [1]
=> 1
[[]]
=> ([(0,1)],2)
=> [2]
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 2
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 2
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 3
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 3
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 4
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [2,1,1,1,1]
=> 2
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> 3
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> 3
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> 4
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> 3
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> 4
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> [3,1,1,1]
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> [5,1]
=> 5
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> 3
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> 3
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [4,2]
=> 4
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> 4
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> 3
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [4,2]
=> 4
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> [3,1,1,1]
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> 4
Description
The largest part of an integer partition.
Mp00047: Ordered trees to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[]
=> ([],1)
=> [1]
=> [1]
=> 1
[[]]
=> ([(0,1)],2)
=> [2]
=> [1,1]
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [2,1]
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 2
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 3
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 2
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 3
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [2,1,1,1]
=> 4
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [2,1,1,1,1]
=> [5,1]
=> 2
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 3
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 3
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 4
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 3
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,2,1]
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 4
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> [5,1]
=> [2,1,1,1,1]
=> 5
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 3
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,2,1]
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,2,1]
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,2,1]
=> 3
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [4,2]
=> [2,2,1,1]
=> 4
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 4
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,2,1]
=> 3
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [4,2]
=> [2,2,1,1]
=> 4
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 4
Description
The length of the partition.
Mp00051: Ordered trees to Dyck pathDyck paths
St000013: Dyck paths ⟶ ℤResult quality: 90% values known / values provided: 100%distinct values known / distinct values provided: 90%
Values
[]
=> []
=> 0 = 1 - 1
[[]]
=> [1,0]
=> 1 = 2 - 1
[[],[]]
=> [1,0,1,0]
=> 1 = 2 - 1
[[[]]]
=> [1,1,0,0]
=> 2 = 3 - 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> 1 = 2 - 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> 2 = 3 - 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> 2 = 3 - 1
[[[],[]]]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> 3 = 4 - 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> 2 = 3 - 1
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> 3 = 4 - 1
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> 3 = 4 - 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> 4 = 5 - 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 3 - 1
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3 = 4 - 1
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3 = 4 - 1
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4 = 5 - 1
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2 = 3 - 1
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3 = 4 - 1
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 3 - 1
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3 = 4 - 1
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3 = 4 - 1
[[[[[[[[[[]]]]]]]]]]
=> ?
=> ? = 10 - 1
Description
The height of a Dyck path. The height of a Dyck path D of semilength n is defined as the maximal height of a peak of D. The height of D at position i is the number of up-steps minus the number of down-steps before position i.
Mp00047: Ordered trees to posetPosets
St000528: Posets ⟶ ℤResult quality: 70% values known / values provided: 99%distinct values known / distinct values provided: 70%
Values
[]
=> ([],1)
=> 1
[[]]
=> ([(0,1)],2)
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 3
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 4
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 4
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 4
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 4
[[[[[[[[]]]]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 8
[[[[[[[[[]]]]]]]]]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 9
[[[[[[[[[[]]]]]]]]]]
=> ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ? = 10
Description
The height of a poset. This equals the rank of the poset [[St000080]] plus one.
Mp00047: Ordered trees to posetPosets
St001343: Posets ⟶ ℤResult quality: 70% values known / values provided: 99%distinct values known / distinct values provided: 70%
Values
[]
=> ([],1)
=> 1
[[]]
=> ([(0,1)],2)
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 3
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 4
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 5
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 4
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 4
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 4
[[[[[[[[]]]]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 8
[[[[[[[[[]]]]]]]]]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 9
[[[[[[[[[[]]]]]]]]]]
=> ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ? = 10
Description
The dimension of the reduced incidence algebra of a poset. The reduced incidence algebra of a poset is the subalgebra of the incidence algebra consisting of the elements which assign the same value to any two intervals that are isomorphic to each other as posets. Thus, this statistic returns the number of non-isomorphic intervals of the poset.
