Processing math: 92%

Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000175
St000175: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 0
[2]
=> 0
[1,1]
=> 0
[3]
=> 0
[2,1]
=> 1
[1,1,1]
=> 0
[4]
=> 0
[3,1]
=> 1
[2,2]
=> 0
[2,1,1]
=> 2
[1,1,1,1]
=> 0
[5]
=> 0
[4,1]
=> 1
[3,2]
=> 1
[3,1,1]
=> 2
[2,2,1]
=> 2
[2,1,1,1]
=> 3
[1,1,1,1,1]
=> 0
[6]
=> 0
[5,1]
=> 1
[4,2]
=> 1
[4,1,1]
=> 2
[3,3]
=> 0
[3,2,1]
=> 3
[3,1,1,1]
=> 3
[2,2,2]
=> 0
[2,2,1,1]
=> 4
[2,1,1,1,1]
=> 4
[1,1,1,1,1,1]
=> 0
[7]
=> 0
[6,1]
=> 1
[5,2]
=> 1
[5,1,1]
=> 2
[4,3]
=> 1
[4,2,1]
=> 3
[4,1,1,1]
=> 3
[3,3,1]
=> 2
[3,2,2]
=> 2
[3,2,1,1]
=> 5
[3,1,1,1,1]
=> 4
[2,2,2,1]
=> 3
[2,2,1,1,1]
=> 6
[2,1,1,1,1,1]
=> 5
[1,1,1,1,1,1,1]
=> 0
[8]
=> 0
[7,1]
=> 1
[6,2]
=> 1
[6,1,1]
=> 2
[5,3]
=> 1
[5,2,1]
=> 3
Description
Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. Given a partition λ with r parts, the number of semi-standard Young-tableaux of shape kλ and boxes with values in [r] grows as a polynomial in k. This follows by setting q=1 in (7.105) on page 375 of [1], which yields the polynomial p(k)=i<jk(λjλi)+jiji. The statistic of the degree of this polynomial. For example, the partition (3,2,1,1,1) gives p(k)=136(k3)(2k3)(k2)2(k1)3 which has degree 7 in k. Thus, [3,2,1,1,1]7. This is the same as the number of unordered pairs of different parts, which follows from: degp(k)=i<j{1λjλi0λi=λj=i<jλjλi1
Matching statistic: St000769
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00207: Standard tableaux horizontal strip sizesInteger compositions
Mp00315: Integer compositions inverse Foata bijectionInteger compositions
St000769: Integer compositions ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 31%
Values
[1]
=> [[1]]
=> [1] => [1] => 0
[2]
=> [[1,2]]
=> [2] => [2] => 0
[1,1]
=> [[1],[2]]
=> [1,1] => [1,1] => 0
[3]
=> [[1,2,3]]
=> [3] => [3] => 0
[2,1]
=> [[1,2],[3]]
=> [2,1] => [2,1] => 1
[1,1,1]
=> [[1],[2],[3]]
=> [1,1,1] => [1,1,1] => 0
[4]
=> [[1,2,3,4]]
=> [4] => [4] => 0
[3,1]
=> [[1,2,3],[4]]
=> [3,1] => [3,1] => 1
[2,2]
=> [[1,2],[3,4]]
=> [2,2] => [2,2] => 0
[2,1,1]
=> [[1,2],[3],[4]]
=> [2,1,1] => [1,2,1] => 2
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [1,1,1,1] => [1,1,1,1] => 0
[5]
=> [[1,2,3,4,5]]
=> [5] => [5] => 0
[4,1]
=> [[1,2,3,4],[5]]
=> [4,1] => [4,1] => 1
[3,2]
=> [[1,2,3],[4,5]]
=> [3,2] => [3,2] => 1
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [3,1,1] => [1,3,1] => 2
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [2,2,1] => [2,2,1] => 2
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [2,1,1,1] => [1,1,2,1] => 3
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => [1,1,1,1,1] => 0
[6]
=> [[1,2,3,4,5,6]]
=> [6] => [6] => 0
[5,1]
=> [[1,2,3,4,5],[6]]
=> [5,1] => [5,1] => 1
[4,2]
=> [[1,2,3,4],[5,6]]
=> [4,2] => [4,2] => 1
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [4,1,1] => [1,4,1] => 2
[3,3]
=> [[1,2,3],[4,5,6]]
=> [3,3] => [3,3] => 0
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [3,2,1] => [3,2,1] => 3
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [3,1,1,1] => [1,1,3,1] => 3
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [2,2,2] => [2,2,2] => 0
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => [2,1,2,1] => 4
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => [1,1,1,2,1] => 4
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => [1,1,1,1,1,1] => 0
[7]
=> [[1,2,3,4,5,6,7]]
=> [7] => [7] => 0
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [6,1] => [6,1] => 1
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [5,2] => [5,2] => 1
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [5,1,1] => [1,5,1] => 2
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [4,3] => [4,3] => 1
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [4,2,1] => [4,2,1] => 3
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [4,1,1,1] => [1,1,4,1] => 3
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [3,3,1] => [3,3,1] => 2
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [3,2,2] => [2,3,2] => 2
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [3,2,1,1] => [1,3,2,1] => 5
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [3,1,1,1,1] => [1,1,1,3,1] => 4
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [2,2,2,1] => [2,2,2,1] => 3
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [2,2,1,1,1] => [1,2,1,2,1] => 6
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [2,1,1,1,1,1] => [1,1,1,1,2,1] => 5
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => 0
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [8] => [8] => 0
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [7,1] => [7,1] => 1
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [6,2] => [6,2] => 1
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [6,1,1] => [1,6,1] => 2
