searching the database
Your data matches 27 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000148
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St000148: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 0
[1,1]
=> 2
[3]
=> 1
[2,1]
=> 1
[1,1,1]
=> 3
[4]
=> 0
[3,1]
=> 2
[2,2]
=> 0
[2,1,1]
=> 2
[1,1,1,1]
=> 4
[5]
=> 1
[4,1]
=> 1
[3,2]
=> 1
[3,1,1]
=> 3
[2,2,1]
=> 1
[2,1,1,1]
=> 3
[1,1,1,1,1]
=> 5
[6]
=> 0
[5,1]
=> 2
[4,2]
=> 0
[4,1,1]
=> 2
[3,3]
=> 2
[3,2,1]
=> 2
[3,1,1,1]
=> 4
[2,2,2]
=> 0
[2,2,1,1]
=> 2
[2,1,1,1,1]
=> 4
[1,1,1,1,1,1]
=> 6
[7]
=> 1
[6,1]
=> 1
[5,2]
=> 1
[5,1,1]
=> 3
[4,3]
=> 1
[4,2,1]
=> 1
[4,1,1,1]
=> 3
[3,3,1]
=> 3
[3,2,2]
=> 1
[3,2,1,1]
=> 3
[3,1,1,1,1]
=> 5
[2,2,2,1]
=> 1
[2,2,1,1,1]
=> 3
[2,1,1,1,1,1]
=> 5
[1,1,1,1,1,1,1]
=> 7
[8]
=> 0
[7,1]
=> 2
[6,2]
=> 0
[6,1,1]
=> 2
[5,3]
=> 2
[5,2,1]
=> 2
Description
The number of odd parts of a partition.
Matching statistic: St000010
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 76% ●values known / values provided: 96%●distinct values known / distinct values provided: 76%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 76% ●values known / values provided: 96%●distinct values known / distinct values provided: 76%
Values
[1]
=> 1 => [1,1] => [1,1]
=> 2 = 1 + 1
[2]
=> 0 => [2] => [2]
=> 1 = 0 + 1
[1,1]
=> 11 => [1,1,1] => [1,1,1]
=> 3 = 2 + 1
[3]
=> 1 => [1,1] => [1,1]
=> 2 = 1 + 1
[2,1]
=> 01 => [2,1] => [2,1]
=> 2 = 1 + 1
[1,1,1]
=> 111 => [1,1,1,1] => [1,1,1,1]
=> 4 = 3 + 1
[4]
=> 0 => [2] => [2]
=> 1 = 0 + 1
[3,1]
=> 11 => [1,1,1] => [1,1,1]
=> 3 = 2 + 1
[2,2]
=> 00 => [3] => [3]
=> 1 = 0 + 1
[2,1,1]
=> 011 => [2,1,1] => [2,1,1]
=> 3 = 2 + 1
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => [1,1,1,1,1]
=> 5 = 4 + 1
[5]
=> 1 => [1,1] => [1,1]
=> 2 = 1 + 1
[4,1]
=> 01 => [2,1] => [2,1]
=> 2 = 1 + 1
[3,2]
=> 10 => [1,2] => [2,1]
=> 2 = 1 + 1
[3,1,1]
=> 111 => [1,1,1,1] => [1,1,1,1]
=> 4 = 3 + 1
[2,2,1]
=> 001 => [3,1] => [3,1]
=> 2 = 1 + 1
[2,1,1,1]
=> 0111 => [2,1,1,1] => [2,1,1,1]
=> 4 = 3 + 1
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 6 = 5 + 1
[6]
=> 0 => [2] => [2]
=> 1 = 0 + 1
[5,1]
=> 11 => [1,1,1] => [1,1,1]
=> 3 = 2 + 1
[4,2]
=> 00 => [3] => [3]
=> 1 = 0 + 1
[4,1,1]
=> 011 => [2,1,1] => [2,1,1]
=> 3 = 2 + 1
[3,3]
=> 11 => [1,1,1] => [1,1,1]
=> 3 = 2 + 1
[3,2,1]
=> 101 => [1,2,1] => [2,1,1]
=> 3 = 2 + 1
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => [1,1,1,1,1]
=> 5 = 4 + 1
[2,2,2]
=> 000 => [4] => [4]
=> 1 = 0 + 1
[2,2,1,1]
=> 0011 => [3,1,1] => [3,1,1]
=> 3 = 2 + 1
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => [2,1,1,1,1]
=> 5 = 4 + 1
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> 7 = 6 + 1
[7]
=> 1 => [1,1] => [1,1]
=> 2 = 1 + 1
[6,1]
=> 01 => [2,1] => [2,1]
=> 2 = 1 + 1
[5,2]
=> 10 => [1,2] => [2,1]
=> 2 = 1 + 1
[5,1,1]
=> 111 => [1,1,1,1] => [1,1,1,1]
=> 4 = 3 + 1
[4,3]
=> 01 => [2,1] => [2,1]
=> 2 = 1 + 1
[4,2,1]
=> 001 => [3,1] => [3,1]
=> 2 = 1 + 1
[4,1,1,1]
=> 0111 => [2,1,1,1] => [2,1,1,1]
=> 4 = 3 + 1
[3,3,1]
=> 111 => [1,1,1,1] => [1,1,1,1]
=> 4 = 3 + 1
[3,2,2]
=> 100 => [1,3] => [3,1]
=> 2 = 1 + 1
[3,2,1,1]
=> 1011 => [1,2,1,1] => [2,1,1,1]
=> 4 = 3 + 1
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 6 = 5 + 1
[2,2,2,1]
=> 0001 => [4,1] => [4,1]
=> 2 = 1 + 1
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => [3,1,1,1]
=> 4 = 3 + 1
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => [2,1,1,1,1,1]
=> 6 = 5 + 1
[1,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1]
=> 8 = 7 + 1
[8]
=> 0 => [2] => [2]
=> 1 = 0 + 1
[7,1]
=> 11 => [1,1,1] => [1,1,1]
=> 3 = 2 + 1
[6,2]
=> 00 => [3] => [3]
=> 1 = 0 + 1
[6,1,1]
=> 011 => [2,1,1] => [2,1,1]
=> 3 = 2 + 1
[5,3]
=> 11 => [1,1,1] => [1,1,1]
=> 3 = 2 + 1
[5,2,1]
=> 101 => [1,2,1] => [2,1,1]
=> 3 = 2 + 1
[2,2,1,1,1,1,1,1,1,1]
=> 0011111111 => [3,1,1,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[3,2,1,1,1,1,1,1,1,1]
=> 1011111111 => [1,2,1,1,1,1,1,1,1,1] => ?
=> ? = 9 + 1
[2,2,2,1,1,1,1,1,1,1]
=> 0001111111 => [4,1,1,1,1,1,1,1] => ?
=> ? = 7 + 1
[2,2,1,1,1,1,1,1,1,1,1]
=> 00111111111 => [3,1,1,1,1,1,1,1,1,1] => ?
