searching the database
Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000197
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
St000197: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> 1
[[1,0],[0,1]]
=> 2
[[0,1],[1,0]]
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> 3
[[0,1,0],[1,-1,1],[0,1,0]]
=> 4
[[0,0,1],[1,0,0],[0,1,0]]
=> 3
[[0,1,0],[0,0,1],[1,0,0]]
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> 5
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> 5
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 6
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> 5
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> 5
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> 5
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 4
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> 5
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> 5
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 4
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> 4
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> 5
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> 5
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> 4
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> 5
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> 5
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> 4
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> 5
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> 5
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> 4
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> 5
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> 6
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> 5
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> 4
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> 4
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> 4
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> 5
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> 4
Description
The number of entries equal to positive one in the alternating sign matrix.
Matching statistic: St000176
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00076: Semistandard tableaux —to Gelfand-Tsetlin pattern⟶ Gelfand-Tsetlin patterns
St000176: Gelfand-Tsetlin patterns ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00076: Semistandard tableaux —to Gelfand-Tsetlin pattern⟶ Gelfand-Tsetlin patterns
St000176: Gelfand-Tsetlin patterns ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [[1]]
=> 1
[[1,0],[0,1]]
=> [[1,1],[2]]
=> [[2,1],[2]]
=> 2
[[0,1],[1,0]]
=> [[1,2],[2]]
=> [[2,1],[1]]
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [[3,2,1],[3,2],[3]]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [[3,2,1],[3,2],[2]]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [[3,2,1],[3,1],[3]]
=> 3
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> [[3,2,1],[3,1],[2]]
=> 4
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> [[3,2,1],[2,1],[2]]
=> 3
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> [[3,2,1],[3,1],[1]]
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [[3,2,1],[2,1],[1]]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[4,3],[4]]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[4,3],[3]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[4,2],[4]]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,3],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[4,2],[3]]
=> 5
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[3,2],[3]]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[4,2],[2]]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[3,2],[2]]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,3],[4]]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,3],[3]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,2],[4]]
=> 5
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,2],[3]]
=> 6
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,3],[2,2,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[3,2],[3]]
=> 5
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[1,1,2,2],[2,2,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,2],[2]]
=> 5
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[1,1,2,3],[2,2,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[3,2],[2]]
=> 5
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[4,2],[4]]
=> 4
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,2],[2,2,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[4,2],[3]]
=> 5
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,3],[2,2,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[3,2],[3]]
=> 5
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[3,2],[3]]
=> 4
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[4,2],[2]]
=> 4
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,3],[2,2,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[3,2],[2]]
=> 5
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[3,2],[2]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,1],[4]]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,2],[2,3,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,1],[3]]
=> 5
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[3,1],[3]]
=> 4
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[1,1,2,2],[2,3,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,1],[2]]
=> 5
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[1,1,2,3],[2,3,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[3,1],[2]]
=> 5
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[4,1],[4]]
=> 4
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,2],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[4,1],[3]]
=> 5
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,3],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[3,1],[3]]
=> 5
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[3,1],[3]]
=> 4
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,2],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[4,1],[2]]
=> 5
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,3],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[3,1],[2]]
=> 6
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,4],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[3,1],[2]]
=> 5
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[2,1],[2]]
=> 4
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[2,1],[2]]
=> 4
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,1],[1]]
=> 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[3,1],[1]]
=> 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[4,1],[1]]
=> 4
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,3],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[3,1],[1]]
=> 5
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[3,1],[1]]
=> 4
Description
The total number of tiles in the Gelfand-Tsetlin pattern.
The tiling of a Gelfand-Tsetlin pattern is the finest partition of the entries in the pattern, such that adjacent (NW,NE,SW,SE) entries that are equal belong to the same part. These parts are called tiles, and each entry in a pattern belongs to exactly one tile.
