Processing math: 100%

Your data matches 14 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000148
Mp00233: Dyck paths skew partitionSkew partitions
Mp00186: Skew partitions dominating partitionInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000148: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1],[]]
=> [1]
=> [1]
=> 1
[1,0,1,0]
=> [[1,1],[]]
=> [1,1]
=> [2]
=> 0
[1,1,0,0]
=> [[2],[]]
=> [2]
=> [1,1]
=> 2
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> [1,1,1]
=> [3]
=> 1
[1,0,1,1,0,0]
=> [[2,1],[]]
=> [2,1]
=> [2,1]
=> 1
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [2,1]
=> [2,1]
=> 1
[1,1,0,1,0,0]
=> [[3],[]]
=> [3]
=> [1,1,1]
=> 3
[1,1,1,0,0,0]
=> [[2,2],[]]
=> [2,2]
=> [2,2]
=> 0
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> [1,1,1,1]
=> [4]
=> 0
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> [2,1,1]
=> [3,1]
=> 2
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [2,2]
=> [2,2]
=> 0
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> [3,1]
=> [2,1,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> [2,2,1]
=> [3,2]
=> 1
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [2,1,1]
=> [3,1]
=> 2
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [3,1]
=> [2,1,1]
=> 2
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [3,1]
=> [2,1,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> [4]
=> [1,1,1,1]
=> 4
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [3,2]
=> [2,2,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [2,2,1]
=> [3,2]
=> 1
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> [3,2]
=> [2,2,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> [2,2,2]
=> [3,3]
=> 2
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> [3,3]
=> [2,2,2]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> [1,1,1,1,1]
=> [5]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> [2,1,1,1]
=> [4,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [2,2,1]
=> [3,2]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> [3,1,1]
=> [3,1,1]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> [2,2,1,1]
=> [4,2]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [2,2,1]
=> [3,2]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [3,2]
=> [2,2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [3,2]
=> [2,2,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> [4,1]
=> [2,1,1,1]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [3,3]
=> [2,2,2]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [2,2,2]
=> [3,3]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> [3,2,1]
=> [3,2,1]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> [2,2,2,1]
=> [4,3]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> [3,3,1]
=> [3,2,2]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [2,1,1,1]
=> [4,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [3,1,1]
=> [3,1,1]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [3,2]
=> [2,2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [4,1]
=> [2,1,1,1]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [3,2,1]
=> [3,2,1]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [3,1,1]
=> [3,1,1]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [4,1]
=> [2,1,1,1]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [4,1]
=> [2,1,1,1]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> [5]
=> [1,1,1,1,1]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [4,2]
=> [2,2,1,1]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [3,2,1]
=> [3,2,1]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [4,2]
=> [2,2,1,1]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [3,2,2]
=> [3,3,1]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [4,3]
=> [2,2,2,1]
=> 1
Description
The number of odd parts of a partition.
Matching statistic: St000475
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00108: Permutations cycle typeInteger partitions
St000475: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => [1]
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [2]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [1,1]
=> 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [2,1]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [2,1]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,1,1]
=> 3
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [3]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [2,2]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,1,1]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [2,1,1]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,1,1]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,1,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,1,1]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [2,2,1]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [2,2,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [2,2,1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [2,1,1,1]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [3,2]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,2,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,2,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [3,1,1]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [3,1,1]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [2,2,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [4,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [2,2,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [2,1,1,1]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,1,1,1]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [3,1,1]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [2,1,1,1]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,1,1,1]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,1,1,1]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,1,1]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [3,1,1]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,1,1]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [2,1,1,1]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1]
=> 1
Description
The number of parts equal to 1 in a partition.
Matching statistic: St000445
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
St000445: Dyck paths ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
[1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
[1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 2
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 6
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 8
Description
The number of rises of length 1 of a Dyck path.