=> ? = 9 + 1
[2,1,1,1,1,1,1,1,1,1,1,1]
=> 011111111111 => [2,1,1,1,1,1,1,1,1,1,1,1] => ?
=> ? = 11 + 1
[1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 1111111111111 => ? => ?
=> ? = 13 + 1
[4,2,1,1,1,1,1,1,1,1]
=> 0011111111 => [3,1,1,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[2,2,2,2,1,1,1,1,1,1]
=> 0000111111 => [5,1,1,1,1,1,1] => ?
=> ? = 6 + 1
[2,2,2,1,1,1,1,1,1,1,1]
=> 00011111111 => [4,1,1,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[2,2,1,1,1,1,1,1,1,1,1,1]
=> 001111111111 => [3,1,1,1,1,1,1,1,1,1,1] => ?
=> ? = 10 + 1
[2,1,1,1,1,1,1,1,1,1,1,1,1]
=> 0111111111111 => ? => ?
=> ? = 12 + 1
[1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 11111111111111 => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => ?
=> ? = 14 + 1
[5,2,1,1,1,1,1,1,1,1]
=> 1011111111 => [1,2,1,1,1,1,1,1,1,1] => ?
=> ? = 9 + 1
[4,2,2,1,1,1,1,1,1,1]
=> 0001111111 => [4,1,1,1,1,1,1,1] => ?
=> ? = 7 + 1
[4,2,1,1,1,1,1,1,1,1,1]
=> 00111111111 => [3,1,1,1,1,1,1,1,1,1] => ?
=> ? = 9 + 1
[4,1,1,1,1,1,1,1,1,1,1,1]
=> 011111111111 => [2,1,1,1,1,1,1,1,1,1,1,1] => ?
=> ? = 11 + 1
[3,3,2,1,1,1,1,1,1,1]
=> 1101111111 => [1,1,2,1,1,1,1,1,1,1] => ?
=> ? = 9 + 1
[3,2,2,2,1,1,1,1,1,1]
=> 1000111111 => [1,4,1,1,1,1,1,1] => ?
=> ? = 7 + 1
[3,2,2,1,1,1,1,1,1,1,1]
=> 10011111111 => [1,3,1,1,1,1,1,1,1,1] => ?
=> ? = 9 + 1
[3,2,1,1,1,1,1,1,1,1,1,1]
=> 101111111111 => ? => ?
=> ? = 11 + 1
[3,1,1,1,1,1,1,1,1,1,1,1,1]
=> 1111111111111 => ? => ?
=> ? = 13 + 1
[2,2,2,2,1,1,1,1,1,1,1]
=> 00001111111 => [5,1,1,1,1,1,1,1] => ?
=> ? = 7 + 1
[2,2,2,1,1,1,1,1,1,1,1,1]
=> 000111111111 => [4,1,1,1,1,1,1,1,1,1] => ?
=> ? = 9 + 1
[2,2,1,1,1,1,1,1,1,1,1,1,1]
=> 0011111111111 => ? => ?
=> ? = 11 + 1
[2,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 01111111111111 => ? => ?
=> ? = 13 + 1
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111111 => ? => ?
=> ? = 15 + 1
[6,2,1,1,1,1,1,1,1,1]
=> 0011111111 => [3,1,1,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[4,4,1,1,1,1,1,1,1,1]
=> 0011111111 => [3,1,1,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[4,3,2,1,1,1,1,1,1,1]
=> 0101111111 => [2,2,1,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[4,2,2,2,1,1,1,1,1,1]
=> 0000111111 => [5,1,1,1,1,1,1] => ?
=> ? = 6 + 1
[4,2,2,1,1,1,1,1,1,1,1]
=> 00011111111 => [4,1,1,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[4,2,1,1,1,1,1,1,1,1,1,1]
=> 001111111111 => [3,1,1,1,1,1,1,1,1,1,1] => ?
=> ? = 10 + 1
[4,1,1,1,1,1,1,1,1,1,1,1,1]
=> 0111111111111 => ? => ?
=> ? = 12 + 1
[3,3,2,2,1,1,1,1,1,1]
=> 1100111111 => [1,1,3,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[3,2,2,2,1,1,1,1,1,1,1]
=> 10001111111 => [1,4,1,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[3,2,1,1,1,1,1,1,1,1,1,1,1]
=> 1011111111111 => ? => ?
=> ? = 12 + 1
[3,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 11111111111111 => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => ?
=> ? = 14 + 1
[2,2,2,2,2,2,1,1,1,1]
=> 0000001111 => [7,1,1,1,1] => ?
=> ? = 4 + 1
[2,2,2,2,1,1,1,1,1,1,1,1]
=> 000011111111 => [5,1,1,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[2,2,2,1,1,1,1,1,1,1,1,1,1]
=> 0001111111111 => ? => ?
=> ? = 10 + 1
[2,2,1,1,1,1,1,1,1,1,1,1,1,1]
=> 00111111111111 => ? => ?
=> ? = 12 + 1
[2,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 011111111111111 => ? => ?
=> ? = 14 + 1
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 1111111111111111 => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => ?
=> ? = 16 + 1
[7,2,1,1,1,1,1,1,1,1]
=> 1011111111 => [1,2,1,1,1,1,1,1,1,1] => ?
=> ? = 9 + 1
[6,2,2,1,1,1,1,1,1,1]
=> 0001111111 => [4,1,1,1,1,1,1,1] => ?
=> ? = 7 + 1
[6,2,1,1,1,1,1,1,1,1,1]
=> 00111111111 => [3,1,1,1,1,1,1,1,1,1] => ?
=> ? = 9 + 1
[6,1,1,1,1,1,1,1,1,1,1,1]
=> 011111111111 => [2,1,1,1,1,1,1,1,1,1,1,1] => ?
=> ? = 11 + 1
[]
=> ? => ? => ?
=> ? = 0 + 1
Description
The length of the partition.