Matching statistic: St001515
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001515: Dyck paths ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 67%
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001515: Dyck paths ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 67%
Values
[[1]]
=> [[1]]
=> [1]
=> [1,0,1,0]
=> 1
[[1,0],[0,1]]
=> [[1,1],[2]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[[0,1],[1,0]]
=> [[1,2],[2]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,3],[3,3],[4]]
=> [3,3,3,1]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 5
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,3],[3,4],[4]]
=> [4,2,2,2]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 5
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,3],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 6
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,3],[2,2,3],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 5
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[1,1,2,2],[2,2,3],[3,4],[4]]
=> [4,2,2,2]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 5
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[1,1,2,3],[2,2,3],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 5
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,2],[2,2,4],[3,4],[4]]
=> [3,3,3,1]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 5
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,3],[2,2,4],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 5
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,3],[2,2,4],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 5
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,2],[2,3,3],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 5
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[1,1,2,2],[2,3,3],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 5
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[1,1,2,3],[2,3,3],[3,4],[4]]
=> [4,2,2,2]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 5
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,2],[2,3,4],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 5
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,3],[2,3,4],[3,4],[4]]
=> [3,3,3,1]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 5
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,2],[2,3,4],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 5
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,3],[2,3,4],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 6
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,4],[2,3,4],[3,4],[4]]
=> [4,2,2,2]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 5
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,3],[2,3,4],[3,4],[4]]
=> [3,3,3,1]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 5
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
Description
The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule).
Matching statistic: St000834
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000834: Permutations ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 67%
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000834: Permutations ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 67%
Values
[[1]]
=> [[1]]
=> [1] => [1] => 0 = 1 - 1
[[1,0],[0,1]]
=> [[1,1],[2]]
=> [3,1,2] => [2,3,1] => 1 = 2 - 1
[[0,1],[1,0]]
=> [[1,2],[2]]
=> [2,1,3] => [2,1,3] => 1 = 2 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [6,4,5,1,2,3] => [4,5,6,2,3,1] => 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [6,3,4,1,2,5] => [4,5,2,3,6,1] => 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [5,4,6,1,2,3] => [4,5,6,2,1,3] => 2 = 3 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> [5,3,6,1,2,4] => [4,5,2,6,1,3] => 3 = 4 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> [4,3,5,1,2,6] => [4,5,2,1,3,6] => 2 = 3 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> [5,2,6,1,3,4] => [4,2,5,6,1,3] => 2 = 3 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [4,2,5,1,3,6] => [4,2,5,1,3,6] => 2 = 3 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [10,8,9,5,6,7,1,2,3,4] => [7,8,9,10,4,5,6,2,3,1] => ? = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [10,8,9,4,5,6,1,2,3,7] => [7,8,9,4,5,6,10,2,3,1] => ? = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [10,7,8,5,6,9,1,2,3,4] => [7,8,9,10,4,5,2,3,6,1] => ? = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,3],[3,3],[4]]