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [5,3] => [5,3] => 1
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [5,2,1] => [5,2,1] => 3
[6,2,2]
=> [[1,2,3,4,5,6],[7,8],[9,10]]
=> [6,2,2] => [2,6,2] => ? = 2
[6,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10]]
=> [6,1,1,1,1] => [1,1,1,6,1] => ? = 4
[5,2,2,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10]]
=> [5,2,2,1] => [2,5,2,1] => ? = 5
[5,2,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10]]
=> [5,2,1,1,1] => [1,1,5,2,1] => ? = 7
[4,4,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10]]
=> [4,4,1,1] => [4,1,4,1] => ? = 4
[4,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10]]
=> [4,3,3] => [3,4,3] => ? = 2
[4,3,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10]]
=> [4,3,1,1,1] => [1,1,4,3,1] => ? = 7
[4,2,2,2]
=> [[1,2,3,4],[5,6],[7,8],[9,10]]
=> [4,2,2,2] => [2,2,4,2] => ? = 3
[4,2,2,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10]]
=> [4,2,2,1,1] => [2,1,4,2,1] => ? = 8
[4,2,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10]]
=> [4,2,1,1,1,1] => [1,1,1,4,2,1] => ? = 9
[4,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10]]
=> [4,1,1,1,1,1,1] => [1,1,1,1,1,4,1] => ? = 6
[3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> [3,3,2,2] => [3,2,3,2] => ? = 4
[3,3,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10]]
=> [3,3,2,1,1] => [3,1,3,2,1] => ? = 8
[3,3,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10]]
=> [3,3,1,1,1,1] => [1,1,3,1,3,1] => ? = 8
[3,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10]]
=> [3,2,2,2,1] => [2,2,3,2,1] => ? = 7
[3,2,2,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10]]
=> [3,2,2,1,1,1] => [1,2,1,3,2,1] => ? = 11
[3,2,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10]]
=> [3,2,1,1,1,1,1] => [1,1,1,1,3,2,1] => ? = 11
[3,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10]]
=> [3,1,1,1,1,1,1,1] => [1,1,1,1,1,1,3,1] => ? = 7
[2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10]]
=> [2,2,2,1,1,1,1] => [1,2,1,2,1,2,1] => ? = 12
[2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10]]
=> [2,2,1,1,1,1,1,1] => [1,1,1,1,2,1,2,1] => ? = 12
[2,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> [2,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,2,1] => ? = 8
[11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? => ? => ? = 0
[10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? => ? => ? = 1
[9,2]
=> [[1,2,3,4,5,6,7,8,9],[10,11]]
=> ? => ? => ? = 1
[9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? => ? => ? = 2
[8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> ? => ? => ? = 1
[8,2,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11]]
=> ? => ? => ? = 3
[8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? => ? => ? = 3
[7,4]
=> [[1,2,3,4,5,6,7],[8,9,10,11]]
=> ? => ? => ? = 1
[7,3,1]
=> [[1,2,3,4,5,6,7],[8,9,10],[11]]
=> ? => ? => ? = 3
[7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> ? => ? => ? = 2
[7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> ? => ? => ? = 5
[7,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11]]
=> ? => ? => ? = 4
[6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> ? => ? => ? = 1
[6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ? => ? => ? = 3
[6,3,2]
=> [[1,2,3,4,5,6],[7,8,9],[10,11]]
=> ? => ? => ? = 3
[6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> ? => ? => ? = 5
[6,2,2,1]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11]]
=> ? => ? => ? = 5
[6,2,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11]]
=> ? => ? => ? = 7
[6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? => ? => ? = 5
[5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> ? => ? => ? = 2
[5,4,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11]]
=> [5,4,2] => ? => ? = 3
[5,4,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11]]
=> [5,4,1,1] => ? => ? = 5
[5,3,3]
=> [[1,2,3,4,5],[6,7,8],[9,10,11]]
=> [5,3,3] => ? => ? = 2
[5,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11]]
=> [5,3,2,1] => ? => ? = 6
[5,3,1,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10],[11]]
=> [5,3,1,1,1] => ? => ? = 7
[5,2,2,2]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11]]
=> [5,2,2,2] => ? => ? = 3
[5,2,2,1,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10],[11]]
=> [5,2,2,1,1] => ? => ? = 8
[5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? => ? => ? = 9
[5,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11]]
=> ? => ? => ? = 6
Description
The major index of a composition regarded as a word. This is the sum of the positions of the descents of the composition. For the statistic which interprets the composition as a descent set, see [[St000008]].