Matching statistic: St000288
(load all 34 compositions to match this statistic)
(load all 34 compositions to match this statistic)
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00135: Binary words —rotate front-to-back⟶ Binary words
Mp00096: Binary words —Foata bijection⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 65% ●values known / values provided: 95%●distinct values known / distinct values provided: 65%
Mp00135: Binary words —rotate front-to-back⟶ Binary words
Mp00096: Binary words —Foata bijection⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 65% ●values known / values provided: 95%●distinct values known / distinct values provided: 65%
Values
[1]
=> 1 => 1 => 1 => 1
[2]
=> 0 => 0 => 0 => 0
[1,1]
=> 11 => 11 => 11 => 2
[3]
=> 1 => 1 => 1 => 1
[2,1]
=> 01 => 10 => 10 => 1
[1,1,1]
=> 111 => 111 => 111 => 3
[4]
=> 0 => 0 => 0 => 0
[3,1]
=> 11 => 11 => 11 => 2
[2,2]
=> 00 => 00 => 00 => 0
[2,1,1]
=> 011 => 110 => 110 => 2
[1,1,1,1]
=> 1111 => 1111 => 1111 => 4
[5]
=> 1 => 1 => 1 => 1
[4,1]
=> 01 => 10 => 10 => 1
[3,2]
=> 10 => 01 => 01 => 1
[3,1,1]
=> 111 => 111 => 111 => 3
[2,2,1]
=> 001 => 010 => 100 => 1
[2,1,1,1]
=> 0111 => 1110 => 1110 => 3
[1,1,1,1,1]
=> 11111 => 11111 => 11111 => 5
[6]
=> 0 => 0 => 0 => 0
[5,1]
=> 11 => 11 => 11 => 2
[4,2]
=> 00 => 00 => 00 => 0
[4,1,1]
=> 011 => 110 => 110 => 2
[3,3]
=> 11 => 11 => 11 => 2
[3,2,1]
=> 101 => 011 => 011 => 2
[3,1,1,1]
=> 1111 => 1111 => 1111 => 4
[2,2,2]
=> 000 => 000 => 000 => 0
[2,2,1,1]
=> 0011 => 0110 => 1010 => 2
[2,1,1,1,1]
=> 01111 => 11110 => 11110 => 4
[1,1,1,1,1,1]
=> 111111 => 111111 => 111111 => 6
[7]
=> 1 => 1 => 1 => 1
[6,1]
=> 01 => 10 => 10 => 1
[5,2]
=> 10 => 01 => 01 => 1
[5,1,1]
=> 111 => 111 => 111 => 3
[4,3]
=> 01 => 10 => 10 => 1
[4,2,1]
=> 001 => 010 => 100 => 1
[4,1,1,1]
=> 0111 => 1110 => 1110 => 3
[3,3,1]
=> 111 => 111 => 111 => 3
[3,2,2]
=> 100 => 001 => 001 => 1
[3,2,1,1]
=> 1011 => 0111 => 0111 => 3
[3,1,1,1,1]
=> 11111 => 11111 => 11111 => 5
[2,2,2,1]
=> 0001 => 0010 => 1000 => 1
[2,2,1,1,1]
=> 00111 => 01110 => 10110 => 3
[2,1,1,1,1,1]
=> 011111 => 111110 => 111110 => 5
[1,1,1,1,1,1,1]
=> 1111111 => 1111111 => 1111111 => 7
[8]
=> 0 => 0 => 0 => 0
[7,1]
=> 11 => 11 => 11 => 2
[6,2]
=> 00 => 00 => 00 => 0
[6,1,1]
=> 011 => 110 => 110 => 2
[5,3]
=> 11 => 11 => 11 => 2
[5,2,1]
=> 101 => 011 => 011 => 2
[1,1,1,1,1,1,1,1,1,1]
=> 1111111111 => 1111111111 => 1111111111 => ? = 10
[1,1,1,1,1,1,1,1,1,1,1]
=> 11111111111 => 11111111111 => 11111111111 => ? = 11
[3,1,1,1,1,1,1,1,1,1]
=> 1111111111 => 1111111111 => 1111111111 => ? = 10
[1,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111 => 111111111111 => 111111111111 => ? = 12
[3,1,1,1,1,1,1,1,1,1,1]
=> 11111111111 => 11111111111 => 11111111111 => ? = 11
[2,1,1,1,1,1,1,1,1,1,1,1]
=> 011111111111 => 111111111110 => ? => ? = 11
[1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 1111111111111 => ? => ? => ? = 13
[5,1,1,1,1,1,1,1,1,1]
=> 1111111111 => 1111111111 => 1111111111 => ? = 10
[3,3,2,1,1,1,1,1,1]
=> 110111111 => 101111111 => 101111111 => ? = 8
[3,3,1,1,1,1,1,1,1,1]
=> 1111111111 => 1111111111 => 1111111111 => ? = 10
[3,2,2,1,1,1,1,1,1,1]
=> 1001111111 => 0011111111 => 0011111111 => ? = 8
[3,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111 => 111111111111 => 111111111111 => ? = 12
[2,2,1,1,1,1,1,1,1,1,1,1]
=> 001111111111 => 011111111110 => 101111111110 => ? = 10
[2,1,1,1,1,1,1,1,1,1,1,1,1]
=> 0111111111111 => ? => ? => ? = 12
[1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 11111111111111 => 11111111111111 => 11111111111111 => ? = 14
[5,1,1,1,1,1,1,1,1,1,1]
=> 11111111111 => 11111111111 => 11111111111 => ? = 11
[4,1,1,1,1,1,1,1,1,1,1,1]
=> 011111111111 => 111111111110 => ? => ? = 11
[3,3,2,1,1,1,1,1,1,1]
=> 1101111111 => 1011111111 => 1011111111 => ? = 9
[3,3,1,1,1,1,1,1,1,1,1]
=> 11111111111 => 11111111111 => 11111111111 => ? = 11
[3,2,2,2,1,1,1,1,1,1]
=> 1000111111 => 0001111111 => 0001111111 => ? = 7
[3,2,2,1,1,1,1,1,1,1,1]
=> 10011111111 => 00111111111 => 00111111111 => ? = 9
[3,2,1,1,1,1,1,1,1,1,1,1]
=> 101111111111 => ? => ? => ? = 11
[3,1,1,1,1,1,1,1,1,1,1,1,1]
=> 1111111111111 => ? => ? => ? = 13
[2,2,2,1,1,1,1,1,1,1,1,1]
=> 000111111111 => 001111111110 => ? => ? = 9
[2,2,1,1,1,1,1,1,1,1,1,1,1]
=> 0011111111111 => ? => ? => ? = 11
[2,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 01111111111111 => ? => ? => ? = 13
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111111 => ? => ? => ? = 15
[7,1,1,1,1,1,1,1,1,1]
=> 1111111111 => 1111111111 => 1111111111 => ? = 10
[5,3,2,1,1,1,1,1,1]
=> 110111111 => 101111111 => 101111111 => ? = 8
[5,3,1,1,1,1,1,1,1,1]
=> 1111111111 => 1111111111 => 1111111111 => ? = 10
[5,2,2,1,1,1,1,1,1,1]
=> 1001111111 => 0011111111 => 0011111111 => ? = 8
[5,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111 => 111111111111 => 111111111111 => ? = 12
[4,2,1,1,1,1,1,1,1,1,1,1]
=> 001111111111 => 011111111110 => 101111111110 => ? = 10
[4,1,1,1,1,1,1,1,1,1,1,1,1]
=> 0111111111111 => ? => ? => ? = 12
[3,3,3,2,1,1,1,1,1]
=> 111011111 => 110111111 => 110111111 => ? = 8
[3,3,3,1,1,1,1,1,1,1]
=> 1111111111 => 1111111111 => 1111111111 => ? = 10
[3,3,2,1,1,1,1,1,1,1,1]
=> 11011111111 => 10111111111 => 10111111111 => ? = 10
[3,3,1,1,1,1,1,1,1,1,1,1]
=> 111111111111 => 111111111111 => 111111111111 => ? = 12
[3,2,2,2,2,1,1,1,1,1]
=> 1000011111 => 0000111111 => 0000111111 => ? = 6
[3,2,2,2,1,1,1,1,1,1,1]
=> 10001111111 => 00011111111 => 00011111111 => ? = 8
[3,2,2,1,1,1,1,1,1,1,1,1]
=> 100111111111 => 001111111111 => 001111111111 => ? = 10
[3,2,1,1,1,1,1,1,1,1,1,1,1]
=> 1011111111111 => ? => ? => ? = 12
[3,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 11111111111111 => 11111111111111 => 11111111111111 => ? = 14
[2,2,2,2,1,1,1,1,1,1,1,1]
=> 000011111111 => 000111111110 => 100011111110 => ? = 8
[2,2,2,1,1,1,1,1,1,1,1,1,1]
=> 0001111111111 => ? => ? => ? = 10
[2,2,1,1,1,1,1,1,1,1,1,1,1,1]
=> 00111111111111 => ? => ? => ? = 12
[2,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 011111111111111 => ? => ? => ? = 14
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 1111111111111111 => 1111111111111111 => 1111111111111111 => ? = 16
[7,1,1,1,1,1,1,1,1,1,1]
=> 11111111111 => 11111111111 => 11111111111 => ? = 11
[6,1,1,1,1,1,1,1,1,1,1,1]
=> 011111111111 => 111111111110 => ? => ? = 11
Description
The number of ones in a binary word.