Matching statistic: St000992
Mp00233: Dyck paths skew partitionSkew partitions
Mp00186: Skew partitions dominating partitionInteger partitions
St000992: Integer partitions ⟶ ℤResult quality: 92% values known / values provided: 92%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1],[]]
=> [1]
=> 1
[1,0,1,0]
=> [[1,1],[]]
=> [1,1]
=> 0
[1,1,0,0]
=> [[2],[]]
=> [2]
=> 2
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> [1,1,1]
=> 1
[1,0,1,1,0,0]
=> [[2,1],[]]
=> [2,1]
=> 1
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [2,1]
=> 1
[1,1,0,1,0,0]
=> [[3],[]]
=> [3]
=> 3
[1,1,1,0,0,0]
=> [[2,2],[]]
=> [2,2]
=> 0
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> [2,1,1]
=> 2
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [2,2]
=> 0
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> [3,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> [2,2,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [2,1,1]
=> 2
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [3,1]
=> 2
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [3,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> [4]
=> 4
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [3,2]
=> 1
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [2,2,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> [3,2]
=> 1
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> [2,2,2]
=> 2
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> [3,3]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> [1,1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> [2,1,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [2,2,1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> [3,1,1]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> [2,2,1,1]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [2,2,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [3,2]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [3,2]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> [4,1]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [3,3]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [2,2,2]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> [3,2,1]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> [2,2,2,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> [3,3,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [2,1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [3,1,1]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [3,2]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [4,1]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [3,2,1]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [3,1,1]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [4,1]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [4,1]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> [5]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [4,2]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [3,2,1]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [4,2]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [3,2,2]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [4,3]
=> 1
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[3,3,3,3,1],[]]
=> [3,3,3,3,1]
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[4,4,4,1],[]]
=> [4,4,4,1]
=> ? = 3
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [[4,4,4,4],[1,1,1]]
=> [4,3,3,3]
=> ? = 1
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [[5,5,5],[1,1]]
=> [5,4,4]
=> ? = 5
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [[3,3,3,2,2],[]]
=> [3,3,3,2,2]
=> ? = 3
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [[4,4,4,2],[1]]
=> [4,4,4,1]
=> ? = 3
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [[3,3,3,3,2],[1]]
=> [3,3,3,3,1]
=> ? = 1
[1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [[3,3,3,3,2],[]]
=> [3,3,3,3,2]
=> ? = 2
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [[4,4,4,2],[]]
=> [4,4,4,2]
=> ? = 2
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [[5,5,5],[2]]
=> [5,5,3]
=> ? = 3
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [[5,5,4],[1]]
=> [5,5,3]
=> ? = 3
[1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [[4,4,4,4],[1,1]]
=> [4,4,3,3]
=> ? = 0
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [[5,5,5],[1]]
=> [5,5,4]
=> ? = 4
[1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [[3,3,3,3,3],[1,1]]
=> [3,3,3,2,2]
=> ? = 3
[1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [[4,4,4,3],[2]]
=> [4,4,4,1]
=> ? = 3
[1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [[5,5,3],[]]
=> [5,5,3]
=> ? = 3
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [[4,4,4,3],[1]]
=> [4,4,4,2]
=> ? = 2
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[3,3,3,3,3],[2]]
=> [3,3,3,3,1]
=> ? = 1
[1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [[4,3,3,3],[]]
=> [4,3,3,3]
=> ? = 1
[1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [[3,3,3,3,3],[1]]
=> [3,3,3,3,2]
=> ? = 2
[1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [[4,4,3,3],[]]
=> [4,4,3,3]
=> ? = 0
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[3,3,3,3,3],[]]
=> [3,3,3,3,3]
=> ? = 3
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[4,4,4,3],[]]
=> [4,4,4,3]
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[4,4,4,4],[3]]