=> [10,7,8,4,5,9,1,2,3,6] => [7,8,9,4,5,10,2,3,6,1] => ? = 5 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> [10,6,7,4,5,8,1,2,3,9] => [7,8,9,4,5,2,3,6,10,1] => ? = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> [10,7,8,3,4,9,1,2,5,6] => [7,8,4,5,9,10,2,3,6,1] => ? = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [10,6,7,3,4,8,1,2,5,9] => [7,8,4,5,9,2,3,6,10,1] => ? = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [9,8,10,5,6,7,1,2,3,4] => [7,8,9,10,4,5,6,2,1,3] => ? = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [9,8,10,4,5,6,1,2,3,7] => [7,8,9,4,5,6,10,2,1,3] => ? = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,3],[3,4],[4]]
=> [9,7,10,5,6,8,1,2,3,4] => [7,8,9,10,4,5,2,6,1,3] => ? = 5 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,3],[3,4],[4]]
=> [9,7,10,4,5,8,1,2,3,6] => [7,8,9,4,5,10,2,6,1,3] => ? = 6 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,3],[2,2,3],[3,4],[4]]
=> [9,6,10,4,5,7,1,2,3,8] => [7,8,9,4,5,2,6,10,1,3] => ? = 5 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[1,1,2,2],[2,2,3],[3,4],[4]]
=> [9,7,10,3,4,8,1,2,5,6] => [7,8,4,5,9,10,2,6,1,3] => ? = 5 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[1,1,2,3],[2,2,3],[3,4],[4]]
=> [9,6,10,3,4,7,1,2,5,8] => [7,8,4,5,9,2,6,10,1,3] => ? = 5 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> [8,7,9,5,6,10,1,2,3,4] => [7,8,9,10,4,5,2,1,3,6] => ? = 4 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,2],[2,2,4],[3,4],[4]]
=> [8,7,9,4,5,10,1,2,3,6] => [7,8,9,4,5,10,2,1,3,6] => ? = 5 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,3],[2,2,4],[3,4],[4]]
=> [8,6,9,4,5,10,1,2,3,7] => [7,8,9,4,5,2,10,1,3,6] => ? = 5 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> [7,6,8,4,5,9,1,2,3,10] => [7,8,9,4,5,2,1,3,6,10] => ? = 4 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> [8,7,9,3,4,10,1,2,5,6] => [7,8,4,5,9,10,2,1,3,6] => ? = 4 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,3],[2,2,4],[3,4],[4]]
=> [8,6,9,3,4,10,1,2,5,7] => [7,8,4,5,9,2,10,1,3,6] => ? = 5 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> [7,6,8,3,4,9,1,2,5,10] => [7,8,4,5,9,2,1,3,6,10] => ? = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> [9,6,10,5,7,8,1,2,3,4] => [7,8,9,10,4,2,5,6,1,3] => ? = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,2],[2,3,3],[3,4],[4]]
=> [9,6,10,4,7,8,1,2,3,5] => [7,8,9,4,10,2,5,6,1,3] => ? = 5 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> [9,5,10,4,6,7,1,2,3,8] => [7,8,9,4,2,5,6,10,1,3] => ? = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[1,1,2,2],[2,3,3],[3,4],[4]]
=> [9,6,10,3,7,8,1,2,4,5] => [7,8,4,9,10,2,5,6,1,3] => ? = 5 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[1,1,2,3],[2,3,3],[3,4],[4]]
=> [9,5,10,3,6,7,1,2,4,8] => [7,8,4,9,2,5,6,10,1,3] => ? = 5 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [8,6,9,5,7,10,1,2,3,4] => [7,8,9,10,4,2,5,1,3,6] => ? = 4 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,2],[2,3,4],[3,4],[4]]
=> [8,6,9,4,7,10,1,2,3,5] => [7,8,9,4,10,2,5,1,3,6] => ? = 5 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,3],[2,3,4],[3,4],[4]]
=> [8,5,9,4,6,10,1,2,3,7] => [7,8,9,4,2,5,10,1,3,6] => ? = 5 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> [7,5,8,4,6,9,1,2,3,10] => [7,8,9,4,2,5,1,3,6,10] => ? = 4 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,2],[2,3,4],[3,4],[4]]
=> [8,6,9,3,7,10,1,2,4,5] => [7,8,4,9,10,2,5,1,3,6] => ? = 5 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,3],[2,3,4],[3,4],[4]]
=> [8,5,9,3,6,10,1,2,4,7] => [7,8,4,9,2,5,10,1,3,6] => ? = 6 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,4],[2,3,4],[3,4],[4]]
=> [7,5,8,3,6,9,1,2,4,10] => [7,8,4,9,2,5,1,3,6,10] => ? = 5 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> [8,4,9,3,5,10,1,2,6,7] => [7,8,4,2,5,9,10,1,3,6] => ? = 4 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> [7,4,8,3,5,9,1,2,6,10] => [7,8,4,2,5,9,1,3,6,10] => ? = 4 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> [9,6,10,2,7,8,1,3,4,5] => [7,4,8,9,10,2,5,6,1,3] => ? = 4 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> [9,5,10,2,6,7,1,3,4,8] => [7,4,8,9,2,5,6,10,1,3] => ? = 4 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> [8,6,9,2,7,10,1,3,4,5] => [7,4,8,9,10,2,5,1,3,6] => ? = 4 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,3],[2,3,4],[3,4],[4]]
=> [8,5,9,2,6,10,1,3,4,7] => [7,4,8,9,2,5,10,1,3,6] => ? = 5 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> [7,5,8,2,6,9,1,3,4,10] => [7,4,8,9,2,5,1,3,6,10] => ? = 4 - 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> [8,4,9,2,5,10,1,3,6,7] => [7,4,8,2,5,9,10,1,3,6] => ? = 4 - 1
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> [7,4,8,2,5,9,1,3,6,10] => [7,4,8,2,5,9,1,3,6,10] => 3 = 4 - 1
Description
The number of right outer peaks of a permutation.