This is also known as the Hamming weight of the word.
Matching statistic: St000097
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000097: Graphs ⟶ ℤResult quality: 59% ●values known / values provided: 84%●distinct values known / distinct values provided: 59%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000097: Graphs ⟶ ℤResult quality: 59% ●values known / values provided: 84%●distinct values known / distinct values provided: 59%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[2]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,2]
=> 00 => [3] => ([],3)
=> 1 = 0 + 1
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 2 = 1 + 1
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[6]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,2]
=> 00 => [3] => ([],3)
=> 1 = 0 + 1
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[2,2,2]
=> 000 => [4] => ([],4)
=> 1 = 0 + 1
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[5,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 2 = 1 + 1
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[3,2,2]
=> 100 => [1,3] => ([(2,3)],4)
=> 2 = 1 + 1
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
[1,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 8 = 7 + 1
[8]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[6,2]
=> 00 => [3] => ([],3)
=> 1 = 0 + 1
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[1,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10 + 1
[3,2,1,1,1,1,1,1]
=> 10111111 => [1,2,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7 + 1
[2,2,2,1,1,1,1,1]
=> 00011111 => [4,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5 + 1
[2,2,1,1,1,1,1,1,1]
=> 001111111 => [3,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 7 + 1
[2,1,1,1,1,1,1,1,1,1]
=> 0111111111 => [2,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 9 + 1
[1,1,1,1,1,1,1,1,1,1,1]
=> 11111111111 => [1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 11 + 1
[4,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[3,2,2,1,1,1,1,1]
=> 10011111 => [1,3,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[3,2,1,1,1,1,1,1,1]
=> 101111111 => [1,2,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8 + 1
[3,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10 + 1
[2,2,2,2,1,1,1,1]
=> 00001111 => [5,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4 + 1
[2,2,2,1,1,1,1,1,1]
=> 000111111 => [4,1,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6 + 1
[2,2,1,1,1,1,1,1,1,1]
=> 0011111111 => [3,1,1,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[2,1,1,1,1,1,1,1,1,1,1]
=> 01111111111 => [2,1,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 10 + 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111 => [1,1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 12 + 1
[5,2,1,1,1,1,1,1]
=> 10111111 => [1,2,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7 + 1
[4,2,2,1,1,1,1,1]
=> 00011111 => [4,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5 + 1
[4,2,1,1,1,1,1,1,1]
=> 001111111 => [3,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 7 + 1
[4,1,1,1,1,1,1,1,1,1]
=> 0111111111 => [2,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 9 + 1
[3,2,2,2,1,1,1,1]
=> 10001111 => [1,4,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5 + 1
[3,2,2,1,1,1,1,1,1]
=> 100111111 => [1,3,1,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 7 + 1
[3,2,1,1,1,1,1,1,1,1]
=> 1011111111 => [1,2,1,1,1,1,1,1,1,1] => ?
=> ? = 9 + 1
[3,1,1,1,1,1,1,1,1,1,1]
=> 11111111111 => [1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 11 + 1
[2,2,2,2,2,1,1,1]
=> 00000111 => [6,1,1,1] => ([(0,6),(0,7),(0,8),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3 + 1
[2,2,2,2,1,1,1,1,1]
=> 000011111 => [5,1,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(0,9),(1,5),(1,6),(1,7),(1,8),(1,9),(2,5),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 5 + 1
[2,2,2,1,1,1,1,1,1,1]
=> 0001111111 => [4,1,1,1,1,1,1,1] => ?
=> ? = 7 + 1
[2,2,1,1,1,1,1,1,1,1,1]
=> 00111111111 => [3,1,1,1,1,1,1,1,1,1] => ?
=> ? = 9 + 1
[2,1,1,1,1,1,1,1,1,1,1,1]
=> 011111111111 => [2,1,1,1,1,1,1,1,1,1,1,1] => ?
=> ? = 11 + 1
[1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 1111111111111 => ? => ?
=> ? = 13 + 1
[6,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[5,2,2,1,1,1,1,1]
=> 10011111 => [1,3,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[5,2,1,1,1,1,1,1,1]
=> 101111111 => [1,2,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8 + 1
[5,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10 + 1
[4,4,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[4,3,2,1,1,1,1,1]
=> 01011111 => [2,2,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[4,2,2,2,1,1,1,1]
=> 00001111 => [5,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4 + 1
[4,2,2,1,1,1,1,1,1]
=> 000111111 => [4,1,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6 + 1
[4,2,1,1,1,1,1,1,1,1]
=> 0011111111 => [3,1,1,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[4,1,1,1,1,1,1,1,1,1,1]
=> 01111111111 => [2,1,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 10 + 1
[3,3,2,2,1,1,1,1]
=> 11001111 => [1,1,3,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[3,3,2,1,1,1,1,1,1]
=> 110111111 => [1,1,2,1,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8 + 1
[3,3,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10 + 1
[3,2,2,2,2,1,1,1]
=> 10000111 => [1,5,1,1,1] => ([(0,6),(0,7),(0,8),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4 + 1
[3,2,2,2,1,1,1,1,1]
=> 100011111 => [1,4,1,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(0,9),(1,5),(1,6),(1,7),(1,8),(1,9),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6 + 1
[3,2,2,1,1,1,1,1,1,1]
=> 1001111111 => [1,3,1,1,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 8 + 1
[3,2,1,1,1,1,1,1,1,1,1]
=> 10111111111 => [1,2,1,1,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 10 + 1
[3,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111 => [1,1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 12 + 1
[2,2,2,2,2,2,1,1]
=> 00000011 => [7,1,1] => ([(0,7),(0,8),(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[2,2,2,2,2,1,1,1,1]
=> 000001111 => [6,1,1,1,1] => ([(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(1,9),(2,6),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 4 + 1
Description
The order of the largest clique of the graph.