Mp00047: Ordered trees to posetPosets
Mp00205: Posets maximal antichainsLattices
St001720: Lattices ⟶ ℤResult quality: 78% values known / values provided: 78%distinct values known / distinct values provided: 80%
Values
[]
=> ([],1)
=> ([],1)
=> 1
[[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 4
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 4
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[[]]],[[[]]]]
=> ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 4
[[[[[[[[[]]]]]]]]]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 9
[[[],[]],[[[],[]],[[],[]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 4
[[[],[[],[]]],[[],[[],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 4
[[[],[[],[]]],[[[],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 4
[[[[],[]],[]],[[],[[],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 4
[[[[],[]],[]],[[[],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 4
[[[[],[]],[[],[]]],[[],[]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 4
[[],[[[],[]],[[],[[],[[],[]]]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,9),(5,10),(6,11),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6
[[],[[[],[]],[[],[[[],[]],[]]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,9),(5,10),(6,11),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6
[[],[[[],[]],[[[],[]],[[],[]]]]]
=> ([(0,10),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 5
[[],[[[],[]],[[[],[[],[]]],[]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,9),(5,10),(6,11),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6
[[],[[[],[]],[[[[],[]],[]],[]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,9),(5,10),(6,11),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6
[[],[[[],[[],[]]],[[],[[],[]]]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,11),(5,10),(6,9),(7,10),(8,11),(10,12),(11,12),(12,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 5
[[],[[[],[[],[]]],[[[],[]],[]]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,11),(5,10),(6,9),(7,10),(8,11),(10,12),(11,12),(12,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 5
[[],[[[[],[]],[]],[[],[[],[]]]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,11),(5,10),(6,9),(7,10),(8,11),(10,12),(11,12),(12,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 5
[[],[[[[],[]],[]],[[[],[]],[]]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,11),(5,10),(6,9),(7,10),(8,11),(10,12),(11,12),(12,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 5
[[],[[[],[[],[[],[]]]],[[],[]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,9),(5,10),(6,11),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6
[[],[[[],[[[],[]],[]]],[[],[]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,9),(5,10),(6,11),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6
[[],[[[[],[]],[[],[]]],[[],[]]]]
=> ([(0,10),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 5
[[],[[[[],[[],[]]],[]],[[],[]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,9),(5,10),(6,11),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6
[[],[[[[[],[]],[]],[]],[[],[]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,9),(5,10),(6,11),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6
[[[],[]],[[],[[],[[],[[],[]]]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,10),(5,11),(6,9),(7,12),(8,11),(9,12),(10,9),(11,10)],13)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 6
[[[],[]],[[],[[],[[[],[]],[]]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,10),(5,11),(6,9),(7,12),(8,11),(9,12),(10,9),(11,10)],13)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 6
[[[],[]],[[],[[[],[]],[[],[]]]]]
=> ([(0,10),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,12),(8,11),(9,11),(10,12),(11,10)],13)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ? = 5
[[[],[]],[[],[[[],[[],[]]],[]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,10),(5,11),(6,9),(7,12),(8,11),(9,12),(10,9),(11,10)],13)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 6
[[[],[]],[[],[[[[],[]],[]],[]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,10),(5,11),(6,9),(7,12),(8,11),(9,12),(10,9),(11,10)],13)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 6
[[[],[]],[[[],[]],[[],[[],[]]]]]
=> ([(0,10),(1,7),(2,7),(3,8),(4,8),(5,9),(6,9),(7,12),(8,11),(9,10),(10,12),(12,11)],13)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 5
[[[],[]],[[[],[]],[[[],[]],[]]]]
=> ([(0,10),(1,7),(2,7),(3,8),(4,8),(5,9),(6,9),(7,12),(8,11),(9,10),(10,12),(12,11)],13)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 5
[[[],[]],[[[],[[],[]]],[[],[]]]]
=> ([(0,10),(1,7),(2,7),(3,8),(4,8),(5,9),(6,9),(7,12),(8,11),(9,10),(10,12),(12,11)],13)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 5
[[[],[]],[[[[],[]],[]],[[],[]]]]
=> ([(0,10),(1,7),(2,7),(3,8),(4,8),(5,9),(6,9),(7,12),(8,11),(9,10),(10,12),(12,11)],13)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 5
[[[],[]],[[[],[[],[[],[]]]],[]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,10),(5,11),(6,9),(7,12),(8,11),(9,12),(10,9),(11,10)],13)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 6
[[[],[]],[[[],[[[],[]],[]]],[]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,10),(5,11),(6,9),(7,12),(8,11),(9,12),(10,9),(11,10)],13)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 6
[[[],[]],[[[[],[]],[[],[]]],[]]]
=> ([(0,10),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,12),(8,11),(9,11),(10,12),(11,10)],13)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ? = 5
[[[],[]],[[[[],[[],[]]],[]],[]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,10),(5,11),(6,9),(7,12),(8,11),(9,12),(10,9),(11,10)],13)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 6
[[[],[]],[[[[[],[]],[]],[]],[]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,10),(5,11),(6,9),(7,12),(8,11),(9,12),(10,9),(11,10)],13)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 6
[[[],[[],[]]],[[],[[],[[],[]]]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,9),(5,10),(6,11),(7,10),(8,11),(9,12),(10,12),(11,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5