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00207: Standard tableaux horizontal strip sizesInteger compositions
St000766: Integer compositions ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 34%
Values
[1]
=> [[1]]
=> [1] => 0
[2]
=> [[1,2]]
=> [2] => 0
[1,1]
=> [[1],[2]]
=> [1,1] => 0
[3]
=> [[1,2,3]]
=> [3] => 0
[2,1]
=> [[1,2],[3]]
=> [2,1] => 1
[1,1,1]
=> [[1],[2],[3]]
=> [1,1,1] => 0
[4]
=> [[1,2,3,4]]
=> [4] => 0
[3,1]
=> [[1,2,3],[4]]
=> [3,1] => 1
[2,2]
=> [[1,2],[3,4]]
=> [2,2] => 0
[2,1,1]
=> [[1,2],[3],[4]]
=> [2,1,1] => 2
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [1,1,1,1] => 0
[5]
=> [[1,2,3,4,5]]
=> [5] => 0
[4,1]
=> [[1,2,3,4],[5]]
=> [4,1] => 1
[3,2]
=> [[1,2,3],[4,5]]
=> [3,2] => 1
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [3,1,1] => 2
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [2,2,1] => 2
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [2,1,1,1] => 3
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => 0
[6]
=> [[1,2,3,4,5,6]]
=> [6] => 0
[5,1]
=> [[1,2,3,4,5],[6]]
=> [5,1] => 1
[4,2]
=> [[1,2,3,4],[5,6]]
=> [4,2] => 1
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [4,1,1] => 2
[3,3]
=> [[1,2,3],[4,5,6]]
=> [3,3] => 0
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [3,2,1] => 3
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [3,1,1,1] => 3
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [2,2,2] => 0
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => 4
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => 4
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => 0
[7]
=> [[1,2,3,4,5,6,7]]
=> [7] => 0
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [6,1] => 1
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [5,2] => 1
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [5,1,1] => 2
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [4,3] => 1
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [4,2,1] => 3
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [4,1,1,1] => 3
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [3,3,1] => 2
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [3,2,2] => 2
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [3,2,1,1] => 5
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [3,1,1,1,1] => 4
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [2,2,2,1] => 3
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [2,2,1,1,1] => 6
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [2,1,1,1,1,1] => 5
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,1] => 0
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [8] => 0
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [7,1] => 1
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [6,2] => 1
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [6,1,1] => 2
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [5,3] => 1
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [5,2,1] => 3
[10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> [10] => ? = 0
[8,2]
=> [[1,2,3,4,5,6,7,8],[9,10]]
=> [8,2] => ? = 1
[7,3]
=> [[1,2,3,4,5,6,7],[8,9,10]]
=> [7,3] => ? = 1
[7,2,1]
=> [[1,2,3,4,5,6,7],[8,9],[10]]
=> [7,2,1] => ? = 3
[7,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10]]
=> [7,1,1,1] => ? = 3
[6,4]
=> [[1,2,3,4,5,6],[7,8,9,10]]
=> [6,4] => ? = 1
[6,3,1]
=> [[1,2,3,4,5,6],[7,8,9],[10]]
=> [6,3,1] => ? = 3
[6,2,2]
=> [[1,2,3,4,5,6],[7,8],[9,10]]
=> [6,2,2] => ? = 2
[6,2,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10]]
=> [6,2,1,1] => ? = 5
[6,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10]]