=> [4,4,4,1]
=> ? = 3
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [[5,4,4],[]]
=> [5,4,4]
=> ? = 5
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [[4,4,4,4],[2]]
=> [4,4,4,2]
=> ? = 2
[1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [[5,5,4],[]]
=> [5,5,4]
=> ? = 4
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[4,4,4,4],[1]]
=> [4,4,4,3]
=> ? = 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[5,5,5],[]]
=> [5,5,5]
=> ? = 5
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[4,4,4,4],[]]
=> [4,4,4,4]
=> ? = 0
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [[5,5,5,1],[1]]
=> [5,5,5]
=> ? = 5
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[3,3,3,3,3,1],[]]
=> [3,3,3,3,3,1]
=> ? = 2
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[4,4,4,3,1],[]]
=> [4,4,4,3,1]
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [[5,5,4,1],[]]
=> [5,5,4,1]
=> ? = 3
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[4,4,4,4,1],[1]]
=> [4,4,4,4]
=> ? = 0
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[5,5,5,1],[]]
=> [5,5,5,1]
=> ? = 4
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [[5,5,5,5],[4,1]]
=> [5,5,4,1]
=> ? = 3
[1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [[3,3,3,3,3,3],[2]]
=> [3,3,3,3,3,1]
=> ? = 2
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [[4,4,4,4,3],[3]]
=> [4,4,4,4]
=> ? = 0
[1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [[5,5,5,4],[4]]
=> [5,5,5]
=> ? = 5
[1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [[4,4,4,4,4],[3,1]]
=> [4,4,4,3,1]
=> ? = 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [[5,5,5,5],[4]]
=> [5,5,5,1]
=> ? = 4
Description
The alternating sum of the parts of an integer partition. For a partition λ=(λ1,,λk), this is λ1λ2+±λk.
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St001126: Dyck paths ⟶ ℤResult quality: 73% values known / values provided: 87%distinct values known / distinct values provided: 73%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> ? = 2
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 2
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 2
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 6
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 6
[1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
[1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 4
[1,0,1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 5
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 2
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,1,0,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 3
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 5
[1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 6
[1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> ? = 3
[1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,1,0,0,0]
=> ? = 2
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 0
[1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 5
[1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,1,0,0,0]
=> ? = 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 9
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 7
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0]
=> ? = 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 2
Description
Number of simple module that are 1-regular in the corresponding Nakayama algebra.
Matching statistic: St000247
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00151: Permutations to cycle typeSet partitions
St000247: Set partitions ⟶ ℤResult quality: 73% values known / values provided: 87%distinct values known / distinct values provided: 73%
Values
[1,0]
=> [1,0]
=> [1] => {{1}}
=> ? = 1
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => {{1,2}}
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => {{1},{2}}
=> 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => {{1,3},{2}}
=> 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => {{1,2},{3}}
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => {{1},{2,3}}
=> 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => {{1},{2},{3}}
=> 3
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => {{1,2,3}}
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => {{1,4},{2,3}}
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => {{1,3},{2},{4}}
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => {{1,2},{3,4}}
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => {{1,2},{3},{4}}
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => {{1,3,4},{2}}
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => {{1},{2,4},{3}}
=> 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => {{1},{2,3},{4}}
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => {{1},{2},{3,4}}
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => {{1},{2},{3},{4}}
=> 4
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => {{1},{2,3,4}}
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => {{1,2,4},{3}}
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => {{1,2,3},{4}}
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => {{1,4},{2},{3}}
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => {{1,2,3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => {{1,5},{2,4},{3}}