A clique in a graph $G$ is a subset $U \subseteq V(G)$ such that any pair of vertices in $U$ are adjacent. I.e. the subgraph induced by $U$ is a complete graph.
Matching statistic: St000098
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000098: Graphs ⟶ ℤResult quality: 59% ●values known / values provided: 84%●distinct values known / distinct values provided: 59%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000098: Graphs ⟶ ℤResult quality: 59% ●values known / values provided: 84%●distinct values known / distinct values provided: 59%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[2]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,2]
=> 00 => [3] => ([],3)
=> 1 = 0 + 1
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 2 = 1 + 1
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[6]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,2]
=> 00 => [3] => ([],3)
=> 1 = 0 + 1
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[2,2,2]
=> 000 => [4] => ([],4)
=> 1 = 0 + 1
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[5,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 2 = 1 + 1
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[3,2,2]
=> 100 => [1,3] => ([(2,3)],4)
=> 2 = 1 + 1
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
[1,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 8 = 7 + 1
[8]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[6,2]
=> 00 => [3] => ([],3)
=> 1 = 0 + 1
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[1,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10 + 1
[3,2,1,1,1,1,1,1]
=> 10111111 => [1,2,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7 + 1
[2,2,2,1,1,1,1,1]
=> 00011111 => [4,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5 + 1
[2,2,1,1,1,1,1,1,1]
=> 001111111 => [3,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 7 + 1
[2,1,1,1,1,1,1,1,1,1]
=> 0111111111 => [2,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 9 + 1
[1,1,1,1,1,1,1,1,1,1,1]
=> 11111111111 => [1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 11 + 1
[4,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[3,2,2,1,1,1,1,1]
=> 10011111 => [1,3,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[3,2,1,1,1,1,1,1,1]
=> 101111111 => [1,2,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8 + 1
[3,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10 + 1
[2,2,2,2,1,1,1,1]
=> 00001111 => [5,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4 + 1
[2,2,2,1,1,1,1,1,1]
=> 000111111 => [4,1,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6 + 1
[2,2,1,1,1,1,1,1,1,1]
=> 0011111111 => [3,1,1,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[2,1,1,1,1,1,1,1,1,1,1]
=> 01111111111 => [2,1,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 10 + 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111 => [1,1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 12 + 1
[5,2,1,1,1,1,1,1]
=> 10111111 => [1,2,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7 + 1
[4,2,2,1,1,1,1,1]
=> 00011111 => [4,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5 + 1
[4,2,1,1,1,1,1,1,1]
=> 001111111 => [3,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 7 + 1
[4,1,1,1,1,1,1,1,1,1]
=> 0111111111 => [2,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 9 + 1
[3,2,2,2,1,1,1,1]
=> 10001111 => [1,4,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5 + 1
[3,2,2,1,1,1,1,1,1]
=> 100111111 => [1,3,1,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 7 + 1
[3,2,1,1,1,1,1,1,1,1]
=> 1011111111 => [1,2,1,1,1,1,1,1,1,1] => ?
=> ? = 9 + 1
[3,1,1,1,1,1,1,1,1,1,1]
=> 11111111111 => [1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 11 + 1
[2,2,2,2,2,1,1,1]
=> 00000111 => [6,1,1,1] => ([(0,6),(0,7),(0,8),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3 + 1
[2,2,2,2,1,1,1,1,1]
=> 000011111 => [5,1,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(0,9),(1,5),(1,6),(1,7),(1,8),(1,9),(2,5),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 5 + 1
[2,2,2,1,1,1,1,1,1,1]
=> 0001111111 => [4,1,1,1,1,1,1,1] => ?
=> ? = 7 + 1
[2,2,1,1,1,1,1,1,1,1,1]
=> 00111111111 => [3,1,1,1,1,1,1,1,1,1] => ?
=> ? = 9 + 1
[2,1,1,1,1,1,1,1,1,1,1,1]
=> 011111111111 => [2,1,1,1,1,1,1,1,1,1,1,1] => ?
=> ? = 11 + 1
[1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 1111111111111 => ? => ?
=> ? = 13 + 1
[6,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[5,2,2,1,1,1,1,1]
=> 10011111 => [1,3,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[5,2,1,1,1,1,1,1,1]
=> 101111111 => [1,2,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8 + 1
[5,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10 + 1
[4,4,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[4,3,2,1,1,1,1,1]
=> 01011111 => [2,2,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[4,2,2,2,1,1,1,1]
=> 00001111 => [5,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4 + 1
[4,2,2,1,1,1,1,1,1]
=> 000111111 => [4,1,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6 + 1
[4,2,1,1,1,1,1,1,1,1]
=> 0011111111 => [3,1,1,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[4,1,1,1,1,1,1,1,1,1,1]
=> 01111111111 => [2,1,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 10 + 1
[3,3,2,2,1,1,1,1]
=> 11001111 => [1,1,3,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[3,3,2,1,1,1,1,1,1]
=> 110111111 => [1,1,2,1,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8 + 1
[3,3,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10 + 1
[3,2,2,2,2,1,1,1]
=> 10000111 => [1,5,1,1,1] => ([(0,6),(0,7),(0,8),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4 + 1
[3,2,2,2,1,1,1,1,1]
=> 100011111 => [1,4,1,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(0,9),(1,5),(1,6),(1,7),(1,8),(1,9),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6 + 1
[3,2,2,1,1,1,1,1,1,1]
=> 1001111111 => [1,3,1,1,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 8 + 1
[3,2,1,1,1,1,1,1,1,1,1]
=> 10111111111 => [1,2,1,1,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 10 + 1
[3,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111 => [1,1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 12 + 1
[2,2,2,2,2,2,2]
=> 0000000 => [8] => ([],8)
=> ? = 0 + 1
[2,2,2,2,2,2,1,1]
=> 00000011 => [7,1,1] => ([(0,7),(0,8),(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2 + 1
Description
The chromatic number of a graph.
The minimal number of colors needed to color the vertices of the graph such that no two vertices which share an edge have the same color.