[[[],[[],[]]],[[],[[[],[]],[]]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,9),(5,10),(6,11),(7,10),(8,11),(9,12),(10,12),(11,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5
[[[],[[],[]]],[[[],[]],[[],[]]]]
=> ([(0,10),(1,8),(2,8),(3,7),(4,7),(5,9),(6,9),(7,11),(8,11),(9,10),(10,12),(11,12)],13)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 4
[[[],[[],[]]],[[[],[[],[]]],[]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,9),(5,10),(6,11),(7,10),(8,11),(9,12),(10,12),(11,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5
[[[],[[],[]]],[[[[],[]],[]],[]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,9),(5,10),(6,11),(7,10),(8,11),(9,12),(10,12),(11,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5
[[[[],[]],[]],[[],[[],[[],[]]]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,9),(5,10),(6,11),(7,10),(8,11),(9,12),(10,12),(11,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5
[[[[],[]],[]],[[],[[[],[]],[]]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,9),(5,10),(6,11),(7,10),(8,11),(9,12),(10,12),(11,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5
[[[[],[]],[]],[[[],[]],[[],[]]]]
=> ([(0,10),(1,8),(2,8),(3,7),(4,7),(5,9),(6,9),(7,11),(8,11),(9,10),(10,12),(11,12)],13)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 4
[[[[],[]],[]],[[[],[[],[]]],[]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,9),(5,10),(6,11),(7,10),(8,11),(9,12),(10,12),(11,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5
[[[[],[]],[]],[[[[],[]],[]],[]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,9),(5,10),(6,11),(7,10),(8,11),(9,12),(10,12),(11,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5
[[[],[[],[[],[]]]],[[],[[],[]]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,9),(5,10),(6,11),(7,10),(8,11),(9,12),(10,12),(11,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5
[[[],[[],[[],[]]]],[[[],[]],[]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,9),(5,10),(6,11),(7,10),(8,11),(9,12),(10,12),(11,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5
[[[],[[[],[]],[]]],[[],[[],[]]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,9),(5,10),(6,11),(7,10),(8,11),(9,12),(10,12),(11,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5
[[[],[[[],[]],[]]],[[[],[]],[]]]
=> ([(0,7),(1,7),(2,8),(3,8),(4,9),(5,10),(6,11),(7,10),(8,11),(9,12),(10,12),(11,9)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5
Description
The minimal length of a chain of small intervals in a lattice. An interval [a,b] is small if b is a join of elements covering a.
Matching statistic: St000907
Mp00047: Ordered trees to posetPosets
Mp00205: Posets maximal antichainsLattices
Mp00193: Lattices to posetPosets
St000907: Posets ⟶ ℤResult quality: 60% values known / values provided: 60%distinct values known / distinct values provided: 70%
Values
[]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 3
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[]],[[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,6),(4,6),(5,4)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[]],[[[[]]]]]
=> ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 5
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[[]]],[[[]]]]
=> ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 4
[[[],[[]]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[[]],[]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[[],[]]],[[]]]
=> ([(0,5),(1,5),(2,3),(3,6),(4,6),(5,4)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[[[]]]],[[]]]
=> ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 5
[[[[]],[[[]]]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 5
[[[[[]]],[[]]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 5
[[[[[]],[[]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 5
[[[[[[[[]]]]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 8
[[[],[]],[[],[[],[]]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[],[]],[[[],[]],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[],[[],[]]],[[],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[[],[]],[]],[[],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 4
[[[[[[[[[]]]]]]]]]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 9
[[],[[],[[[],[]],[[],[]]]]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 5
[[],[[[],[]],[[],[[],[]]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 5
[[],[[[],[]],[[[],[]],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 5
[[],[[[],[[],[]]],[[],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 5
[[],[[[[],[]],[]],[[],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 5
[[],[[[[],[]],[[],[]]],[]]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 5
[[[],[]],[[],[[],[[],[]]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 5
[[[],[]],[[],[[[],[]],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 5
[[[],[]],[[[],[]],[[],[]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 4
[[[],[]],[[[],[[],[]]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 5
[[[],[]],[[[[],[]],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 5
[[[],[[],[]]],[[],[[],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 4
[[[],[[],[]]],[[[],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 4
[[[[],[]],[]],[[],[[],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 4
[[[[],[]],[]],[[[],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 4
[[[],[[],[[],[]]]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 5
[[[],[[[],[]],[]]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 5
[[[[],[]],[[],[]]],[[],[]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 4
[[[[],[[],[]]],[]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 5
[[[[[],[]],[]],[]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 5
[[[],[[[],[]],[[],[]]]],[]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 5
Description
The number of maximal antichains of minimal length in a poset.