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => {{1,4},{2,3},{5}}
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => {{1,3},{2},{4,5}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => {{1,3},{2},{4},{5}}
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => {{1,4,5},{2,3}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => {{1,2},{3,5},{4}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => {{1,2},{3,4},{5}}
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => {{1,2},{3,4,5}}
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => {{1,3,5},{2},{4}}
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => {{1,3,4},{2},{5}}
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => {{1,5},{2,3},{4}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => {{1,3,4,5},{2}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => {{1},{2,5},{3,4}}
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => {{1},{2,4,5},{3}}
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => {{1},{2},{3,4,5}}
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => {{1},{2,3,5},{4}}
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => {{1},{2,3,4},{5}}
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => {{1},{2,5},{3},{4}}
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => {{1},{2,3,4,5}}
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => {{1,2,5},{3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8,7,6,5,4,3,2,1] => {{1,8},{2,7},{3,6},{4,5}}
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,6,5,4,3,2,1,8] => {{1,7},{2,6},{3,5},{4},{8}}
=> ? = 2
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [6,5,4,3,2,1,7,8] => {{1,6},{2,5},{3,4},{7},{8}}
=> ? = 2
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [7,6,5,4,3,2,8,1] => {{1,7,8},{2,6},{3,5},{4}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [5,4,3,2,1,6,7,8] => {{1,5},{2,4},{3},{6},{7},{8}}
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [6,5,4,3,2,7,1,8] => {{1,6,7},{2,5},{3,4},{8}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [8,6,5,4,3,2,7,1] => {{1,8},{2,6},{3,5},{4},{7}}
=> ? = 2
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> [6,5,4,3,2,7,8,1] => {{1,6,7,8},{2,5},{3,4}}
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1,5,6,7,8] => {{1,4},{2,3},{5},{6},{7},{8}}
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0]
=> [5,4,3,2,6,1,7,8] => {{1,5,6},{2,4},{3},{7},{8}}
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [7,5,4,3,2,6,1,8] => {{1,7},{2,5},{3,4},{6},{8}}
=> ? = 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0,1,0]
=> [5,4,3,2,6,7,1,8] => {{1,5,6,7},{2,4},{3},{8}}
=> ? = 2
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6,7,8] => {{1,3},{2},{4},{5},{6},{7},{8}}
=> ? = 6
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0]
=> [4,3,2,5,1,6,7,8] => {{1,4,5},{2,3},{6},{7},{8}}
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0]
=> [6,4,3,2,5,1,7,8] => {{1,6},{2,4},{3},{5},{7},{8}}
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0,1,0]
=> [4,3,2,5,6,1,7,8] => {{1,4,5,6},{2,3},{7},{8}}
=> ? = 2
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8] => {{1,2},{3},{4},{5},{6},{7},{8}}
=> ? = 6
[1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> [3,2,4,1,5,6,7,8] => {{1,3,4},{2},{5},{6},{7},{8}}
=> ? = 5
[1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,0]
=> [5,3,2,4,1,6,7,8] => {{1,5},{2,3},{4},{6},{7},{8}}
=> ? = 4
[1,0,1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0,1,0]
=> [3,2,4,5,1,6,7,8] => {{1,3,4,5},{2},{6},{7},{8}}
=> ? = 4
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,8,4,5,6,7,1] => {{1,3,8},{2},{4},{5},{6},{7}}
=> ? = 5
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [8,7,4,3,5,6,2,1] => {{1,8},{2,7},{3,4},{5},{6}}
=> ? = 2
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,1,0,0,0]
=> [8,4,3,5,6,2,7,1] => {{1,8},{2,4,5,6},{3},{7}}
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> [7,3,2,4,5,6,8,1] => {{1,7,8},{2,3},{4},{5},{6}}
=> ? = 3
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,1,0,0,0,0]
=> [8,3,2,5,6,7,4,1] => {{1,8},{2,3},{4,5,6,7}}
=> ? = 0
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [8,3,2,4,5,6,7,1] => {{1,8},{2,3},{4},{5},{6},{7}}
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => {{1},{2},{3},{4},{5},{6},{7},{8}}
=> ? = 8
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7,8] => {{1,2,3},{4},{5},{6},{7},{8}}
=> ? = 5
[1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [4,2,3,1,5,6,7,8] => {{1,4},{2},{3},{5},{6},{7},{8}}
=> ? = 6
[1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,4,1,5,6,7,8] => {{1,2,3,4},{5},{6},{7},{8}}
=> ? = 4
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [2,8,3,4,5,7,6,1] => {{1,2,8},{3},{4},{5},{6,7}}
=> ? = 3
[1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [8,7,3,4,6,5,2,1] => {{1,8},{2,7},{3},{4},{5,6}}
=> ? = 2
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> [8,3,4,5,2,7,6,1] => {{1,8},{2,3,4,5},{6,7}}
=> ? = 0
[1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,0]
=> [6,2,3,4,5,8,7,1] => {{1,6,8},{2},{3},{4},{5},{7}}
=> ? = 5
[1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0]
=> [8,2,4,5,7,6,3,1] => {{1,8},{2},{3,4,5,7},{6}}
