Your data matches 24 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000185
Mp00040: Integer compositions to partitionInteger partitions
St000185: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> 0
[1,1] => [1,1]
=> 1
[2] => [2]
=> 0
[1,1,1] => [1,1,1]
=> 3
[1,2] => [2,1]
=> 1
[2,1] => [2,1]
=> 1
[3] => [3]
=> 0
[1,1,1,1] => [1,1,1,1]
=> 6
[1,1,2] => [2,1,1]
=> 3
[1,2,1] => [2,1,1]
=> 3
[1,3] => [3,1]
=> 1
[2,1,1] => [2,1,1]
=> 3
[2,2] => [2,2]
=> 2
[3,1] => [3,1]
=> 1
[4] => [4]
=> 0
[1,1,1,1,1] => [1,1,1,1,1]
=> 10
[1,1,1,2] => [2,1,1,1]
=> 6
[1,1,2,1] => [2,1,1,1]
=> 6
[1,1,3] => [3,1,1]
=> 3
[1,2,1,1] => [2,1,1,1]
=> 6
[1,2,2] => [2,2,1]
=> 4
[1,3,1] => [3,1,1]
=> 3
[1,4] => [4,1]
=> 1
[2,1,1,1] => [2,1,1,1]
=> 6
[2,1,2] => [2,2,1]
=> 4
[2,2,1] => [2,2,1]
=> 4
[2,3] => [3,2]
=> 2
[3,1,1] => [3,1,1]
=> 3
[3,2] => [3,2]
=> 2
[4,1] => [4,1]
=> 1
[5] => [5]
=> 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 15
[1,1,1,1,2] => [2,1,1,1,1]
=> 10
[1,1,1,2,1] => [2,1,1,1,1]
=> 10
[1,1,1,3] => [3,1,1,1]
=> 6
[1,1,2,1,1] => [2,1,1,1,1]
=> 10
[1,1,2,2] => [2,2,1,1]
=> 7
[1,1,3,1] => [3,1,1,1]
=> 6
[1,1,4] => [4,1,1]
=> 3
[1,2,1,1,1] => [2,1,1,1,1]
=> 10
[1,2,1,2] => [2,2,1,1]
=> 7
[1,2,2,1] => [2,2,1,1]
=> 7
[1,2,3] => [3,2,1]
=> 4
[1,3,1,1] => [3,1,1,1]
=> 6
[1,3,2] => [3,2,1]
=> 4
[1,4,1] => [4,1,1]
=> 3
[1,5] => [5,1]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> 10
[2,1,1,2] => [2,2,1,1]
=> 7
[2,1,2,1] => [2,2,1,1]
=> 7
Description
The weighted size of a partition. Let $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ be an integer partition. Then the weighted size of $\lambda$ is $$\sum_{i=0}^m i \cdot \lambda_i.$$ This is also the sum of the leg lengths of the cells in $\lambda$, or $$ \sum_i \binom{\lambda^{\prime}_i}{2} $$ where $\lambda^{\prime}$ is the conjugate partition of $\lambda$. This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2]. This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m)$, obtained uniquely by placing $i-1$ in all the cells of the $i$th row of $\lambda$, see [2, eq.7.103].