=> [6,1,1,1,1] => ? = 4
[5,4,1]
=> [[1,2,3,4,5],[6,7,8,9],[10]]
=> [5,4,1] => ? = 3
[5,3,2]
=> [[1,2,3,4,5],[6,7,8],[9,10]]
=> [5,3,2] => ? = 3
[5,3,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10]]
=> [5,3,1,1] => ? = 5
[5,2,2,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10]]
=> [5,2,2,1] => ? = 5
[5,2,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10]]
=> [5,2,1,1,1] => ? = 7
[5,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10]]
=> [5,1,1,1,1,1] => ? = 5
[4,4,2]
=> [[1,2,3,4],[5,6,7,8],[9,10]]
=> [4,4,2] => ? = 2
[4,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10]]
=> [4,3,3] => ? = 2
[4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> [4,3,2,1] => ? = 6
[4,3,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10]]
=> [4,3,1,1,1] => ? = 7
[4,2,2,2]
=> [[1,2,3,4],[5,6],[7,8],[9,10]]
=> [4,2,2,2] => ? = 3
[4,2,2,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10]]
=> [4,2,2,1,1] => ? = 8
[4,2,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10]]
=> [4,2,1,1,1,1] => ? = 9
[4,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10]]
=> [4,1,1,1,1,1,1] => ? = 6
[3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10]]
=> [3,3,3,1] => ? = 3
[3,3,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10]]
=> [3,3,2,1,1] => ? = 8
[3,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10]]
=> [3,2,2,2,1] => ? = 7
[3,2,2,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10]]
=> [3,2,2,1,1,1] => ? = 11
[3,2,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10]]
=> [3,2,1,1,1,1,1] => ? = 11
[3,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10]]
=> [3,1,1,1,1,1,1,1] => ? = 7
[2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> [2,2,2,2,2] => ? = 0
[2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10]]
=> [2,2,2,1,1,1,1] => ? = 12
[2,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> [2,1,1,1,1,1,1,1,1] => ? = 8
[11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? => ? = 0
[10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? => ? = 1
[9,2]
=> [[1,2,3,4,5,6,7,8,9],[10,11]]
=> ? => ? = 1
[9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? => ? = 2
[8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> ? => ? = 1
[8,2,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11]]
=> ? => ? = 3
[8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? => ? = 3
[7,4]
=> [[1,2,3,4,5,6,7],[8,9,10,11]]
=> ? => ? = 1
[7,3,1]
=> [[1,2,3,4,5,6,7],[8,9,10],[11]]
=> ? => ? = 3
[7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> ? => ? = 2
[7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> ? => ? = 5
[7,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11]]
=> ? => ? = 4
[6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> ? => ? = 1
[6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ? => ? = 3
[6,3,2]
=> [[1,2,3,4,5,6],[7,8,9],[10,11]]
=> ? => ? = 3
[6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> ? => ? = 5
[6,2,2,1]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11]]
=> ? => ? = 5
Description
The number of inversions of an integer composition. This is the number of pairs (i,j) such that i<j and ci>cj.
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00284: Standard tableaux rowsSet partitions
St000585: Set partitions ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 20%
Values
[1]
=> [[1]]
=> {{1}}
=> ? = 0
[2]
=> [[1,2]]
=> {{1,2}}
=> 0
[1,1]
=> [[1],[2]]
=> {{1},{2}}
=> 0
[3]
=> [[1,2,3]]
=> {{1,2,3}}
=> 0
[2,1]
=> [[1,3],[2]]
=> {{1,3},{2}}
=> 1
[1,1,1]
=> [[1],[2],[3]]
=> {{1},{2},{3}}
=> 0