=> ? = 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> [8,2,3,4,5,7,6,1] => {{1,8},{2},{3},{4},{5},{6,7}}
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9] => {{1},{2},{3},{4},{5},{6},{7},{8},{9}}
=> ? = 9
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7,8,9] => {{1,2,3},{4},{5},{6},{7},{8},{9}}
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [9,8,7,6,5,4,3,2,1] => {{1,9},{2,8},{3,7},{4,6},{5}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,7,6,5,4,3,2,1,9] => {{1,8},{2,7},{3,6},{4,5},{9}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [7,6,5,4,3,2,1,8,9] => {{1,7},{2,6},{3,5},{4},{8},{9}}
=> ? = 3
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1,7,8,9] => {{1,6},{2,5},{3,4},{7},{8},{9}}
=> ? = 3
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1,6,7,8,9] => {{1,5},{2,4},{3},{6},{7},{8},{9}}
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1,5,6,7,8,9] => {{1,4},{2,3},{5},{6},{7},{8},{9}}
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6,7,8,9] => {{1,3},{2},{4},{5},{6},{7},{8},{9}}
=> ? = 7
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8,9] => {{1,2},{3},{4},{5},{6},{7},{8},{9}}
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10,9,8,7,6,5,4,3,2,1] => {{1,10},{2,9},{3,8},{4,7},{5,6}}
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9,8,7,6,5,4,3,2,1,10] => {{1,9},{2,8},{3,7},{4,6},{5},{10}}
=> ? = 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> [8,7,6,5,4,3,2,9,1] => {{1,8,9},{2,7},{3,6},{4,5}}
=> ? = 0
Description
The number of singleton blocks of a set partition.
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000022: Permutations ⟶ ℤResult quality: 52% values known / values provided: 52%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => 1
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 2
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,5,4,3,2,7,1] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,3,2,1,7,6,5] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [4,3,2,1,6,5,7] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [4,3,2,1,5,7,6] => ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [7,5,4,3,2,6,1] => ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [5,4,3,2,6,7,1] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,2,1,7,6,5,4] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [3,2,1,6,5,4,7] => ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [3,2,1,5,4,7,6] => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [3,2,1,5,4,6,7] => ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,2,1,4,7,6,5] => ? = 3
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [3,2,1,4,6,5,7] => ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [3,2,1,4,5,7,6] => ? = 3
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [4,3,2,5,1,6,7] => ? = 2
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [7,5,4,3,6,2,1] => ? = 0
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [6,4,3,2,5,7,1] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [4,3,2,5,6,1,7] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,5,4,3,7] => ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,4,3,7,6] => ? = 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,4,3,6,7] => ? = 3
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => ? = 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => ? = 3
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,7,6,5,4] => ? = 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,6,5,4,7] => ? = 3
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => ? = 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => ? = 3
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,6,5] => ? = 3
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,3,4,6,5,7] => ? = 3
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => ? = 3
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [2,1,7,4,5,6,3] => ? = 3
[1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [3,2,4,1,5,6,7] => ? = 4
[1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [5,3,2,4,1,6,7] => ? = 3
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [5,3,2,4,6,1,7] => ? = 2
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [7,4,3,5,2,6,1] => ? = 2
[1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [3,2,4,5,1,6,7] => ? = 3
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [3,2,6,4,5,7,1] => ? = 3
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [3,2,4,5,6,1,7] => ? = 2
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [3,2,4,7,5,6,1] => ? = 3
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [3,2,7,4,5,6,1] => ? = 4
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1,7] => ? = 3
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [7,3,2,5,6,4,1] => ? = 0
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [6,3,2,4,5,7,1] => ? = 2
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [7,4,3,5,6,2,1] => ? = 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [7,3,2,4,5,6,1] => ? = 3
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 3
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 1
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 3
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,4,3,2,7,6,5] => ? = 3
Description
The number of fixed points of a permutation.