Matching statistic: St000011
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
Mp00099: Dyck paths bounce pathDyck paths
St000011: Dyck paths ⟶ ℤResult quality: 59% values known / values provided: 59%distinct values known / distinct values provided: 90%
Values
[]
=> []
=> []
=> []
=> 0 = 1 - 1
[[]]
=> [1,0]
=> [1,0]
=> [1,0]
=> 1 = 2 - 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1 = 2 - 1
[[[]]]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2 = 3 - 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 1 = 2 - 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 3 - 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 3 - 1
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2 = 3 - 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3 = 4 - 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 2 - 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4 = 5 - 1
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[[],[[],[[[],[]],[[],[]]]]]
=> [1,0,1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[],[[[],[]],[[],[[],[]]]]]
=> [1,0,1,1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[],[[[],[]],[[[],[]],[]]]]
=> [1,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[],[[[],[[],[]]],[[],[]]]]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[],[[[[],[]],[]],[[],[]]]]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[],[[[[],[]],[[],[]]],[]]]
=> [1,0,1,1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[[],[]],[[],[[],[[],[]]]]]
=> [1,1,0,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 5 - 1
[[[],[]],[[],[[[],[]],[]]]]
=> [1,1,0,1,0,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 5 - 1
[[[],[]],[[[],[]],[[],[]]]]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 4 - 1
[[[],[]],[[[],[[],[]]],[]]]
=> [1,1,0,1,0,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 5 - 1
[[[],[]],[[[[],[]],[]],[]]]
=> [1,1,0,1,0,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 5 - 1
[[[],[[],[]]],[[],[[],[]]]]
=> [1,1,0,1,1,0,1,0,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 4 - 1
[[[],[[],[]]],[[[],[]],[]]]
=> [1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 4 - 1
[[[[],[]],[]],[[],[[],[]]]]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 4 - 1
[[[[],[]],[]],[[[],[]],[]]]
=> [1,1,1,0,1,0,0,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 4 - 1
[[[],[[],[[],[]]]],[[],[]]]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 5 - 1
[[[],[[[],[]],[]]],[[],[]]]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 5 - 1
[[[[],[]],[[],[]]],[[],[]]]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 4 - 1
[[[[],[[],[]]],[]],[[],[]]]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 5 - 1
[[[[[],[]],[]],[]],[[],[]]]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 5 - 1
[[[],[[[],[]],[[],[]]]],[]]
=> [1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[[[],[]],[[],[[],[]]]],[]]
=> [1,1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[[[],[]],[[[],[]],[]]],[]]
=> [1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[[[],[[],[]]],[[],[]]],[]]
=> [1,1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[[[[],[]],[]],[[],[]]],[]]
=> [1,1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[[[[],[]],[[],[]]],[]],[]]
=> [1,1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[],[[],[[],[[],[[],[[],[]]]]]]]
=> [1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 7 - 1
[[],[[],[[],[[],[[[],[]],[]]]]]]
=> [1,0,1,1,0,1,1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 7 - 1
[[],[[],[[],[[[],[]],[[],[]]]]]]
=> [1,0,1,1,0,1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 6 - 1
[[],[[],[[],[[[],[[],[]]],[]]]]]
=> [1,0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 7 - 1
[[],[[],[[],[[[[],[]],[]],[]]]]]
=> [1,0,1,1,0,1,1,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 7 - 1
[[],[[],[[[],[]],[[],[[],[]]]]]]
=> [1,0,1,1,0,1,1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 6 - 1
[[],[[],[[[],[]],[[[],[]],[]]]]]
=> [1,0,1,1,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 6 - 1
[[],[[],[[[],[[],[]]],[[],[]]]]]
=> [1,0,1,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 6 - 1
[[],[[],[[[[],[]],[]],[[],[]]]]]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 6 - 1
[[],[[],[[[],[[],[[],[]]]],[]]]]
=> [1,0,1,1,0,1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 7 - 1
[[],[[],[[[],[[[],[]],[]]],[]]]]
=> [1,0,1,1,0,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 7 - 1
[[],[[],[[[[],[]],[[],[]]],[]]]]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 6 - 1
[[],[[],[[[[],[[],[]]],[]],[]]]]
=> [1,0,1,1,0,1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 7 - 1
[[],[[],[[[[[],[]],[]],[]],[]]]]
=> [1,0,1,1,0,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 7 - 1
[[],[[[],[]],[[],[[],[[],[]]]]]]
=> [1,0,1,1,1,0,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 6 - 1
[[],[[[],[]],[[],[[[],[]],[]]]]]
=> [1,0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 6 - 1
[[],[[[],[]],[[[],[]],[[],[]]]]]
=> [1,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[],[[[],[]],[[[],[[],[]]],[]]]]
=> [1,0,1,1,1,0,1,0,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 6 - 1