[4]
=> [[1,2,3,4]]
=> {{1,2,3,4}}
=> 0
[3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> 0
[2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> 0
[5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 0
[4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[3,2]
=> [[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> 1
[3,1,1]
=> [[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> 2
[2,2,1]
=> [[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> 2
[2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> 3
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> 0
[6]
=> [[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> 0
[5,1]
=> [[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> 1
[4,2]
=> [[1,2,5,6],[3,4]]
=> {{1,2,5,6},{3,4}}
=> 1
[4,1,1]
=> [[1,4,5,6],[2],[3]]
=> {{1,4,5,6},{2},{3}}
=> 2
[3,3]
=> [[1,2,3],[4,5,6]]
=> {{1,2,3},{4,5,6}}
=> 0
[3,2,1]
=> [[1,3,6],[2,5],[4]]
=> {{1,3,6},{2,5},{4}}
=> 3
[3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> {{1,5,6},{2},{3},{4}}
=> 3
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> {{1,2},{3,4},{5,6}}
=> 0
[2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> {{1,4},{2,6},{3},{5}}
=> 4
[2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> {{1,6},{2},{3},{4},{5}}
=> 4
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> {{1},{2},{3},{4},{5},{6}}
=> 0
[7]
=> [[1,2,3,4,5,6,7]]
=> {{1,2,3,4,5,6,7}}
=> 0
[6,1]
=> [[1,3,4,5,6,7],[2]]
=> {{1,3,4,5,6,7},{2}}
=> 1
[5,2]
=> [[1,2,5,6,7],[3,4]]
=> {{1,2,5,6,7},{3,4}}
=> 1
[5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> {{1,4,5,6,7},{2},{3}}
=> 2
[4,3]
=> [[1,2,3,7],[4,5,6]]
=> {{1,2,3,7},{4,5,6}}
=> 1
[4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> {{1,3,6,7},{2,5},{4}}
=> 3
[4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> {{1,5,6,7},{2},{3},{4}}
=> 3
[3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> {{1,3,4},{2,6,7},{5}}
=> 2
[3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> {{1,2,7},{3,4},{5,6}}
=> 2
[3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> {{1,4,7},{2,6},{3},{5}}
=> 5
[3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> {{1,6,7},{2},{3},{4},{5}}
=> 4
[2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> {{1,3},{2,5},{4,7},{6}}
=> 3
[2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> {{1,5},{2,7},{3},{4},{6}}
=> 6
[2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> {{1,7},{2},{3},{4},{5},{6}}
=> 5
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> {{1},{2},{3},{4},{5},{6},{7}}
=> 0
[8]
=> [[1,2,3,4,5,6,7,8]]
=> {{1,2,3,4,5,6,7,8}}
=> 0
[7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> {{1,3,4,5,6,7,8},{2}}
=> 1
[6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> {{1,2,5,6,7,8},{3,4}}
=> 1
[6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> {{1,4,5,6,7,8},{2},{3}}
=> 2
[5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> {{1,2,3,7,8},{4,5,6}}
=> ? = 1
[5,2,1]
=> [[1,3,6,7,8],[2,5],[4]]
=> {{1,3,6,7,8},{2,5},{4}}
=> ? = 3
[5,1,1,1]
=> [[1,5,6,7,8],[2],[3],[4]]
=> {{1,5,6,7,8},{2},{3},{4}}
=> ? = 3
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> {{1,2,3,4},{5,6,7,8}}
=> ? = 0
[4,3,1]
=> [[1,3,4,8],[2,6,7],[5]]
=> {{1,3,4,8},{2,6,7},{5}}
=> ? = 3
[4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> {{1,2,7,8},{3,4},{5,6}}
=> ? = 2
[4,2,1,1]
=> [[1,4,7,8],[2,6],[3],[5]]
=> {{1,4,7,8},{2,6},{3},{5}}
=> ? = 5
[4,1,1,1,1]
=> [[1,6,7,8],[2],[3],[4],[5]]
=> {{1,6,7,8},{2},{3},{4},{5}}
=> ? = 4
[3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> {{1,2,5},{3,4,8},{6,7}}