Matching statistic: St001581
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001581: Graphs ⟶ ℤResult quality: 41% ●values known / values provided: 73%●distinct values known / distinct values provided: 41%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001581: Graphs ⟶ ℤResult quality: 41% ●values known / values provided: 73%●distinct values known / distinct values provided: 41%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[2]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,2]
=> 00 => [3] => ([],3)
=> 1 = 0 + 1
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 2 = 1 + 1
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[6]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,2]
=> 00 => [3] => ([],3)
=> 1 = 0 + 1
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[2,2,2]
=> 000 => [4] => ([],4)
=> 1 = 0 + 1
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[5,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 2 = 1 + 1
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[3,2,2]
=> 100 => [1,3] => ([(2,3)],4)
=> 2 = 1 + 1
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
[1,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7 + 1
[8]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[6,2]
=> 00 => [3] => ([],3)
=> 1 = 0 + 1
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[5,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[2,1,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[1,1,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8 + 1
[3,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7 + 1
[2,2,1,1,1,1,1]
=> 0011111 => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[2,1,1,1,1,1,1,1]
=> 01111111 => [2,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7 + 1
[1,1,1,1,1,1,1,1,1]
=> 111111111 => [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 9 + 1
[4,1,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[3,2,1,1,1,1,1]
=> 1011111 => [1,2,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[3,1,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8 + 1
[2,2,2,1,1,1,1]
=> 0001111 => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[2,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[2,1,1,1,1,1,1,1,1]
=> 011111111 => [2,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8 + 1
[1,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10 + 1
[5,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7 + 1
[4,2,1,1,1,1,1]
=> 0011111 => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[4,1,1,1,1,1,1,1]
=> 01111111 => [2,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7 + 1
[3,3,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7 + 1
[3,2,2,1,1,1,1]
=> 1001111 => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[3,2,1,1,1,1,1,1]
=> 10111111 => [1,2,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7 + 1
[3,1,1,1,1,1,1,1,1]
=> 111111111 => [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 9 + 1
[2,2,2,1,1,1,1,1]
=> 00011111 => [4,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5 + 1
[2,2,1,1,1,1,1,1,1]
=> 001111111 => [3,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 7 + 1
[2,1,1,1,1,1,1,1,1,1]
=> 0111111111 => [2,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 9 + 1
[1,1,1,1,1,1,1,1,1,1,1]
=> 11111111111 => [1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 11 + 1
[6,1,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[5,2,1,1,1,1,1]
=> 1011111 => [1,2,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[5,1,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8 + 1
[4,3,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[4,2,2,1,1,1,1]
=> 0001111 => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[4,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[4,1,1,1,1,1,1,1,1]
=> 011111111 => [2,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8 + 1
[3,3,2,1,1,1,1]
=> 1101111 => [1,1,2,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[3,3,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8 + 1
[3,2,2,2,1,1,1]
=> 1000111 => [1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[3,2,2,1,1,1,1,1]
=> 10011111 => [1,3,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[3,2,1,1,1,1,1,1,1]
=> 101111111 => [1,2,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8 + 1
[3,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10 + 1
[2,2,2,2,1,1,1,1]
=> 00001111 => [5,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4 + 1
[2,2,2,1,1,1,1,1,1]
=> 000111111 => [4,1,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6 + 1
[2,2,1,1,1,1,1,1,1,1]
=> 0011111111 => [3,1,1,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[2,1,1,1,1,1,1,1,1,1,1]
=> 01111111111 => [2,1,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 10 + 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111 => [1,1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 12 + 1
[7,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7 + 1
[6,2,1,1,1,1,1]
=> 0011111 => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[6,1,1,1,1,1,1,1]
=> 01111111 => [2,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7 + 1
[5,3,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7 + 1
[5,2,2,1,1,1,1]
=> 1001111 => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[5,2,1,1,1,1,1,1]
=> 10111111 => [1,2,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7 + 1
[5,1,1,1,1,1,1,1,1]
=> 111111111 => [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 9 + 1
Description
The achromatic number of a graph.
This is the maximal number of colours of a proper colouring, such that for any pair of colours there are two adjacent vertices with these colours.
Matching statistic: St001494
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001494: Graphs ⟶ ℤResult quality: 41% ●values known / values provided: 70%●distinct values known / distinct values provided: 41%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001494: Graphs ⟶ ℤResult quality: 41% ●values known / values provided: 70%●distinct values known / distinct values provided: 41%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[2]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[2,2]
=> 00 => [3] => ([],3)
=> 1 = 0 + 1
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 2 = 1 + 1
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[6]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[4,2]
=> 00 => [3] => ([],3)
=> 1 = 0 + 1
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[2,2,2]
=> 000 => [4] => ([],4)
=> 1 = 0 + 1
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[5,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 2 = 1 + 1
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[3,2,2]
=> 100 => [1,3] => ([(2,3)],4)
=> 2 = 1 + 1
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
[1,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7 + 1
[8]
=> 0 => [2] => ([],2)
=> 1 = 0 + 1
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[6,2]
=> 00 => [3] => ([],3)
=> 1 = 0 + 1
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[5,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[2,1,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[1,1,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8 + 1
[3,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7 + 1
[2,2,1,1,1,1,1]
=> 0011111 => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[2,1,1,1,1,1,1,1]
=> 01111111 => [2,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7 + 1
[1,1,1,1,1,1,1,1,1]
=> 111111111 => [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 9 + 1
[4,1,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[3,2,1,1,1,1,1]
=> 1011111 => [1,2,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[3,1,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8 + 1
[2,2,2,1,1,1,1]
=> 0001111 => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[2,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[2,1,1,1,1,1,1,1,1]
=> 011111111 => [2,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8 + 1
[1,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10 + 1
[5,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7 + 1
[4,2,1,1,1,1,1]
=> 0011111 => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[4,1,1,1,1,1,1,1]
=> 01111111 => [2,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7 + 1
[3,3,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7 + 1
[3,2,2,1,1,1,1]
=> 1001111 => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[3,2,1,1,1,1,1,1]
=> 10111111 => [1,2,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7 + 1
[3,1,1,1,1,1,1,1,1]
=> 111111111 => [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 9 + 1
[2,2,2,2,1,1,1]
=> 0000111 => [5,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[2,2,2,1,1,1,1,1]
=> 00011111 => [4,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5 + 1
[2,2,1,1,1,1,1,1,1]
=> 001111111 => [3,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 7 + 1
[2,1,1,1,1,1,1,1,1,1]
=> 0111111111 => [2,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 9 + 1
[1,1,1,1,1,1,1,1,1,1,1]
=> 11111111111 => [1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 11 + 1
[6,1,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[5,2,1,1,1,1,1]
=> 1011111 => [1,2,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[5,1,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8 + 1
[4,3,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[4,2,2,1,1,1,1]
=> 0001111 => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[4,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[4,1,1,1,1,1,1,1,1]
=> 011111111 => [2,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8 + 1
[3,3,2,1,1,1,1]
=> 1101111 => [1,1,2,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
[3,3,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8 + 1
[3,2,2,2,1,1,1]
=> 1000111 => [1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
[3,2,2,1,1,1,1,1]
=> 10011111 => [1,3,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6 + 1
[3,2,1,1,1,1,1,1,1]
=> 101111111 => [1,2,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8 + 1
[3,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10 + 1
[2,2,2,2,2,1,1]
=> 0000011 => [6,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[2,2,2,2,1,1,1,1]
=> 00001111 => [5,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4 + 1
[2,2,2,1,1,1,1,1,1]
=> 000111111 => [4,1,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6 + 1
[2,2,1,1,1,1,1,1,1,1]
=> 0011111111 => [3,1,1,1,1,1,1,1,1] => ?