[[],[[[],[]],[[[[],[]],[]],[]]]]
=> [1,0,1,1,1,0,1,0,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 6 - 1
[[],[[[],[[],[]]],[[],[[],[]]]]]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[],[[[],[[],[]]],[[[],[]],[]]]]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[],[[[[],[]],[]],[[],[[],[]]]]]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[],[[[[],[]],[]],[[[],[]],[]]]]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 - 1
[[],[[[],[[],[[],[]]]],[[],[]]]]
=> [1,0,1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 6 - 1
Description
The number of touch points (or returns) of a Dyck path. This is the number of points, excluding the origin, where the Dyck path has height 0.
Matching statistic: St000734
Mp00047: Ordered trees to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000734: Standard tableaux ⟶ ℤResult quality: 55% values known / values provided: 55%distinct values known / distinct values provided: 100%
Values
[]
=> ([],1)
=> [1]
=> [[1]]
=> 1
[[]]
=> ([(0,1)],2)
=> [2]
=> [[1,2]]
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [[1,2,3]]
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 3
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 3
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 3
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [[1,2,3,4]]
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 4
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 3
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 4
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 4
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 4
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 4
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 2
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 3
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 3
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 4
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 3
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 4
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 4
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 4
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 4
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 5
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 3
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 3
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 4
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 4
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 3
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 4
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 4
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 4
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 4
[[],[[],[[],[[],[[],[]]]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[],[[],[[],[[[],[]],[]]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[],[[],[[[],[]],[[],[]]]]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[],[[],[[[],[[],[]]],[]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[],[[],[[[[],[]],[]],[]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[],[[[],[]],[[],[[],[]]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[],[[[],[]],[[[],[]],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[],[[[],[[],[]]],[[],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[],[[[[],[]],[]],[[],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[],[[[],[[],[[],[]]]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[],[[[],[[[],[]],[]]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[],[[[[],[]],[[],[]]],[]]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[],[[[[],[[],[]]],[]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[],[[[[[],[]],[]],[]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[[],[]],[[],[[],[[],[]]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[[],[]],[[],[[[],[]],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[[],[]],[[[],[]],[[],[]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> [4,2,2,1,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10],[11]]
=> ? = 4
[[[],[]],[[[],[[],[]]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[[],[]],[[[[],[]],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[[],[[],[]]],[[],[[],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> [4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ? = 4
[[[],[[],[]]],[[[],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> [4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ? = 4
[[[[],[]],[]],[[],[[],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> [4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ? = 4
[[[[],[]],[]],[[[],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> [4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ? = 4
[[[],[[],[[],[]]]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[[],[[[],[]],[]]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[[[],[]],[[],[]]],[[],[]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> [4,2,2,1,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10],[11]]
=> ? = 4