Matching statistic: St000566
Mp00040: Integer compositions to partitionInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000566: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [1]
=> ? = 0
[1,1] => [1,1]
=> [2]
=> 1
[2] => [2]
=> [1,1]
=> 0
[1,1,1] => [1,1,1]
=> [3]
=> 3
[1,2] => [2,1]
=> [2,1]
=> 1
[2,1] => [2,1]
=> [2,1]
=> 1
[3] => [3]
=> [1,1,1]
=> 0
[1,1,1,1] => [1,1,1,1]
=> [4]
=> 6
[1,1,2] => [2,1,1]
=> [3,1]
=> 3
[1,2,1] => [2,1,1]
=> [3,1]
=> 3
[1,3] => [3,1]
=> [2,1,1]
=> 1
[2,1,1] => [2,1,1]
=> [3,1]
=> 3
[2,2] => [2,2]
=> [2,2]
=> 2
[3,1] => [3,1]
=> [2,1,1]
=> 1
[4] => [4]
=> [1,1,1,1]
=> 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 10
[1,1,1,2] => [2,1,1,1]
=> [4,1]
=> 6
[1,1,2,1] => [2,1,1,1]
=> [4,1]
=> 6
[1,1,3] => [3,1,1]
=> [3,1,1]
=> 3
[1,2,1,1] => [2,1,1,1]
=> [4,1]
=> 6
[1,2,2] => [2,2,1]
=> [3,2]
=> 4
[1,3,1] => [3,1,1]
=> [3,1,1]
=> 3
[1,4] => [4,1]
=> [2,1,1,1]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [4,1]
=> 6
[2,1,2] => [2,2,1]
=> [3,2]
=> 4
[2,2,1] => [2,2,1]
=> [3,2]
=> 4
[2,3] => [3,2]
=> [2,2,1]
=> 2
[3,1,1] => [3,1,1]
=> [3,1,1]
=> 3
[3,2] => [3,2]
=> [2,2,1]
=> 2
[4,1] => [4,1]
=> [2,1,1,1]
=> 1
[5] => [5]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [6]
=> 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [5,1]
=> 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [5,1]
=> 10
[1,1,1,3] => [3,1,1,1]
=> [4,1,1]
=> 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [5,1]
=> 10
[1,1,2,2] => [2,2,1,1]
=> [4,2]
=> 7
[1,1,3,1] => [3,1,1,1]
=> [4,1,1]
=> 6
[1,1,4] => [4,1,1]
=> [3,1,1,1]
=> 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [5,1]
=> 10
[1,2,1,2] => [2,2,1,1]
=> [4,2]
=> 7
[1,2,2,1] => [2,2,1,1]
=> [4,2]
=> 7
[1,2,3] => [3,2,1]
=> [3,2,1]
=> 4
[1,3,1,1] => [3,1,1,1]
=> [4,1,1]
=> 6
[1,3,2] => [3,2,1]
=> [3,2,1]
=> 4
[1,4,1] => [4,1,1]
=> [3,1,1,1]
=> 3
[1,5] => [5,1]
=> [2,1,1,1,1]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [5,1]
=> 10
[2,1,1,2] => [2,2,1,1]
=> [4,2]
=> 7
[2,1,2,1] => [2,2,1,1]
=> [4,2]
=> 7
[2,1,3] => [3,2,1]
=> [3,2,1]
=> 4
[1,4,3,4,1] => [4,4,3,1,1]
=> [5,3,3,2]
=> ? = 17
[1,4,5,2,1] => [5,4,2,1,1]
=> [5,3,2,2,1]
=> ? = 15
[1,2,5,4,1] => [5,4,2,1,1]
=> [5,3,2,2,1]
=> ? = 15
Description
The number of ways to select a row of a Ferrers shape and two cells in this row. Equivalently, if $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ is an integer partition, then the statistic is $$\frac{1}{2} \sum_{i=0}^m \lambda_i(\lambda_i -1).$$
Matching statistic: St000169
Mp00040: Integer compositions to partitionInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000169: Standard tableaux ⟶ ℤResult quality: 97% values known / values provided: 98%distinct values known / distinct values provided: 97%
Values
[1] => [1]
=> [[1]]
=> 0
[1,1] => [1,1]
=> [[1],[2]]
=> 1
[2] => [2]
=> [[1,2]]
=> 0
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> 3
[1,2] => [2,1]
=> [[1,2],[3]]
=> 1
[2,1] => [2,1]
=> [[1,2],[3]]
=> 1
[3] => [3]
=> [[1,2,3]]
=> 0
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[1,1,2] => [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[1,2,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[1,3] => [3,1]
=> [[1,2,3],[4]]
=> 1
[2,1,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> 2
[3,1] => [3,1]
=> [[1,2,3],[4]]
=> 1
[4] => [4]
=> [[1,2,3,4]]
=> 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[1,1,1,2] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[1,1,2,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[1,1,3] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[1,2,1,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[1,2,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[1,3,1] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[1,4] => [4,1]
=> [[1,2,3,4],[5]]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[2,1,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[2,2,1] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[2,3] => [3,2]
=> [[1,2,3],[4,5]]
=> 2
[3,1,1] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[3,2] => [3,2]
=> [[1,2,3],[4,5]]
=> 2
[4,1] => [4,1]
=> [[1,2,3,4],[5]]
=> 1
[5] => [5]
=> [[1,2,3,4,5]]
=> 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[1,1,1,3] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[1,1,2,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
[1,1,3,1] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 6
[1,1,4] => [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[1,2,1,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
[1,2,2,1] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
[1,2,3] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 4
[1,3,1,1] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 6
[1,3,2] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 4
[1,4,1] => [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 3
[1,5] => [5,1]
=> [[1,2,3,4,5],[6]]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[2,1,1,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
[2,1,2,1] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
[3,3,3,3] => [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 18
[2,3,2,3,2] => [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 21
[2,3,3,2,2] => [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 21
[2,2,3,3,2] => [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 21
[2,2,2,3,3] => [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 21
[2,2,3,2,3] => [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 21
[2,3,2,2,3] => [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 21