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00137: Dyck paths to symmetric ASMAlternating sign matrices
St000895: Alternating sign matrices ⟶ ℤResult quality: 43% values known / values provided: 43%distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1,0]
=> [[1]]
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> 3
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ? = 3
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,-1,1],[0,0,0,0,0,1,0]]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,-1,1],[1,0,0,0,-1,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ? = 5
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ? = 2
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,-1,1],[0,1,0,0,-1,1,0],[1,0,0,-1,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 0
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,-1,1,0],[1,0,0,-1,1,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> ? = 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ? = 3
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ? = 3
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> ? = 3
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ? = 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ? = 3
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> ? = 3
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ? = 3
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ? = 3
[1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ? = 5
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0]]
=> ? = 3
[1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ? = 4
[1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,1,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ? = 3
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,1,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ? = 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,1,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ? = 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,1,0,-1,1,0,0],[1,0,-1,1,0,-1,1],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0]]
=> ? = 2
[1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ? = 3
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> ? = 3
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ? = 2
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0]]
=> ? = 3
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ? = 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0]]
=> ? = 4
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,1,0,0],[1,0,-1,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> ? = 3
Description
The number of ones on the main diagonal of an alternating sign matrix.
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00088: Permutations Kreweras complementPermutations
St000241: Permutations ⟶ ℤResult quality: 40% values known / values provided: 40%distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1,0]
=> [1] => [1] => 1
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [1,2] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [2,1] => 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [3,2,1] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [2,3,1] => 3
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,3,2] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [4,3,2,1] => 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,2,1,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [3,2,4,1] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,2,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [2,1,4,3] => 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,4,3,1] => 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,3,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [2,3,4,1] => 4
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,1,3,4] => 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [4,2,3,1] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,3,4,2] => 2
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [1,5,4,3,2] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [5,4,3,2,1] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [4,3,2,1,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [4,3,2,5,1] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [1,4,3,2,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [3,2,1,5,4] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [3,2,5,4,1] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [3,2,4,1,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [3,2,4,5,1] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2,1,4,5] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [1,3,2,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [5,3,2,4,1] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [1,4,3,5,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [1,3,2,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [2,1,5,4,3] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [2,5,4,3,1] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,4,3,1,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,4,3,5,1] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [2,1,4,3,5] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [2,3,1,5,4] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,3,5,4,1] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,3,4,1,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [2,3,4,5,1] => 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [2,3,1,4,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [2,1,3,5,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [2,5,3,4,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [2,1,4,5,3] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,1,3,4,5] => 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => [1,7,6,5,4,3,2] => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => [7,6,5,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,4,3,2,1,7,6] => [6,5,4,3,2,1,7] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,4,3,2,1,6,7] => [6,5,4,3,2,7,1] => ? = 3