[[[[],[[],[]]],[]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[[[[],[]],[]],[]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[[],[[],[[],[[],[]]]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[[],[[],[[[],[]],[]]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[[],[[[],[]],[[],[]]]],[]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[[],[[[],[[],[]]],[]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[[],[[[[],[]],[]],[]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[[[],[]],[[],[[],[]]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[[[],[]],[[[],[]],[]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[[[],[[],[]]],[[],[]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[[[[],[]],[]],[[],[]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[[[],[[],[[],[]]]],[]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[[[],[[[],[]],[]]],[]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[[[[],[]],[[],[]]],[]],[]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 5
[[[[[],[[],[]]],[]],[]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[[[[[],[]],[]],[]],[]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 6
[[],[[],[[],[[],[[],[[],[]]]]]]]
=> ([(0,7),(1,7),(2,9),(3,10),(4,11),(5,12),(6,8),(7,12),(9,11),(10,9),(11,8),(12,10)],13)
=> [7,1,1,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11],[12],[13]]
=> ? = 7
[[],[[],[[],[[],[[[],[]],[]]]]]]
=> ([(0,7),(1,7),(2,9),(3,10),(4,11),(5,12),(6,8),(7,12),(9,11),(10,9),(11,8),(12,10)],13)
=> [7,1,1,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11],[12],[13]]
=> ? = 7
[[],[[],[[],[[[],[]],[[],[]]]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,10),(5,11),(6,9),(7,12),(8,12),(10,9),(11,10),(12,11)],13)
=> [6,2,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11],[12],[13]]
=> ? = 6
[[],[[],[[],[[[],[[],[]]],[]]]]]
=> ([(0,7),(1,7),(2,9),(3,10),(4,11),(5,12),(6,8),(7,12),(9,11),(10,9),(11,8),(12,10)],13)
=> [7,1,1,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11],[12],[13]]
=> ? = 7
[[],[[],[[],[[[[],[]],[]],[]]]]]
=> ([(0,7),(1,7),(2,9),(3,10),(4,11),(5,12),(6,8),(7,12),(9,11),(10,9),(11,8),(12,10)],13)
=> [7,1,1,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11],[12],[13]]
=> ? = 7
[[],[[],[[[],[]],[[],[[],[]]]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,9),(5,10),(6,11),(7,12),(8,10),(10,12),(11,9),(12,11)],13)
=> [6,2,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11],[12],[13]]
=> ? = 6
[[],[[],[[[],[]],[[[],[]],[]]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,9),(5,10),(6,11),(7,12),(8,10),(10,12),(11,9),(12,11)],13)
=> [6,2,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11],[12],[13]]
=> ? = 6
[[],[[],[[[],[[],[]]],[[],[]]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,9),(5,10),(6,11),(7,12),(8,10),(10,12),(11,9),(12,11)],13)
=> [6,2,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11],[12],[13]]
=> ? = 6
Description
The last entry in the first row of a standard tableau.
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
St000442: Dyck paths ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 70%
Values
[]
=> []
=> []
=> ? = 1 - 2
[[]]
=> [1,0]
=> [1,0]
=> ? = 2 - 2
[[],[]]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0 = 2 - 2
[[[]]]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1 = 3 - 2
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0 = 2 - 2
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1 = 3 - 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1 = 3 - 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 3 - 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 2 = 4 - 2
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 2 - 2
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 3 - 2
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 3 - 2
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1 = 3 - 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 4 - 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 3 - 2
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 3 - 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 3 - 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 4 - 2
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 3 - 2
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 4 - 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 4 - 2
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 4 - 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 3 = 5 - 2
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 2 - 2
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 3 - 2
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1 = 3 - 2
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 3 - 2
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 4 - 2
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 3 - 2
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1 = 3 - 2
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1 = 3 - 2
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2 = 4 - 2
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 3 - 2
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 4 - 2
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2 = 4 - 2