A right outer peak in a permutation $w = [w_1,..., w_n]$ is either a position $i$ such that $w_{i-1} < w_i > w_{i+1}$ or $n$ if $w_n > w_{n-1}$.
In other words, it is a peak in the word $[w_1,..., w_n,0]$.
Matching statistic: St000702
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00098: Alternating sign matrices —link pattern⟶ Perfect matchings
Mp00058: Perfect matchings —to permutation⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
St000702: Permutations ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 67%
Mp00058: Perfect matchings —to permutation⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
St000702: Permutations ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 67%
Values
[[1]]
=> [(1,2)]
=> [2,1] => [2,1] => 1
[[1,0],[0,1]]
=> [(1,4),(2,3)]
=> [4,3,2,1] => [4,3,2,1] => 2
[[0,1],[1,0]]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,4,1,3] => 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,4,6,1,3,5] => 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => [3,6,2,5,4,1] => 3
[[0,1,0],[1,-1,1],[0,1,0]]
=> [(1,2),(3,6),(4,5)]
=> [2,1,6,5,4,3] => [6,5,2,4,1,3] => 4
[[0,0,1],[1,0,0],[0,1,0]]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => [3,6,2,5,4,1] => 3
[[0,1,0],[0,0,1],[1,0,0]]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,4,6,1,3,5] => 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => [4,3,2,6,1,5] => 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => ? = 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [6,5,2,4,8,1,3,7] => ? = 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [3,5,8,2,4,7,6,1] => ? = 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [2,8,5,7,4,6,1,3] => ? = 5
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [3,5,8,2,4,7,6,1] => ? = 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [6,5,2,4,8,1,3,7] => ? = 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [3,6,2,5,4,8,1,7] => ? = 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [4,8,3,7,6,5,2,1] => ? = 4
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,4,6,8,1,3,5,7] => ? = 4
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [8,7,3,6,2,5,4,1] => ? = 5
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => [8,7,6,5,2,4,1,3] => ? = 6
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [8,7,3,6,2,5,4,1] => ? = 5
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,4,6,8,1,3,5,7] => ? = 5
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [4,3,2,6,8,1,5,7] => ? = 5
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [4,8,3,7,6,5,2,1] => ? = 4
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,4,6,8,1,3,5,7] => ? = 5
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [4,8,3,7,6,5,2,1] => ? = 5
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [8,7,3,6,2,5,4,1] => ? = 4
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,4,6,8,1,3,5,7] => ? = 4
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,4,6,8,1,3,5,7] => ? = 5
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [4,3,2,6,8,1,5,7] => ? = 4
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [3,5,8,2,4,7,6,1] => ? = 4
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [2,8,5,7,4,6,1,3] => ? = 5
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [3,5,8,2,4,7,6,1] => ? = 4
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [6,5,2,4,8,1,3,7] => ? = 5
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [3,6,2,5,4,8,1,7] => ? = 5
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [5,4,3,8,2,7,6,1] => ? = 4
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [8,7,2,4,6,1,3,5] => ? = 5
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [5,4,3,8,2,7,6,1] => ? = 5
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [3,5,8,2,4,7,6,1] => ? = 4
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,4,6,8,1,3,5,7] => ? = 5
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => [6,5,4,3,2,8,1,7] => ? = 6
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [3,6,2,5,4,8,1,7] => ? = 5
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,4,6,8,1,3,5,7] => ? = 4
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [4,3,2,6,8,1,5,7] => ? = 4
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [2,8,5,7,4,6,1,3] => ? = 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [3,5,8,2,4,7,6,1] => ? = 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [8,7,2,4,6,1,3,5] => ? = 4
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [5,4,3,8,2,7,6,1] => ? = 5
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [3,5,8,2,4,7,6,1] => ? = 4
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [8,7,2,4,6,1,3,5] => ? = 4
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => [4,8,3,7,2,6,1,5] => ? = 4
Description
The number of weak deficiencies of a permutation.