[2,5,5] => [5,5,2]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12]]
=> ? = 9
[3,3,2,2,2] => [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 21
[3,2,3,2,2] => [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 21
[3,2,2,3,2] => [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 21
[3,2,2,2,3] => [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 21
[4,4,4] => [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 12
[5,5,2] => [5,5,2]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12]]
=> ? = 9
[5,2,5] => [5,5,2]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12]]
=> ? = 9
[1,2,2,2,2,2] => [2,2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11]]
=> ? = 25
[1,4,7] => [7,4,1]
=> [[1,2,3,4,5,6,7],[8,9,10,11],[12]]
=> ? = 6
[7,4,1] => [7,4,1]
=> [[1,2,3,4,5,6,7],[8,9,10,11],[12]]
=> ? = 6
[7,5] => [7,5]
=> [[1,2,3,4,5,6,7],[8,9,10,11,12]]
=> ? = 5
[2,2,2,2,2,1] => [2,2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11]]
=> ? = 25
[1,6,4] => [6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ? = 6
[1,5,5] => [5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> ? = 7
[1,4,6] => [6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ? = 6
Description
The cocharge of a standard tableau. The '''cocharge''' of a standard tableau $T$, denoted $\mathrm{cc}(T)$, is defined to be the cocharge of the reading word of the tableau. The cocharge of a permutation $w_1 w_2\cdots w_n$ can be computed by the following algorithm: 1) Starting from $w_n$, scan the entries right-to-left until finding the entry $1$ with a superscript $0$. 2) Continue scanning until the $2$ is found, and label this with a superscript $1$. Then scan until the $3$ is found, labeling with a $2$, and so on, incrementing the label each time, until the beginning of the word is reached. Then go back to the end and scan again from right to left, and *do not* increment the superscript label for the first number found in the next scan. Then continue scanning and labeling, each time incrementing the superscript only if we have not cycled around the word since the last labeling. 3) The cocharge is defined as the sum of the superscript labels on the letters.
Matching statistic: St000330
Mp00040: Integer compositions to partitionInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 97% values known / values provided: 98%distinct values known / distinct values provided: 97%
Values
[1] => [1]
=> [[1]]
=> 0
[1,1] => [1,1]
=> [[1],[2]]
=> 1
[2] => [2]
=> [[1,2]]
=> 0
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> 3
[1,2] => [2,1]
=> [[1,3],[2]]
=> 1
[2,1] => [2,1]
=> [[1,3],[2]]
=> 1
[3] => [3]
=> [[1,2,3]]
=> 0
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[1,1,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[1,2,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[1,3] => [3,1]
=> [[1,3,4],[2]]
=> 1
[2,1,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> 2
[3,1] => [3,1]
=> [[1,3,4],[2]]
=> 1
[4] => [4]
=> [[1,2,3,4]]
=> 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[1,1,1,2] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[1,1,2,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[1,1,3] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[1,2,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[1,2,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[1,3,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[1,4] => [4,1]
=> [[1,3,4,5],[2]]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[2,1,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[2,2,1] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[2,3] => [3,2]
=> [[1,2,5],[3,4]]
=> 2
[3,1,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[3,2] => [3,2]
=> [[1,2,5],[3,4]]
=> 2
[4,1] => [4,1]
=> [[1,3,4,5],[2]]
=> 1
[5] => [5]
=> [[1,2,3,4,5]]
=> 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,1,1,3] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,1,2,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[1,1,3,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[1,1,4] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,2,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[1,2,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[1,2,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 4
[1,3,1,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[1,3,2] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 4
[1,4,1] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 3
[1,5] => [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[2,1,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[2,1,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[3,3,3,3] => [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 18
[2,3,2,3,2] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[2,3,3,2,2] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[2,2,3,3,2] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[2,2,2,3,3] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[2,2,3,2,3] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[2,3,2,2,3] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[2,5,5] => [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 9
[3,3,2,2,2] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[3,2,3,2,2] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[3,2,2,3,2] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[3,2,2,2,3] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[4,4,4] => [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 12