=> ? = 8 + 1
[2,1,1,1,1,1,1,1,1,1,1]
=> 01111111111 => [2,1,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 10 + 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111 => [1,1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 12 + 1
[7,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7 + 1
[6,2,1,1,1,1,1]
=> 0011111 => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[6,1,1,1,1,1,1,1]
=> 01111111 => [2,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7 + 1
[5,3,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7 + 1
[5,2,2,1,1,1,1]
=> 1001111 => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
Description
The Alon-Tarsi number of a graph.
Let $G$ be a graph with vertices $\{1,\dots,n\}$ and edge set $E$. Let $P_G=\prod_{i < j, (i,j)\in E} x_i-x_j$ be its graph polynomial. Then the Alon-Tarsi number is the smallest number $k$ such that $P_G$ contains a monomial with exponents strictly less than $k$.
Matching statistic: St000272
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000272: Graphs ⟶ ℤResult quality: 41% ●values known / values provided: 70%●distinct values known / distinct values provided: 41%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000272: Graphs ⟶ ℤResult quality: 41% ●values known / values provided: 70%●distinct values known / distinct values provided: 41%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[2]
=> 0 => [2] => ([],2)
=> 0
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4]
=> 0 => [2] => ([],2)
=> 0
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[2,2]
=> 00 => [3] => ([],3)
=> 0
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[3,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 1
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[6]
=> 0 => [2] => ([],2)
=> 0
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[4,2]
=> 00 => [3] => ([],3)
=> 0
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,2,2]
=> 000 => [4] => ([],4)
=> 0
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[5,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 1
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,2,2]
=> 100 => [1,3] => ([(2,3)],4)
=> 1
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[1,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[8]
=> 0 => [2] => ([],2)
=> 0
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[6,2]
=> 00 => [3] => ([],3)
=> 0
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[5,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,1,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[1,1,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8
[3,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[2,2,1,1,1,1,1]
=> 0011111 => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[2,1,1,1,1,1,1,1]
=> 01111111 => [2,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7
[1,1,1,1,1,1,1,1,1]
=> 111111111 => [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 9
[4,1,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[3,2,1,1,1,1,1]
=> 1011111 => [1,2,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[3,1,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8
[2,2,2,1,1,1,1]
=> 0001111 => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[2,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
[2,1,1,1,1,1,1,1,1]
=> 011111111 => [2,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8
[1,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10
[5,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[4,2,1,1,1,1,1]
=> 0011111 => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[4,1,1,1,1,1,1,1]
=> 01111111 => [2,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7
[3,3,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[3,2,2,1,1,1,1]
=> 1001111 => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[3,2,1,1,1,1,1,1]
=> 10111111 => [1,2,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7
[3,1,1,1,1,1,1,1,1]
=> 111111111 => [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 9
[2,2,2,2,1,1,1]
=> 0000111 => [5,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,2,2,1,1,1,1,1]
=> 00011111 => [4,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5
[2,2,1,1,1,1,1,1,1]
=> 001111111 => [3,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 7
[2,1,1,1,1,1,1,1,1,1]
=> 0111111111 => [2,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 9
[1,1,1,1,1,1,1,1,1,1,1]
=> 11111111111 => [1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 11
[6,1,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[5,2,1,1,1,1,1]
=> 1011111 => [1,2,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[5,1,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8
[4,3,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[4,2,2,1,1,1,1]
=> 0001111 => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[4,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
[4,1,1,1,1,1,1,1,1]
=> 011111111 => [2,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8
[3,3,2,2,1,1]
=> 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[3,3,2,1,1,1,1]
=> 1101111 => [1,1,2,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[3,3,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8
[3,2,2,2,1,1,1]
=> 1000111 => [1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[3,2,2,1,1,1,1,1]
=> 10011111 => [1,3,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
[3,2,1,1,1,1,1,1,1]
=> 101111111 => [1,2,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8
[3,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10
[2,2,2,2,2,1,1]
=> 0000011 => [6,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,2,2,1,1,1,1]
=> 00001111 => [5,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4
[2,2,2,1,1,1,1,1,1]
=> 000111111 => [4,1,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6
[2,2,1,1,1,1,1,1,1,1]
=> 0011111111 => [3,1,1,1,1,1,1,1,1] => ?
=> ? = 8
[2,1,1,1,1,1,1,1,1,1,1]
=> 01111111111 => [2,1,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 10
[1,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111 => [1,1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 12
[7,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[6,2,1,1,1,1,1]
=> 0011111 => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[6,1,1,1,1,1,1,1]
=> 01111111 => [2,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7
[5,3,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
Description
The treewidth of a graph.
A graph has treewidth zero if and only if it has no edges. A connected graph has treewidth at most one if and only if it is a tree. A connected graph has treewidth at most two if and only if it is a series-parallel graph.
Matching statistic: St000362
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000362: Graphs ⟶ ℤResult quality: 41% ●values known / values provided: 70%●distinct values known / distinct values provided: 41%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000362: Graphs ⟶ ℤResult quality: 41% ●values known / values provided: 70%●distinct values known / distinct values provided: 41%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[2]
=> 0 => [2] => ([],2)
=> 0
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4]
=> 0 => [2] => ([],2)
=> 0
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[2,2]
=> 00 => [3] => ([],3)
=> 0
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[3,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 1
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[6]
=> 0 => [2] => ([],2)
=> 0
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[4,2]
=> 00 => [3] => ([],3)
=> 0
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,2,2]
=> 000 => [4] => ([],4)
=> 0
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[5,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 1
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,2,2]
=> 100 => [1,3] => ([(2,3)],4)
=> 1
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[1,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[8]
=> 0 => [2] => ([],2)
=> 0
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[6,2]
=> 00 => [3] => ([],3)
=> 0
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[5,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,1,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[1,1,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8
[3,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[2,2,1,1,1,1,1]
=> 0011111 => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[2,1,1,1,1,1,1,1]
=> 01111111 => [2,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7
[1,1,1,1,1,1,1,1,1]
=> 111111111 => [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 9
[4,1,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[3,2,1,1,1,1,1]
=> 1011111 => [1,2,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[3,1,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8
[2,2,2,1,1,1,1]
=> 0001111 => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[2,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
[2,1,1,1,1,1,1,1,1]
=> 011111111 => [2,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8
[1,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10
[5,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[4,2,1,1,1,1,1]
=> 0011111 => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[4,1,1,1,1,1,1,1]
=> 01111111 => [2,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7
[3,3,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[3,2,2,1,1,1,1]
=> 1001111 => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[3,2,1,1,1,1,1,1]
=> 10111111 => [1,2,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7
[3,1,1,1,1,1,1,1,1]
=> 111111111 => [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 9
[2,2,2,2,1,1,1]
=> 0000111 => [5,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,2,2,1,1,1,1,1]
=> 00011111 => [4,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5
[2,2,1,1,1,1,1,1,1]
=> 001111111 => [3,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 7
[2,1,1,1,1,1,1,1,1,1]
=> 0111111111 => [2,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 9
[1,1,1,1,1,1,1,1,1,1,1]
=> 11111111111 => [1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 11
[6,1,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[5,2,1,1,1,1,1]
=> 1011111 => [1,2,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[5,1,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8
[4,3,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[4,2,2,1,1,1,1]
=> 0001111 => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[4,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
[4,1,1,1,1,1,1,1,1]
=> 011111111 => [2,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8
[3,3,2,2,1,1]
=> 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[3,3,2,1,1,1,1]
=> 1101111 => [1,1,2,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[3,3,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8
[3,2,2,2,1,1,1]
=> 1000111 => [1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[3,2,2,1,1,1,1,1]
=> 10011111 => [1,3,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
[3,2,1,1,1,1,1,1,1]
=> 101111111 => [1,2,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8
[3,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10
[2,2,2,2,2,1,1]
=> 0000011 => [6,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,2,2,1,1,1,1]
=> 00001111 => [5,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4
[2,2,2,1,1,1,1,1,1]
=> 000111111 => [4,1,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6
[2,2,1,1,1,1,1,1,1,1]
=> 0011111111 => [3,1,1,1,1,1,1,1,1] => ?