This is defined as
$$\operatorname{wdec}(\sigma)=\#\{i:\sigma(i) \leq i\}.$$
The number of weak exceedances is [[St000213]], the number of deficiencies is [[St000703]].
Matching statistic: St001526
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001526: Dyck paths ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 67%
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001526: Dyck paths ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 67%
Values
[[1]]
=> [[1]]
=> [1]
=> [1,0]
=> 1
[[1,0],[0,1]]
=> [[1,1],[2]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[[0,1],[1,0]]
=> [[1,2],[2]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,3],[3,3],[4]]
=> [3,3,3,1]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 5
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,3],[3,4],[4]]
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 5
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,3],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 6
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,3],[2,2,3],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 5
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[1,1,2,2],[2,2,3],[3,4],[4]]
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 5
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[1,1,2,3],[2,2,3],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 5
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,2],[2,2,4],[3,4],[4]]
=> [3,3,3,1]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 5
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,3],[2,2,4],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 5
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,3],[2,2,4],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 5
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,2],[2,3,3],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 5
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[1,1,2,2],[2,3,3],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 5
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[1,1,2,3],[2,3,3],[3,4],[4]]
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 5
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,2],[2,3,4],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 5
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,3],[2,3,4],[3,4],[4]]
=> [3,3,3,1]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 5
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,2],[2,3,4],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 5
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,3],[2,3,4],[3,4],[4]]
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 6
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,4],[2,3,4],[3,4],[4]]
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 5
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,3],[2,3,4],[3,4],[4]]
=> [3,3,3,1]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 5
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
Description
The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000624
Mp00098: Alternating sign matrices —link pattern⟶ Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
St000624: Permutations ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 67%
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
St000624: Permutations ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 67%
Values
[[1]]
=> [(1,2)]
=> [2,1] => [2,1] => 0 = 1 - 1
[[1,0],[0,1]]
=> [(1,4),(2,3)]
=> [3,4,2,1] => [4,2,3,1] => 1 = 2 - 1
[[0,1],[1,0]]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,1,4,3] => 1 = 2 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [(1,6),(2,5),(3,4)]
=> [4,5,6,3,2,1] => [6,3,5,2,4,1] => 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => [6,4,5,2,3,1] => 2 = 3 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => [2,1,6,4,5,3] => 3 = 4 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => [6,4,5,2,3,1] => 2 = 3 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 2 = 3 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => [4,2,3,1,6,5] => 2 = 3 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [5,6,7,8,4,3,2,1] => [8,4,7,3,6,2,5,1] => ? = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => [2,1,6,4,5,3,8,7] => ? = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => [8,6,7,4,5,2,3,1] => ? = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => [2,1,8,6,7,4,5,3] => ? = 5 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => [8,6,7,4,5,2,3,1] => ? = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => [2,1,6,4,5,3,8,7] => ? = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => [6,4,5,2,3,1,8,7] => ? = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => [8,5,7,3,6,2,4,1] => ? = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => ? = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => [8,5,7,4,6,2,3,1] => ? = 5 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => [2,1,8,5,7,4,6,3] => ? = 6 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => [8,5,7,4,6,2,3,1] => ? = 5 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => ? = 5 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => [4,2,3,1,6,5,8,7] => ? = 5 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => [8,5,7,3,6,2,4,1] => ? = 4 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => ? = 5 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => [8,5,7,3,6,2,4,1] => ? = 5 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => [8,5,7,4,6,2,3,1] => ? = 4 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => ? = 4 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => ? = 5 