[5,5,2] => [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 9
[5,2,5] => [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 9
[1,2,2,2,2,2] => [2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? = 25
[1,4,7] => [7,4,1]
=> [[1,3,4,5,10,11,12],[2,7,8,9],[6]]
=> ? = 6
[7,4,1] => [7,4,1]
=> [[1,3,4,5,10,11,12],[2,7,8,9],[6]]
=> ? = 6
[7,5] => [7,5]
=> [[1,2,3,4,5,11,12],[6,7,8,9,10]]
=> ? = 5
[2,2,2,2,2,1] => [2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? = 25
[1,6,4] => [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? = 6
[1,5,5] => [5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> ? = 7
[1,4,6] => [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? = 6
Description
The (standard) major index of a standard tableau. A descent of a standard tableau $T$ is an index $i$ such that $i+1$ appears in a row strictly below the row of $i$. The (standard) major index is the the sum of the descents.
Mp00040: Integer compositions to partitionInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St000336: Standard tableaux ⟶ ℤResult quality: 97% values known / values provided: 98%distinct values known / distinct values provided: 97%
Values
[1] => [1]
=> [[1]]
=> 0
[1,1] => [1,1]
=> [[1],[2]]
=> 1
[2] => [2]
=> [[1,2]]
=> 0
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> 3
[1,2] => [2,1]
=> [[1,3],[2]]
=> 1
[2,1] => [2,1]
=> [[1,3],[2]]
=> 1
[3] => [3]
=> [[1,2,3]]
=> 0
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[1,1,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[1,2,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[1,3] => [3,1]
=> [[1,3,4],[2]]
=> 1
[2,1,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> 2
[3,1] => [3,1]
=> [[1,3,4],[2]]
=> 1
[4] => [4]
=> [[1,2,3,4]]
=> 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[1,1,1,2] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[1,1,2,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[1,1,3] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[1,2,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[1,2,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[1,3,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[1,4] => [4,1]
=> [[1,3,4,5],[2]]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[2,1,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[2,2,1] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[2,3] => [3,2]
=> [[1,2,5],[3,4]]
=> 2
[3,1,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[3,2] => [3,2]
=> [[1,2,5],[3,4]]
=> 2
[4,1] => [4,1]
=> [[1,3,4,5],[2]]
=> 1
[5] => [5]
=> [[1,2,3,4,5]]
=> 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,1,1,3] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,1,2,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[1,1,3,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[1,1,4] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,2,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[1,2,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[1,2,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 4
[1,3,1,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[1,3,2] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 4
[1,4,1] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 3
[1,5] => [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[2,1,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[2,1,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[3,3,3,3] => [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 18
[2,3,2,3,2] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[2,3,3,2,2] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[2,2,3,3,2] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[2,2,2,3,3] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[2,2,3,2,3] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[2,3,2,2,3] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[2,5,5] => [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 9
[3,3,2,2,2] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[3,2,3,2,2] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[3,2,2,3,2] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[3,2,2,2,3] => [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 21
[4,4,4] => [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 12
[5,5,2] => [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 9
[5,2,5] => [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 9
[1,2,2,2,2,2] => [2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? = 25
[1,4,7] => [7,4,1]
=> [[1,3,4,5,10,11,12],[2,7,8,9],[6]]
=> ? = 6
[7,4,1] => [7,4,1]
=> [[1,3,4,5,10,11,12],[2,7,8,9],[6]]
=> ? = 6
[7,5] => [7,5]
=> [[1,2,3,4,5,11,12],[6,7,8,9,10]]
=> ? = 5
[2,2,2,2,2,1] => [2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? = 25
[1,6,4] => [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? = 6
[1,5,5] => [5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> ? = 7
[1,4,6] => [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? = 6
Description
The leg major index of a standard tableau. The leg length of a cell is the number of cells strictly below in the same column. This statistic is the sum of all leg lengths. Therefore, this is actually a statistic on the underlying integer partition. It happens to coincide with the (leg) major index of a tabloid restricted to standard Young tableaux, defined as follows: the descent set of a tabloid is the set of cells, not in the top row, whose entry is strictly larger than the entry directly above it. The leg major index is the sum of the leg lengths of the descents plus the number of descents.