=> ? = 8
[2,1,1,1,1,1,1,1,1,1,1]
=> 01111111111 => [2,1,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 10
[1,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111 => [1,1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 12
[7,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[6,2,1,1,1,1,1]
=> 0011111 => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[6,1,1,1,1,1,1,1]
=> 01111111 => [2,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7
[5,3,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
Description
The size of a minimal vertex cover of a graph.
A '''vertex cover''' of a graph $G$ is a subset $S$ of the vertices of $G$ such that each edge of $G$ contains at least one vertex of $S$. Finding a minimal vertex cover is an NP-hard optimization problem.
Matching statistic: St000536
Mp00317: Integer partitions —odd parts⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000536: Graphs ⟶ ℤResult quality: 41% ●values known / values provided: 70%●distinct values known / distinct values provided: 41%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000536: Graphs ⟶ ℤResult quality: 41% ●values known / values provided: 70%●distinct values known / distinct values provided: 41%
Values
[1]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[2]
=> 0 => [2] => ([],2)
=> 0
[1,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[2,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4]
=> 0 => [2] => ([],2)
=> 0
[3,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[2,2]
=> 00 => [3] => ([],3)
=> 0
[2,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[5]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[4,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[3,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 1
[3,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[6]
=> 0 => [2] => ([],2)
=> 0
[5,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[4,2]
=> 00 => [3] => ([],3)
=> 0
[4,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,2,2]
=> 000 => [4] => ([],4)
=> 0
[2,2,1,1]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,1,1,1]
=> 01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,1,1,1]
=> 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
[7]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[6,1]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[5,2]
=> 10 => [1,2] => ([(1,2)],3)
=> 1
[5,1,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,3]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[4,2,1]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,1,1,1]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,3,1]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,2,2]
=> 100 => [1,3] => ([(2,3)],4)
=> 1
[3,2,1,1]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,1,1,1]
=> 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[2,2,2,1]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,2,1,1,1]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,1,1,1,1,1]
=> 011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[1,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[8]
=> 0 => [2] => ([],2)
=> 0
[7,1]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[6,2]
=> 00 => [3] => ([],3)
=> 0
[6,1,1]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[5,3]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[5,2,1]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[5,1,1,1]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,1,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[1,1,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8
[3,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[2,2,1,1,1,1,1]
=> 0011111 => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[2,1,1,1,1,1,1,1]
=> 01111111 => [2,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7
[1,1,1,1,1,1,1,1,1]
=> 111111111 => [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 9
[4,1,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[3,2,1,1,1,1,1]
=> 1011111 => [1,2,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[3,1,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8
[2,2,2,1,1,1,1]
=> 0001111 => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[2,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
[2,1,1,1,1,1,1,1,1]
=> 011111111 => [2,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8
[1,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10
[5,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[4,2,1,1,1,1,1]
=> 0011111 => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[4,1,1,1,1,1,1,1]
=> 01111111 => [2,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7
[3,3,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[3,2,2,1,1,1,1]
=> 1001111 => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[3,2,1,1,1,1,1,1]
=> 10111111 => [1,2,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7
[3,1,1,1,1,1,1,1,1]
=> 111111111 => [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 9
[2,2,2,2,1,1,1]
=> 0000111 => [5,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,2,2,1,1,1,1,1]
=> 00011111 => [4,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5
[2,2,1,1,1,1,1,1,1]
=> 001111111 => [3,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 7
[2,1,1,1,1,1,1,1,1,1]
=> 0111111111 => [2,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 9
[1,1,1,1,1,1,1,1,1,1,1]
=> 11111111111 => [1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 11
[6,1,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[5,2,1,1,1,1,1]
=> 1011111 => [1,2,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[5,1,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8
[4,3,1,1,1,1,1]
=> 0111111 => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[4,2,2,1,1,1,1]
=> 0001111 => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[4,2,1,1,1,1,1,1]
=> 00111111 => [3,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
[4,1,1,1,1,1,1,1,1]
=> 011111111 => [2,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8
[3,3,2,2,1,1]
=> 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[3,3,2,1,1,1,1]
=> 1101111 => [1,1,2,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[3,3,1,1,1,1,1,1]
=> 11111111 => [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 8
[3,2,2,2,1,1,1]
=> 1000111 => [1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[3,2,2,1,1,1,1,1]
=> 10011111 => [1,3,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
[3,2,1,1,1,1,1,1,1]
=> 101111111 => [1,2,1,1,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 8
[3,1,1,1,1,1,1,1,1,1]
=> 1111111111 => [1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 10
[2,2,2,2,2,1,1]
=> 0000011 => [6,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,2,2,1,1,1,1]
=> 00001111 => [5,1,1,1,1] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4
[2,2,2,1,1,1,1,1,1]
=> 000111111 => [4,1,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6
[2,2,1,1,1,1,1,1,1,1]
=> 0011111111 => [3,1,1,1,1,1,1,1,1] => ?
=> ? = 8
[2,1,1,1,1,1,1,1,1,1,1]
=> 01111111111 => [2,1,1,1,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 10
[1,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111 => [1,1,1,1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 12
[7,1,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[6,2,1,1,1,1,1]
=> 0011111 => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[6,1,1,1,1,1,1,1]
=> 01111111 => [2,1,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 7
[5,3,1,1,1,1,1]
=> 1111111 => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
Description
The pathwidth of a graph.
The following 17 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000172The Grundy number of a graph. St001029The size of the core of a graph. St001580The acyclic chromatic number of a graph. St001670The connected partition number of a graph. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St001302The number of minimally dominating sets of vertices of a graph. St001304The number of maximally independent sets of vertices of a graph. St001963The tree-depth of a graph. St000822The Hadwiger number of the graph. St001812The biclique partition number of a graph. St001330The hat guessing number of a graph. St000992The alternating sum of the parts of an integer partition. St000022The number of fixed points of a permutation. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St000895The number of ones on the main diagonal of an alternating sign matrix. St000696The number of cycles in the breakpoint graph of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!