=> ? = 2
[3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> {{1,4,5},{2,7,8},{3},{6}}
=> ? = 4
[3,2,2,1]
=> [[1,3,8],[2,5],[4,7],[6]]
=> {{1,3,8},{2,5},{4,7},{6}}
=> ? = 5
[3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> {{1,5,8},{2,7},{3},{4},{6}}
=> ? = 7
[3,1,1,1,1,1]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> {{1,7,8},{2},{3},{4},{5},{6}}
=> ? = 5
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> {{1,2},{3,4},{5,6},{7,8}}
=> ? = 0
[2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> {{1,4},{2,6},{3,8},{5},{7}}
=> ? = 6
[2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> {{1,6},{2,8},{3},{4},{5},{7}}
=> ? = 8
[2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> {{1,8},{2},{3},{4},{5},{6},{7}}
=> ? = 6
[1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> {{1},{2},{3},{4},{5},{6},{7},{8}}
=> ? = 0
[9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 0
[8,1]
=> [[1,3,4,5,6,7,8,9],[2]]
=> {{1,3,4,5,6,7,8,9},{2}}
=> ? = 1
[7,2]
=> [[1,2,5,6,7,8,9],[3,4]]
=> {{1,2,5,6,7,8,9},{3,4}}
=> ? = 1
[7,1,1]
=> [[1,4,5,6,7,8,9],[2],[3]]
=> {{1,4,5,6,7,8,9},{2},{3}}
=> ? = 2
[6,3]
=> [[1,2,3,7,8,9],[4,5,6]]
=> {{1,2,3,7,8,9},{4,5,6}}
=> ? = 1
[6,2,1]
=> [[1,3,6,7,8,9],[2,5],[4]]
=> {{1,3,6,7,8,9},{2,5},{4}}
=> ? = 3
[6,1,1,1]
=> [[1,5,6,7,8,9],[2],[3],[4]]
=> {{1,5,6,7,8,9},{2},{3},{4}}
=> ? = 3
[5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> {{1,2,3,4,9},{5,6,7,8}}
=> ? = 1
[5,3,1]
=> [[1,3,4,8,9],[2,6,7],[5]]
=> {{1,3,4,8,9},{2,6,7},{5}}
=> ? = 3
[5,2,2]
=> [[1,2,7,8,9],[3,4],[5,6]]
=> {{1,2,7,8,9},{3,4},{5,6}}
=> ? = 2
[5,2,1,1]
=> [[1,4,7,8,9],[2,6],[3],[5]]
=> {{1,4,7,8,9},{2,6},{3},{5}}
=> ? = 5
[5,1,1,1,1]
=> [[1,6,7,8,9],[2],[3],[4],[5]]
=> {{1,6,7,8,9},{2},{3},{4},{5}}
=> ? = 4
[4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> {{1,3,4,5},{2,7,8,9},{6}}
=> ? = 2
[4,3,2]
=> [[1,2,5,9],[3,4,8],[6,7]]
=> {{1,2,5,9},{3,4,8},{6,7}}
=> ? = 3
[4,3,1,1]
=> [[1,4,5,9],[2,7,8],[3],[6]]
=> {{1,4,5,9},{2,7,8},{3},{6}}
=> ? = 5
[4,2,2,1]
=> [[1,3,8,9],[2,5],[4,7],[6]]
=> {{1,3,8,9},{2,5},{4,7},{6}}
=> ? = 5
[4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> {{1,5,8,9},{2,7},{3},{4},{6}}
=> ? = 7
[4,1,1,1,1,1]
=> [[1,7,8,9],[2],[3],[4],[5],[6]]
=> {{1,7,8,9},{2},{3},{4},{5},{6}}
=> ? = 5
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> {{1,2,3},{4,5,6},{7,8,9}}
=> ? = 0
[3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8],[7]]
=> {{1,3,6},{2,5,9},{4,8},{7}}
=> ? = 5
[3,3,1,1,1]
=> [[1,5,6],[2,8,9],[3],[4],[7]]
=> {{1,5,6},{2,8,9},{3},{4},{7}}
=> ? = 6
[3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> {{1,2,9},{3,4},{5,6},{7,8}}
=> ? = 3
[3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> {{1,4,9},{2,6},{3,8},{5},{7}}
=> ? = 8
[3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> {{1,6,9},{2,8},{3},{4},{5},{7}}
=> ? = 9
[3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> {{1,8,9},{2},{3},{4},{5},{6},{7}}
=> ? = 6
[2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> {{1,3},{2,5},{4,7},{6,9},{8}}
=> ? = 4
[2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> {{1,5},{2,7},{3,9},{4},{6},{8}}
=> ? = 9
[2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> {{1,7},{2,9},{3},{4},{5},{6},{8}}
=> ? = 10
[2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> {{1,9},{2},{3},{4},{5},{6},{7},{8}}
=> ? = 7
[1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> {{1},{2},{3},{4},{5},{6},{7},{8},{9}}
=> ? = 0
[10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 0
Description
The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block.