Matching statistic: St000009
Mp00040: Integer compositions to partitionInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00084: Standard tableaux conjugateStandard tableaux
St000009: Standard tableaux ⟶ ℤResult quality: 84% values known / values provided: 84%distinct values known / distinct values provided: 93%
Values
[1] => [1]
=> [[1]]
=> [[1]]
=> 0
[1,1] => [1,1]
=> [[1],[2]]
=> [[1,2]]
=> 1
[2] => [2]
=> [[1,2]]
=> [[1],[2]]
=> 0
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 3
[1,2] => [2,1]
=> [[1,2],[3]]
=> [[1,3],[2]]
=> 1
[2,1] => [2,1]
=> [[1,2],[3]]
=> [[1,3],[2]]
=> 1
[3] => [3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 0
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 6
[1,1,2] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 3
[1,2,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 3
[1,3] => [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 1
[2,1,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 3
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
[3,1] => [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 1
[4] => [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 10
[1,1,1,2] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 6
[1,1,2,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 6
[1,1,3] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 3
[1,2,1,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 6
[1,2,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 4
[1,3,1] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 3
[1,4] => [4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 6
[2,1,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 4
[2,2,1] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 4
[2,3] => [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 2
[3,1,1] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 3
[3,2] => [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 2
[4,1] => [4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 1
[5] => [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 10
[1,1,1,3] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 10
[1,1,2,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 7
[1,1,3,1] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 6
[1,1,4] => [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 10
[1,2,1,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 7
[1,2,2,1] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 7
[1,2,3] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [[1,4,6],[2,5],[3]]
=> 4
[1,3,1,1] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 6
[1,3,2] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [[1,4,6],[2,5],[3]]
=> 4
[1,4,1] => [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 3
[1,5] => [5,1]
=> [[1,2,3,4,5],[6]]
=> [[1,6],[2],[3],[4],[5]]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 10
[2,1,1,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 7
[2,1,2,1] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 7
[1,5,4,1] => [5,4,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11]]
=> [[1,6,10,11],[2,7],[3,8],[4,9],[5]]
=> ? = 9
[1,4,5,1] => [5,4,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11]]
=> [[1,6,10,11],[2,7],[3,8],[4,9],[5]]
=> ? = 9
[1,1,2,2,3,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[1,1,3,3,2,2] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[1,1,3,2,2,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[2,2,1,1,3,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[2,2,3,3,1,1] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[2,2,3,1,1,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[2,2,4,4] => [4,4,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12]]
=> [[1,5,9,11],[2,6,10,12],[3,7],[4,8]]
=> ? = 14
[2,1,1,2,3,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[2,1,3,3,1,2] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[2,1,3,2,1,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[2,1,4,5] => [5,4,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12]]