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => [4,2,3,1,6,5,8,7] => ? = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => [8,6,7,4,5,2,3,1] => ? = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => [2,1,8,6,7,4,5,3] => ? = 5 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => [8,6,7,4,5,2,3,1] => ? = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => [2,1,6,4,5,3,8,7] => ? = 5 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => [6,4,5,2,3,1,8,7] => ? = 5 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [4,5,7,3,2,8,6,1] => [8,6,7,3,5,2,4,1] => ? = 4 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => [2,1,4,3,8,6,7,5] => ? = 5 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [4,5,7,3,2,8,6,1] => [8,6,7,3,5,2,4,1] => ? = 5 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => [8,6,7,4,5,2,3,1] => ? = 4 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => ? = 5 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => [6,3,5,2,4,1,8,7] => ? = 6 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => [6,4,5,2,3,1,8,7] => ? = 5 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => ? = 4 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => [4,2,3,1,6,5,8,7] => ? = 4 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => [2,1,8,6,7,4,5,3] => ? = 4 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => [8,6,7,4,5,2,3,1] => ? = 4 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => [2,1,4,3,8,6,7,5] => ? = 4 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [4,5,7,3,2,8,6,1] => [8,6,7,3,5,2,4,1] => ? = 5 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => [8,6,7,4,5,2,3,1] => ? = 4 - 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => [2,1,4,3,8,6,7,5] => ? = 4 - 1
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => [4,2,3,1,8,6,7,5] => ? = 4 - 1
Description
The normalized sum of the minimal distances to a greater element.
Set $\pi_0 = \pi_{n+1} = n+1$, then this statistic is
$$
\sum_{i=1}^n \min_d(\pi_{i-1-d}>\pi_i\text{ or }\pi_{i+1+d}>\pi_i)
$$
A closely related statistic appears in [1].
The generating function for the sequence of maximal values attained on $\mathfrak S_r$, $r\geq 0$ apparently satisfies the functional equation
$$
(x-1)^2 (x+1)^3 f(x^2) - (x-1)^2 (x+1) f(x) + x^3 = 0.
$$
Matching statistic: St000710
Mp00098: Alternating sign matrices —link pattern⟶ Perfect matchings
Mp00058: Perfect matchings —to permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000710: Permutations ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 67%
Mp00058: Perfect matchings —to permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000710: Permutations ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 67%
Values
[[1]]
=> [(1,2)]
=> [2,1] => [2,1] => 0 = 1 - 1
[[1,0],[0,1]]
=> [(1,4),(2,3)]
=> [4,3,2,1] => [4,3,2,1] => 1 = 2 - 1
[[0,1],[1,0]]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [4,2,1,3] => 1 = 2 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [6,4,2,1,3,5] => 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => [6,3,5,2,4,1] => 2 = 3 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [(1,2),(3,6),(4,5)]
=> [2,1,6,5,4,3] => [6,5,4,2,1,3] => 3 = 4 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => [6,3,5,2,4,1] => 2 = 3 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [6,4,2,1,3,5] => 2 = 3 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => [6,4,3,2,1,5] => 2 = 3 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => ? = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [8,6,5,4,2,1,3,7] => ? = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,3,7,5,2,4,6,1] => ? = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [8,5,7,4,2,1,6,3] => ? = 5 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,3,7,5,2,4,6,1] => ? = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [8,6,5,4,2,1,3,7] => ? = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [8,6,3,5,2,4,1,7] => ? = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [8,4,7,6,3,5,2,1] => ? = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [8,6,4,2,1,3,5,7] => ? = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [8,7,6,3,5,2,4,1] => ? = 5 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => [8,7,6,5,4,2,1,3] => ? = 6 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [8,7,6,3,5,2,4,1] => ? = 5 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [8,6,4,2,1,3,5,7] => ? = 5 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [8,6,4,3,2,1,5,7] => ? = 5 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [8,4,7,6,3,5,2,1] => ? = 4 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [8,6,4,2,1,3,5,7] => ? = 5 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [8,4,7,6,3,5,2,1] => ? = 5 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [8,7,6,3,5,2,4,1] => ? = 4 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [8,6,4,2,1,3,5,7] => ? = 4 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [8,6,4,2,1,3,5,7] => ? = 5 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [8,6,4,3,2,1,5,7] => ? = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,3,7,5,2,4,6,1] => ? = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [8,5,7,4,2,1,6,3] => ? = 5 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,3,7,5,2,4,6,1] => ? = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [8,6,5,4,2,1,3,7] => ? = 5 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [8,6,3,5,2,4,1,7] => ? = 5 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [8,5,7,4,3,2,6,1] => ? = 4 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [8,7,6,4,2,1,3,5] => ? = 5 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [8,5,7,4,3,2,6,1] => ? = 5 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,3,7,5,2,4,6,1] => ? = 4 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [8,6,4,2,1,3,5,7] => ? = 5 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => [8,6,5,4,3,2,1,7] => ? = 6 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [8,6,3,5,2,4,1,7] => ? = 5 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [8,6,4,2,1,3,5,7] => ? = 4 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [8,6,4,3,2,1,5,7] => ? = 4 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [8,5,7,4,2,1,6,3] => ? = 4 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,3,7,5,2,4,6,1] => ? = 4 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [8,7,6,4,2,1,3,5] => ? = 4 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [8,5,7,4,3,2,6,1] => ? = 5 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,3,7,5,2,4,6,1] => ? = 4 - 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [8,7,6,4,2,1,3,5] => ? = 4 - 1