Matching statistic: St001781
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00284: Standard tableaux rowsSet partitions
St001781: Set partitions ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 20%
Values
[1]
=> [[1]]
=> {{1}}
=> 0
[2]
=> [[1,2]]
=> {{1,2}}
=> 0
[1,1]
=> [[1],[2]]
=> {{1},{2}}
=> 0
[3]
=> [[1,2,3]]
=> {{1,2,3}}
=> 0
[2,1]
=> [[1,3],[2]]
=> {{1,3},{2}}
=> 1
[1,1,1]
=> [[1],[2],[3]]
=> {{1},{2},{3}}
=> 0
[4]
=> [[1,2,3,4]]
=> {{1,2,3,4}}
=> 0
[3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> 0
[2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> 0
[5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 0
[4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[3,2]
=> [[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> 1
[3,1,1]
=> [[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> 2
[2,2,1]
=> [[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> 2
[2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> 3
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> 0
[6]
=> [[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> 0
[5,1]
=> [[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> 1
[4,2]
=> [[1,2,5,6],[3,4]]
=> {{1,2,5,6},{3,4}}
=> 1
[4,1,1]
=> [[1,4,5,6],[2],[3]]
=> {{1,4,5,6},{2},{3}}
=> 2
[3,3]
=> [[1,2,3],[4,5,6]]
=> {{1,2,3},{4,5,6}}
=> 0
[3,2,1]
=> [[1,3,6],[2,5],[4]]
=> {{1,3,6},{2,5},{4}}
=> 3
[3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> {{1,5,6},{2},{3},{4}}
=> 3
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> {{1,2},{3,4},{5,6}}
=> 0
[2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> {{1,4},{2,6},{3},{5}}
=> 4
[2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> {{1,6},{2},{3},{4},{5}}
=> 4
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> {{1},{2},{3},{4},{5},{6}}
=> 0
[7]
=> [[1,2,3,4,5,6,7]]
=> {{1,2,3,4,5,6,7}}
=> 0
[6,1]
=> [[1,3,4,5,6,7],[2]]
=> {{1,3,4,5,6,7},{2}}
=> 1
[5,2]
=> [[1,2,5,6,7],[3,4]]
=> {{1,2,5,6,7},{3,4}}
=> 1
[5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> {{1,4,5,6,7},{2},{3}}
=> 2
[4,3]
=> [[1,2,3,7],[4,5,6]]
=> {{1,2,3,7},{4,5,6}}
=> 1
[4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> {{1,3,6,7},{2,5},{4}}
=> 3
[4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> {{1,5,6,7},{2},{3},{4}}
=> 3
[3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> {{1,3,4},{2,6,7},{5}}
=> 2
[3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> {{1,2,7},{3,4},{5,6}}
=> 2
[3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> {{1,4,7},{2,6},{3},{5}}
=> 5
[3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> {{1,6,7},{2},{3},{4},{5}}
=> 4
[2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> {{1,3},{2,5},{4,7},{6}}
=> 3
[2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> {{1,5},{2,7},{3},{4},{6}}
=> 6
[2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> {{1,7},{2},{3},{4},{5},{6}}
=> 5
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> {{1},{2},{3},{4},{5},{6},{7}}
=> 0
[8]
=> [[1,2,3,4,5,6,7,8]]
=> {{1,2,3,4,5,6,7,8}}
=> ? = 0
[7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> {{1,3,4,5,6,7,8},{2}}
=> ? = 1
[6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> {{1,2,5,6,7,8},{3,4}}
=> ? = 1
[6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> {{1,4,5,6,7,8},{2},{3}}
=> ? = 2
[5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> {{1,2,3,7,8},{4,5,6}}
=> ? = 1
[5,2,1]
=> [[1,3,6,7,8],[2,5],[4]]
=> {{1,3,6,7,8},{2,5},{4}}
=> ? = 3
[5,1,1,1]
=> [[1,5,6,7,8],[2],[3],[4]]
=> {{1,5,6,7,8},{2},{3},{4}}
=> ? = 3
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> {{1,2,3,4},{5,6,7,8}}
=> ? = 0
[4,3,1]
=> [[1,3,4,8],[2,6,7],[5]]
=> {{1,3,4,8},{2,6,7},{5}}
=> ? = 3
[4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> {{1,2,7,8},{3,4},{5,6}}
=> ? = 2
[4,2,1,1]