=> [[1,6,10,12],[2,7,11],[3,8],[4,9],[5]]
=> ? = 11
[3,3,1,1,2,2] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[3,3,2,2,1,1] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[3,3,2,1,1,2] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[3,3,3,3] => [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> [[1,4,7,10],[2,5,8,11],[3,6,9,12]]
=> ? = 18
[3,2,1,1,2,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[3,2,2,3,1,1] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[3,2,2,1,1,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[3,2,3,4] => [4,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12]]
=> [[1,5,8,11],[2,6,9,12],[3,7,10],[4]]
=> ? = 15
[3,1,1,3,2,2] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[3,1,1,2,2,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[3,1,2,3,1,2] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[3,1,2,2,1,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[3,1,3,5] => [5,3,3,1]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12]]
=> [[1,6,9,12],[2,7,10],[3,8,11],[4],[5]]
=> ? = 12
[4,4,2,2] => [4,4,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12]]
=> [[1,5,9,11],[2,6,10,12],[3,7],[4,8]]
=> ? = 14
[4,3,2,3] => [4,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12]]
=> [[1,5,8,11],[2,6,9,12],[3,7,10],[4]]
=> ? = 15
[4,2,2,4] => [4,4,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12]]
=> [[1,5,9,11],[2,6,10,12],[3,7],[4,8]]
=> ? = 14
[4,1,2,5] => [5,4,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12]]
=> [[1,6,10,12],[2,7,11],[3,8],[4,9],[5]]
=> ? = 11
[5,4,1,2] => [5,4,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12]]
=> [[1,6,10,12],[2,7,11],[3,8],[4,9],[5]]
=> ? = 11
[5,3,1,3] => [5,3,3,1]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12]]
=> [[1,6,9,12],[2,7,10],[3,8,11],[4],[5]]
=> ? = 12
[5,2,1,4] => [5,4,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12]]
=> [[1,6,10,12],[2,7,11],[3,8],[4,9],[5]]
=> ? = 11
[1,2,2,3,3,1] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[1,2,2,4,3] => [4,3,2,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]]
=> [[1,5,8,10,12],[2,6,9,11],[3,7],[4]]
=> ? = 17
[1,2,3,3,2,1] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[1,2,3,4,2] => [4,3,2,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]]
=> [[1,5,8,10,12],[2,6,9,11],[3,7],[4]]
=> ? = 17
[1,2,3,2,3,1] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[1,2,3,3,3] => [3,3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12]]
=> [[1,4,7,10,12],[2,5,8,11],[3,6,9]]
=> ? = 19
[1,2,4,4,1] => [4,4,2,1,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11],[12]]
=> [[1,5,9,11,12],[2,6,10],[3,7],[4,8]]
=> ? = 15
[1,2,4,3,2] => [4,3,2,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]]
=> [[1,5,8,10,12],[2,6,9,11],[3,7],[4]]
=> ? = 17
[1,2,4,2,3] => [4,3,2,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]]
=> [[1,5,8,10,12],[2,6,9,11],[3,7],[4]]
=> ? = 17
[1,2,5,4] => [5,4,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12]]
=> [[1,6,10,12],[2,7,11],[3,8],[4,9],[5]]
=> ? = 11
[1,3,3,2,2,1] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[1,3,3,3,2] => [3,3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12]]
=> [[1,4,7,10,12],[2,5,8,11],[3,6,9]]
=> ? = 19
[1,3,4,3,1] => [4,3,3,1,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11],[12]]
=> [[1,5,8,11,12],[2,6,9],[3,7,10],[4]]
=> ? = 16
[1,3,4,2,2] => [4,3,2,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]]
=> [[1,5,8,10,12],[2,6,9,11],[3,7],[4]]
=> ? = 17
[1,3,5,3] => [5,3,3,1]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12]]
=> [[1,6,9,12],[2,7,10],[3,8,11],[4],[5]]
=> ? = 12
[1,3,2,3,2,1] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [[1,4,7,9,11,12],[2,5,8,10],[3,6]]
=> ? = 22
[1,3,2,4,2] => [4,3,2,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]]
=> [[1,5,8,10,12],[2,6,9,11],[3,7],[4]]
=> ? = 17
Description
The charge of a standard tableau.