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,5,4,3,2,7,1] => [1,6,5,4,3,2,7] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,3,2,1,7,6,5] => [5,4,3,2,1,7,6] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [4,3,2,1,6,5,7] => [5,4,3,2,7,6,1] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [4,3,2,1,5,7,6] => [5,4,3,2,6,1,7] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [4,3,2,1,5,6,7] => [5,4,3,2,6,7,1] => ? = 3
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,4,3,2,6,1,7] => [7,5,4,3,2,6,1] => ? = 2
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [7,5,4,3,2,6,1] => [1,6,5,4,3,7,2] => ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [5,4,3,2,6,7,1] => [1,5,4,3,2,6,7] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,2,1,7,6,5,4] => [4,3,2,1,7,6,5] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [3,2,1,6,5,4,7] => [4,3,2,7,6,5,1] => ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [3,2,1,5,4,7,6] => [4,3,2,6,5,1,7] => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [3,2,1,5,4,6,7] => [4,3,2,6,5,7,1] => ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,2,1,4,7,6,5] => [4,3,2,5,1,7,6] => ? = 3
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [3,2,1,4,6,5,7] => [4,3,2,5,7,6,1] => ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [3,2,1,4,5,7,6] => [4,3,2,5,6,1,7] => ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6,7] => [4,3,2,5,6,7,1] => ? = 5
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [4,3,2,5,1,6,7] => [6,4,3,2,5,7,1] => ? = 2
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [6,4,3,2,5,1,7] => [7,5,4,3,6,2,1] => ? = 3
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [7,5,4,3,6,2,1] => [1,7,5,4,3,6,2] => ? = 0
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [6,4,3,2,5,7,1] => [1,5,4,3,6,2,7] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [4,3,2,5,6,1,7] => [7,4,3,2,5,6,1] => ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [4,3,2,5,6,7,1] => [1,4,3,2,5,6,7] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => [3,2,1,7,6,5,4] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,5,4,3,7] => [3,2,7,6,5,4,1] => ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,4,3,7,6] => [3,2,6,5,4,1,7] => ? = 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,4,3,6,7] => [3,2,6,5,4,7,1] => ? = 3
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => [3,2,5,4,1,7,6] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => [3,2,5,4,7,6,1] => ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => [3,2,5,4,6,1,7] => ? = 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => [3,2,5,4,6,7,1] => ? = 3
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,7,6,5,4] => [3,2,4,1,7,6,5] => ? = 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,6,5,4,7] => [3,2,4,7,6,5,1] => ? = 3
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => [3,2,4,6,5,1,7] => ? = 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => [3,2,4,6,5,7,1] => ? = 3
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,6,5] => [3,2,4,5,1,7,6] => ? = 3
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,3,4,6,5,7] => [3,2,4,5,7,6,1] => ? = 3
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => [3,2,4,5,6,1,7] => ? = 3
[1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => [3,2,4,5,6,7,1] => ? = 5
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [2,1,7,4,5,6,3] => [3,2,1,5,6,7,4] => ? = 3
[1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [3,2,4,1,5,6,7] => [5,3,2,4,6,7,1] => ? = 4
[1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [5,3,2,4,1,6,7] => [6,4,3,5,2,7,1] => ? = 3
[1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [6,4,3,5,2,1,7] => [7,6,4,3,5,2,1] => ? = 2
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [5,3,2,4,6,1,7] => [7,4,3,5,2,6,1] => ? = 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [5,3,2,4,6,7,1] => [1,4,3,5,2,6,7] => ? = 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [7,4,3,5,2,6,1] => [1,6,4,3,5,7,2] => ? = 2
[1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [3,2,4,5,1,6,7] => [6,3,2,4,5,7,1] => ? = 3
Description
The number of cyclical small excedances. A cyclical small excedance is an index i such that πi=i+1 considered cyclically.
Matching statistic: St001189
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001189: Dyck paths ⟶ ℤResult quality: 40% values known / values provided: 40%distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,1,0,0]
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,1,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,1,0,0,0]
=> ? = 2
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,1,0,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,1,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,1,0,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,1,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,1,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,1,0,0,0,0]
=> ? = 2
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,1,0,0,0]
=> ? = 0
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,1,0,0]
=> ? = 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> ? = 3
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> ? = 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ? = 3
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 3
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> ? = 3
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 3
[1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 5
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 3
[1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 4
[1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> ? = 2
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,1,0,0,0]
=> ? = 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,1,0,0]
=> ? = 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,1,0,0,0,0]
=> ? = 2
[1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,1,0,0,0,0]
=> ? = 3
Description
The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path.
The following 4 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000894The trace of an alternating sign matrix. St000237The number of small exceedances. St000239The number of small weak excedances. St001903The number of fixed points of a parking function.