=> [[1,4,7,8],[2,6],[3],[5]]
=> {{1,4,7,8},{2,6},{3},{5}}
=> ? = 5
[4,1,1,1,1]
=> [[1,6,7,8],[2],[3],[4],[5]]
=> {{1,6,7,8},{2},{3},{4},{5}}
=> ? = 4
[3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> {{1,2,5},{3,4,8},{6,7}}
=> ? = 2
[3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> {{1,4,5},{2,7,8},{3},{6}}
=> ? = 4
[3,2,2,1]
=> [[1,3,8],[2,5],[4,7],[6]]
=> {{1,3,8},{2,5},{4,7},{6}}
=> ? = 5
[3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> {{1,5,8},{2,7},{3},{4},{6}}
=> ? = 7
[3,1,1,1,1,1]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> {{1,7,8},{2},{3},{4},{5},{6}}
=> ? = 5
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> {{1,2},{3,4},{5,6},{7,8}}
=> ? = 0
[2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> {{1,4},{2,6},{3,8},{5},{7}}
=> ? = 6
[2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> {{1,6},{2,8},{3},{4},{5},{7}}
=> ? = 8
[2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> {{1,8},{2},{3},{4},{5},{6},{7}}
=> ? = 6
[1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> {{1},{2},{3},{4},{5},{6},{7},{8}}
=> ? = 0
[9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 0
[8,1]
=> [[1,3,4,5,6,7,8,9],[2]]
=> {{1,3,4,5,6,7,8,9},{2}}
=> ? = 1
[7,2]
=> [[1,2,5,6,7,8,9],[3,4]]
=> {{1,2,5,6,7,8,9},{3,4}}
=> ? = 1
[7,1,1]
=> [[1,4,5,6,7,8,9],[2],[3]]
=> {{1,4,5,6,7,8,9},{2},{3}}
=> ? = 2
[6,3]
=> [[1,2,3,7,8,9],[4,5,6]]
=> {{1,2,3,7,8,9},{4,5,6}}
=> ? = 1
[6,2,1]
=> [[1,3,6,7,8,9],[2,5],[4]]
=> {{1,3,6,7,8,9},{2,5},{4}}
=> ? = 3
[6,1,1,1]
=> [[1,5,6,7,8,9],[2],[3],[4]]
=> {{1,5,6,7,8,9},{2},{3},{4}}
=> ? = 3
[5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> {{1,2,3,4,9},{5,6,7,8}}
=> ? = 1
[5,3,1]
=> [[1,3,4,8,9],[2,6,7],[5]]
=> {{1,3,4,8,9},{2,6,7},{5}}
=> ? = 3
[5,2,2]
=> [[1,2,7,8,9],[3,4],[5,6]]
=> {{1,2,7,8,9},{3,4},{5,6}}
=> ? = 2
[5,2,1,1]
=> [[1,4,7,8,9],[2,6],[3],[5]]
=> {{1,4,7,8,9},{2,6},{3},{5}}
=> ? = 5
[5,1,1,1,1]
=> [[1,6,7,8,9],[2],[3],[4],[5]]
=> {{1,6,7,8,9},{2},{3},{4},{5}}
=> ? = 4
[4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> {{1,3,4,5},{2,7,8,9},{6}}
=> ? = 2
[4,3,2]
=> [[1,2,5,9],[3,4,8],[6,7]]
=> {{1,2,5,9},{3,4,8},{6,7}}
=> ? = 3
[4,3,1,1]
=> [[1,4,5,9],[2,7,8],[3],[6]]
=> {{1,4,5,9},{2,7,8},{3},{6}}
=> ? = 5
[4,2,2,1]
=> [[1,3,8,9],[2,5],[4,7],[6]]
=> {{1,3,8,9},{2,5},{4,7},{6}}
=> ? = 5
[4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> {{1,5,8,9},{2,7},{3},{4},{6}}
=> ? = 7
[4,1,1,1,1,1]
=> [[1,7,8,9],[2],[3],[4],[5],[6]]
=> {{1,7,8,9},{2},{3},{4},{5},{6}}
=> ? = 5
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> {{1,2,3},{4,5,6},{7,8,9}}
=> ? = 0
[3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8],[7]]
=> {{1,3,6},{2,5,9},{4,8},{7}}
=> ? = 5
[3,3,1,1,1]
=> [[1,5,6],[2,8,9],[3],[4],[7]]
=> {{1,5,6},{2,8,9},{3},{4},{7}}
=> ? = 6
[3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> {{1,2,9},{3,4},{5,6},{7,8}}
=> ? = 3
[3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> {{1,4,9},{2,6},{3,8},{5},{7}}
=> ? = 8
[3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> {{1,6,9},{2,8},{3},{4},{5},{7}}
=> ? = 9
[3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> {{1,8,9},{2},{3},{4},{5},{6},{7}}
=> ? = 6
[2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> {{1,3},{2,5},{4,7},{6,9},{8}}
=> ? = 4
[2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> {{1,5},{2,7},{3,9},{4},{6},{8}}
=> ? = 9
[2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> {{1,7},{2,9},{3},{4},{5},{6},{8}}
=> ? = 10
Description
The interlacing number of a set partition. Let π be a set partition of {1,,n} with k blocks. To each block of π we add the element , which is larger than n. Then, an interlacing of π is a pair of blocks B=(B1<<Bb<Bb+1=) and C=(C1<<Cc<Cc+1=) together with an index 1imin, such that B_i < C_i < B_{i+1} < C_{i+1}.