Matching statistic: St000391
Mp00040: Integer compositions to partitionInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00134: Standard tableaux descent wordBinary words
St000391: Binary words ⟶ ℤResult quality: 84% values known / values provided: 84%distinct values known / distinct values provided: 90%
Values
[1] => [1]
=> [[1]]
=> => ? = 0
[1,1] => [1,1]
=> [[1],[2]]
=> 1 => 1
[2] => [2]
=> [[1,2]]
=> 0 => 0
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> 11 => 3
[1,2] => [2,1]
=> [[1,3],[2]]
=> 10 => 1
[2,1] => [2,1]
=> [[1,3],[2]]
=> 10 => 1
[3] => [3]
=> [[1,2,3]]
=> 00 => 0
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 111 => 6
[1,1,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> 110 => 3
[1,2,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> 110 => 3
[1,3] => [3,1]
=> [[1,3,4],[2]]
=> 100 => 1
[2,1,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> 110 => 3
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> 010 => 2
[3,1] => [3,1]
=> [[1,3,4],[2]]
=> 100 => 1
[4] => [4]
=> [[1,2,3,4]]
=> 000 => 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1111 => 10
[1,1,1,2] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 1110 => 6
[1,1,2,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 1110 => 6
[1,1,3] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1100 => 3
[1,2,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 1110 => 6
[1,2,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 1010 => 4
[1,3,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1100 => 3
[1,4] => [4,1]
=> [[1,3,4,5],[2]]
=> 1000 => 1
[2,1,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 1110 => 6
[2,1,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 1010 => 4
[2,2,1] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 1010 => 4
[2,3] => [3,2]
=> [[1,2,5],[3,4]]
=> 0100 => 2
[3,1,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1100 => 3
[3,2] => [3,2]
=> [[1,2,5],[3,4]]
=> 0100 => 2
[4,1] => [4,1]
=> [[1,3,4,5],[2]]
=> 1000 => 1
[5] => [5]
=> [[1,2,3,4,5]]
=> 0000 => 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 11111 => 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 11110 => 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 11110 => 10
[1,1,1,3] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 11100 => 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 11110 => 10
[1,1,2,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 11010 => 7
[1,1,3,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 11100 => 6
[1,1,4] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 11000 => 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 11110 => 10
[1,2,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 11010 => 7
[1,2,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 11010 => 7
[1,2,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 10100 => 4
[1,3,1,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 11100 => 6
[1,3,2] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 10100 => 4
[1,4,1] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 11000 => 3
[1,5] => [5,1]
=> [[1,3,4,5,6],[2]]
=> 10000 => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 11110 => 10
[2,1,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 11010 => 7
[2,1,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 11010 => 7
[2,1,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 10100 => 4
[1,5,4,1] => [5,4,1,1]
=> [[1,4,5,6,11],[2,8,9,10],[3],[7]]
=> 1100010000 => ? = 9
[1,4,5,1] => [5,4,1,1]
=> [[1,4,5,6,11],[2,8,9,10],[3],[7]]
=> 1100010000 => ? = 9
[1,1,2,2,3,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[1,1,3,3,2,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[1,1,3,2,2,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[2,2,1,1,3,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[2,2,2,2,2,2] => [2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> 01010101010 => ? = 30
[2,2,3,3,1,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[2,2,3,1,1,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[2,2,4,4] => [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> 01010001000 => ? = 14
[2,1,1,2,3,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[2,1,3,3,1,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[2,1,3,2,1,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[2,1,4,5] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> 10100010000 => ? = 11
[3,3,1,1,2,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[3,3,2,2,1,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[3,3,2,1,1,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[3,3,3,3] => [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? => ? = 18
[3,2,1,1,2,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[3,2,2,3,1,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[3,2,2,1,1,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[3,2,3,4] => [4,3,3,2]
=> [[1,2,5,12],[3,4,8],[6,7,11],[9,10]]
=> 01001001000 => ? = 15
[3,1,1,3,2,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[3,1,1,2,2,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[3,1,2,3,1,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[3,1,2,2,1,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[3,1,3,5] => [5,3,3,1]
=> [[1,3,4,11,12],[2,6,7],[5,9,10],[8]]
=> 10010010000 => ? = 12
[4,4,2,2] => [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> 01010001000 => ? = 14
[4,3,2,3] => [4,3,3,2]
=> [[1,2,5,12],[3,4,8],[6,7,11],[9,10]]
=> 01001001000 => ? = 15
[4,2,2,4] => [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> 01010001000 => ? = 14
[4,1,2,5] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> 10100010000 => ? = 11
[5,4,1,2] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> 10100010000 => ? = 11
[5,3,1,3] => [5,3,3,1]
=> [[1,3,4,11,12],[2,6,7],[5,9,10],[8]]
=> 10010010000 => ? = 12
[5,2,1,4] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> 10100010000 => ? = 11
[6,6] => [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> 00000100000 => ? = 6
[1,2,2,3,3,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[1,2,2,4,3] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> 10101001000 => ? = 17
[1,2,3,3,2,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[1,2,3,4,2] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> 10101001000 => ? = 17
[1,2,3,2,3,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[1,2,3,3,3] => [3,3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8,12],[7,11],[10]]
=> 10100100100 => ? = 19
[1,2,4,4,1] => [4,4,2,1,1]
=> [[1,4,7,8],[2,6,11,12],[3,10],[5],[9]]
=> 11010001000 => ? = 15
[1,2,4,3,2] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> 10101001000 => ? = 17
[1,2,4,2,3] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> 10101001000 => ? = 17
[1,2,5,4] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> 10100010000 => ? = 11
[1,3,3,2,2,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> 11010100100 => ? = 22
[1,3,3,3,2] => [3,3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8,12],[7,11],[10]]
=> 10100100100 => ? = 19
[1,3,4,3,1] => [4,3,3,1,1]
=> [[1,4,5,12],[2,7,8],[3,10,11],[6],[9]]
=> 11001001000 => ? = 16
[1,3,4,2,2] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> 10101001000 => ? = 17
Description
The sum of the positions of the ones in a binary word.