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => [8,7,6,4,3,2,1,5] => ? = 4 - 1
Description
The number of big deficiencies of a permutation.
A big deficiency of a permutation $\pi$ is an index $i$ such that $i - \pi(i) > 1$.
This statistic is equidistributed with any of the numbers of big exceedences, big descents and big ascents.
Matching statistic: St000711
Mp00098: Alternating sign matrices —link pattern⟶ Perfect matchings
Mp00058: Perfect matchings —to permutation⟶ Permutations
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
St000711: Permutations ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 67%
Mp00058: Perfect matchings —to permutation⟶ Permutations
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
St000711: Permutations ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 67%
Values
[[1]]
=> [(1,2)]
=> [2,1] => [2,1] => 0 = 1 - 1
[[1,0],[0,1]]
=> [(1,4),(2,3)]
=> [4,3,2,1] => [4,3,2,1] => 1 = 2 - 1
[[0,1],[1,0]]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [3,2,4,1] => 1 = 2 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [4,3,5,2,6,1] => 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => [6,4,2,5,3,1] => 2 = 3 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [(1,2),(3,6),(4,5)]
=> [2,1,6,5,4,3] => [5,4,6,3,2,1] => 3 = 4 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => [6,4,2,5,3,1] => 2 = 3 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [4,3,5,2,6,1] => 2 = 3 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => [5,4,3,2,6,1] => 2 = 3 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => ? = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [6,5,7,4,3,2,8,1] => ? = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,5,3,6,2,7,4,1] => ? = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [6,5,8,4,2,7,3,1] => ? = 5 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,5,3,6,2,7,4,1] => ? = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [6,5,7,4,3,2,8,1] => ? = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [7,5,3,6,4,2,8,1] => ? = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [8,7,5,2,6,4,3,1] => ? = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [5,4,6,3,7,2,8,1] => ? = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [8,6,4,7,5,3,2,1] => ? = 5 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => [7,6,8,5,4,3,2,1] => ? = 6 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [8,6,4,7,5,3,2,1] => ? = 5 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [5,4,6,3,7,2,8,1] => ? = 5 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [6,5,4,3,7,2,8,1] => ? = 5 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [8,7,5,2,6,4,3,1] => ? = 4 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [5,4,6,3,7,2,8,1] => ? = 5 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [8,7,5,2,6,4,3,1] => ? = 5 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [8,6,4,7,5,3,2,1] => ? = 4 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [5,4,6,3,7,2,8,1] => ? = 4 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [5,4,6,3,7,2,8,1] => ? = 5 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [6,5,4,3,7,2,8,1] => ? = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,5,3,6,2,7,4,1] => ? = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [6,5,8,4,2,7,3,1] => ? = 5 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,5,3,6,2,7,4,1] => ? = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [6,5,7,4,3,2,8,1] => ? = 5 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [7,5,3,6,4,2,8,1] => ? = 5 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [8,6,5,4,2,7,3,1] => ? = 4 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [6,5,7,4,8,3,2,1] => ? = 5 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [8,6,5,4,2,7,3,1] => ? = 5 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,5,3,6,2,7,4,1] => ? = 4 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [5,4,6,3,7,2,8,1] => ? = 5 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => [7,6,5,4,3,2,8,1] => ? = 6 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [7,5,3,6,4,2,8,1] => ? = 5 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [5,4,6,3,7,2,8,1] => ? = 4 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [6,5,4,3,7,2,8,1] => ? = 4 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [6,5,8,4,2,7,3,1] => ? = 4 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,5,3,6,2,7,4,1] => ? = 4 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [6,5,7,4,8,3,2,1] => ? = 4 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [8,6,5,4,2,7,3,1] => ? = 5 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,5,3,6,2,7,4,1] => ? = 4 - 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [6,5,7,4,8,3,2,1] => ? = 4 - 1
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => [7,6,5,4,8,3,2,1] => ? = 4 - 1
Description
The number of big exceedences of a permutation.