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2 = 4 - 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3 = 5 - 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 3 - 2
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1 = 3 - 2
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1 = 3 - 2
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 3 - 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 4 - 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 3 - 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2 = 4 - 2
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1 = 3 - 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 4 - 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1 = 3 - 2
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2 = 4 - 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2 = 4 - 2
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 4 - 2
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 5 - 2
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 3 - 2
[[[[[[[[[]]]]]]]]]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 9 - 2
[[],[[],[[],[[],[[],[]]]]]]
=> [1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 6 - 2
[[],[[],[[],[[[],[]],[]]]]]
=> [1,0,1,1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 6 - 2
[[],[[],[[[],[]],[[],[]]]]]
=> [1,0,1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 5 - 2
[[],[[],[[[],[[],[]]],[]]]]
=> [1,0,1,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,1,0,1,0,0,0,0,1,0,0]
=> ? = 6 - 2
[[],[[],[[[[],[]],[]],[]]]]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,1,0,0,1,0]
=> ? = 6 - 2
[[],[[[],[]],[[],[[],[]]]]]
=> [1,0,1,1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 5 - 2
[[],[[[],[]],[[[],[]],[]]]]
=> [1,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 5 - 2
[[],[[[],[[],[]]],[[],[]]]]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 5 - 2
[[],[[[[],[]],[]],[[],[]]]]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 5 - 2
[[],[[[],[[],[[],[]]]],[]]]
=> [1,0,1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,1,0,1,0,0,0,1,0,0,0]
=> ? = 6 - 2
[[],[[[],[[[],[]],[]]],[]]]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,1,0,0,0,1,0]
=> ? = 6 - 2
[[],[[[[],[]],[[],[]]],[]]]
=> [1,0,1,1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 5 - 2
[[],[[[[],[[],[]]],[]],[]]]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,1,0,0,1,0,0]
=> ? = 6 - 2
[[],[[[[[],[]],[]],[]],[]]]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,0,1,0]
=> ? = 6 - 2
[[[],[]],[[],[[],[[],[]]]]]
=> [1,1,0,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,1,0,1,1,0,0,0,0]
=> ? = 5 - 2
[[[],[]],[[],[[[],[]],[]]]]
=> [1,1,0,1,0,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,1,0,1,1,0,0,0,0,1,0]
=> ? = 5 - 2
[[[],[]],[[[],[]],[[],[]]]]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 4 - 2
[[[],[]],[[[],[[],[]]],[]]]
=> [1,1,0,1,0,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,1,0,1,1,0,0,0,1,0,0]
=> ? = 5 - 2
[[[],[]],[[[[],[]],[]],[]]]
=> [1,1,0,1,0,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,1,0,0,0,1,0,0,1,0]
=> ? = 5 - 2
[[[],[[],[]]],[[],[[],[]]]]
=> [1,1,0,1,1,0,1,0,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 4 - 2
[[[],[[],[]]],[[[],[]],[]]]
=> [1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 4 - 2
[[[[],[]],[]],[[],[[],[]]]]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 4 - 2
[[[[],[]],[]],[[[],[]],[]]]
=> [1,1,1,0,1,0,0,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 4 - 2
[[[],[[],[[],[]]]],[[],[]]]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,1,0,1,1,0,0,0]
=> ? = 5 - 2
[[[],[[[],[]],[]]],[[],[]]]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,1,1,0,0,0,1,0]
=> ? = 5 - 2
[[[[],[]],[[],[]]],[[],[]]]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 4 - 2
[[[[],[[],[]]],[]],[[],[]]]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,0]
=> ? = 5 - 2
[[[[[],[]],[]],[]],[[],[]]]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 5 - 2
[[[],[[],[[],[[],[]]]]],[]]
=> [1,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,1,0,1,1,0,0,1,0,0,0,0]
=> ? = 6 - 2
[[[],[[],[[[],[]],[]]]],[]]
=> [1,1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,1,0,0,0,0,1,0]
=> ? = 6 - 2
[[[],[[[],[]],[[],[]]]],[]]
=> [1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> ? = 5 - 2
[[[],[[[],[[],[]]],[]]],[]]
=> [1,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,1,1,0,0,1,0,0,0,1,0,0]
=> ? = 6 - 2
[[[],[[[[],[]],[]],[]]],[]]
=> [1,1,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,1,0,0,1,0]
=> ? = 6 - 2
[[[[],[]],[[],[[],[]]]],[]]
=> [1,1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 5 - 2
[[[[],[]],[[[],[]],[]]],[]]
=> [1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 5 - 2
[[[[],[[],[]]],[[],[]]],[]]
=> [1,1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,0,1,0,1,1,0,0]
=> ? = 5 - 2
[[[[[],[]],[]],[[],[]]],[]]
=> [1,1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 5 - 2
[[[[],[[],[[],[]]]],[]],[]]
=> [1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0,0]
=> ? = 6 - 2
[[[[],[[[],[]],[]]],[]],[]]
=> [1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,1,0,0,0,1,0]