A big exceedence of a permutation $\pi$ is an index $i$ such that $\pi(i) - i > 1$.
This statistic is equidistributed with either of the numbers of big descents, big ascents, and big deficiencies.
Matching statistic: St000744
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000744: Standard tableaux ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 50%
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000744: Standard tableaux ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 50%
Values
[[1]]
=> [[1]]
=> [1]
=> [[1]]
=> ? = 1 - 1
[[1,0],[0,1]]
=> [[1,1],[2]]
=> [2,1]
=> [[1,2],[3]]
=> 1 = 2 - 1
[[0,1],[1,0]]
=> [[1,2],[2]]
=> [2,1]
=> [[1,2],[3]]
=> 1 = 2 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 2 = 3 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 3 = 4 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 2 = 3 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 2 = 3 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 2 = 3 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,3],[3,3],[4]]
=> [3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10]]
=> ? = 5 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,3],[3,4],[4]]
=> [4,2,2,2]
=> [[1,2,3,4],[5,6],[7,8],[9,10]]
=> ? = 5 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,3],[3,4],[4]]
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> ? = 6 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,1,1,3],[2,2,3],[3,4],[4]]
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> ? = 5 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[1,1,2,2],[2,2,3],[3,4],[4]]
=> [4,2,2,2]
=> [[1,2,3,4],[5,6],[7,8],[9,10]]
=> ? = 5 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[1,1,2,3],[2,2,3],[3,4],[4]]
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> ? = 5 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,2],[2,2,4],[3,4],[4]]
=> [3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10]]
=> ? = 5 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,3],[2,2,4],[3,4],[4]]
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> ? = 5 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,3],[2,2,4],[3,4],[4]]
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> ? = 5 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,2],[2,3,3],[3,4],[4]]
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> ? = 5 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[1,1,2,2],[2,3,3],[3,4],[4]]
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> ? = 5 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[1,1,2,3],[2,3,3],[3,4],[4]]
=> [4,2,2,2]
=> [[1,2,3,4],[5,6],[7,8],[9,10]]
=> ? = 5 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,2],[2,3,4],[3,4],[4]]
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> ? = 5 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,3],[2,3,4],[3,4],[4]]
=> [3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10]]
=> ? = 5 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,2],[2,3,4],[3,4],[4]]
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> ? = 5 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,3],[2,3,4],[3,4],[4]]
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> ? = 6 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,1,2,4],[2,3,4],[3,4],[4]]
=> [4,2,2,2]
=> [[1,2,3,4],[5,6],[7,8],[9,10]]
=> ? = 5 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,3],[2,3,4],[3,4],[4]]
=> [3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10]]
=> ? = 5 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 4 - 1
Description
The length of the path to the largest entry in a standard Young tableau.
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000486The number of cycles of length at least 3 of a permutation. St000779The tier of a permutation. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001621The number of atoms of a lattice. St001623The number of doubly irreducible elements of a lattice. St001626The number of maximal proper sublattices of a lattice. St001812The biclique partition number of a graph. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!