=> ? = 6 - 2
[[[[[],[]],[[],[]]],[]],[]]
=> [1,1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 5 - 2
[[[[[],[[],[]]],[]],[]],[]]
=> [1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> ? = 6 - 2
[[[[[[],[]],[]],[]],[]],[]]
=> [1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> ? = 6 - 2
[[],[[],[[],[[],[[],[[],[]]]]]]]
=> [1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> ? = 7 - 2
[[],[[],[[],[[],[[[],[]],[]]]]]]
=> [1,0,1,1,0,1,1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? = 7 - 2
[[],[[],[[],[[[],[]],[[],[]]]]]]
=> [1,0,1,1,0,1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 6 - 2
[[],[[],[[],[[[],[[],[]]],[]]]]]
=> [1,0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0,1,0,0]
=> ? = 7 - 2
[[],[[],[[],[[[[],[]],[]],[]]]]]
=> [1,0,1,1,0,1,1,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0,1,0,0,1,0]
=> ? = 7 - 2
Description
The maximal area to the right of an up step of a Dyck path.
The following 81 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000306The bounce count of a Dyck path. St000097The order of the largest clique of the graph. St000245The number of ascents of a permutation. St000093The cardinality of a maximal independent set of vertices of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000676The number of odd rises of a Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St000098The chromatic number of a graph. St000141The maximum drop size of a permutation. St000662The staircase size of the code of a permutation. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000527The width of the poset. St000744The length of the path to the largest entry in a standard Young tableau. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c0,c1,...,cn1] such that n=c0<ci for all i>0 a Dyck path as follows: St000381The largest part of an integer composition. St000382The first part of an integer composition. St000808The number of up steps of the associated bargraph. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001494The Alon-Tarsi number of a graph. St000172The Grundy number of a graph. St000308The height of the tree associated to a permutation. St001029The size of the core of a graph. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001580The acyclic chromatic number of a graph. St000053The number of valleys of the Dyck path. St000272The treewidth of a graph. St000536The pathwidth of a graph. St001197The global dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St000094The depth of an ordered tree. St000166The depth minus 1 of an ordered tree. St000062The length of the longest increasing subsequence of the permutation. St000720The size of the largest partition in the oscillating tableau corresponding to the perfect matching. St001046The maximal number of arcs nesting a given arc of a perfect matching. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St000015The number of peaks of a Dyck path. St000314The number of left-to-right-maxima of a permutation. St000325The width of the tree associated to a permutation. St000470The number of runs in a permutation. St000542The number of left-to-right-minima of a permutation. St000822The Hadwiger number of the graph. St000877The depth of the binary word interpreted as a path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c0,c1,...,cn1] such that n=c0<ci for all i>0 a special CNakayama algebra. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001498The normalised height of a Nakayama algebra with magnitude 1. St001717The largest size of an interval in a poset. St001963The tree-depth of a graph. St000021The number of descents of a permutation. St000080The rank of the poset. St000730The maximal arc length of a set partition. St001047The maximal number of arcs crossing a given arc of a perfect matching. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001205The number of non-simple indecomposable projective-injective modules of the algebra eAe in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001277The degeneracy of a graph. St001278The number of indecomposable modules that are fixed by τΩ1 composed with its inverse in the corresponding Nakayama algebra. St001358The largest degree of a regular subgraph of a graph. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001330The hat guessing number of a graph. St000451The length of the longest pattern of the form k 1 2. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St001674The number of vertices of the largest induced star graph in the graph. St001589The nesting number of a perfect matching. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001323The independence gap of a graph. St001590The crossing number of a perfect matching. St001621The number of atoms of a lattice. St001875The number of simple modules with projective dimension at most 1. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001877Number of indecomposable injective modules with projective dimension 2. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000299The number of nonisomorphic vertex-induced subtrees. St000983The length of the longest alternating subword. St001820The size of the image of the pop stack sorting operator.