Mp00040: Integer compositions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000423: Permutations ⟶ ℤResult quality: 61% values known / values provided: 61%distinct values known / distinct values provided: 73%
Values
[1] => [1]
=> [1,0,1,0]
=> [1,2] => 0
[1,1] => [1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[2] => [2]
=> [1,1,0,0,1,0]
=> [2,1,3] => 0
[1,1,1] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 3
[1,2] => [2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1
[2,1] => [2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1
[3] => [3]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 0
[1,1,1,1] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 6
[1,1,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 3
[1,2,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 3
[1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[2,1,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 3
[2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 10
[1,1,1,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 6
[1,1,2,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 6
[1,1,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3
[1,2,1,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 6
[1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 4
[1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3
[1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => 1
[2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 6
[2,1,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 4
[2,2,1] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 4
[2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[3,1,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3
[3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => 1
[5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,4,3,2,1,6] => 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,6,5,4,3,2] => ? = 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,6,4,5,3,2] => 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,6,4,5,3,2] => 10
[1,1,1,3] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,6,4,5,3,2] => 10
[1,1,2,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 7
[1,1,3,1] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 6
[1,1,4] => [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,6,4,5,3,2] => 10
[1,2,1,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 7
[1,2,2,1] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 7
[1,2,3] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4
[1,3,1,1] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 6
[1,3,2] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4
[1,4,1] => [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 3
[1,5] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,3,4,2,1,6] => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,6,4,5,3,2] => 10
[2,1,1,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 7
[2,1,2,1] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 7
[2,1,3] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4
[6] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => ? = 0
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,7,6,5,4,3,2] => ? = 21
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,7,6,4,5,3,2] => ? = 15
[1,1,1,1,2,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,7,6,4,5,3,2] => ? = 15
[1,1,1,2,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,7,6,4,5,3,2] => ? = 15
[1,1,2,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,7,6,4,5,3,2] => ? = 15
[1,2,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,7,6,4,5,3,2] => ? = 15
[1,6] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [6,5,3,4,2,1,7] => ? = 1
[2,1,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,7,6,4,5,3,2] => ? = 15
[6,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [6,5,3,4,2,1,7] => ? = 1
[7] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,6,5,4,3,2,1,8] => ? = 0
[1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,9,8,7,6,5,4,3,2] => ? = 28
[1,1,1,1,1,1,2] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,8,7,5,6,4,3,2] => ? = 21
[1,1,1,1,1,2,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,8,7,5,6,4,3,2] => ? = 21
[1,1,1,1,1,3] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,7,5,4,6,3,2] => ? = 15
[1,1,1,1,2,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,8,7,5,6,4,3,2] => ? = 21
[1,1,1,1,2,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 16
[1,1,1,1,3,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,7,5,4,6,3,2] => ? = 15
[1,1,1,2,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,8,7,5,6,4,3,2] => ? = 21
[1,1,1,2,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 16
[1,1,1,2,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 16
[1,1,1,3,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,7,5,4,6,3,2] => ? = 15
[1,1,2,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,8,7,5,6,4,3,2] => ? = 21
[1,1,2,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 16
[1,1,2,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 16
[1,1,2,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 16
[1,1,3,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,7,5,4,6,3,2] => ? = 15
[1,1,6] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [6,3,5,4,2,1,7] => ? = 3
[1,2,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,8,7,5,6,4,3,2] => ? = 21
[1,2,1,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 16
[1,2,1,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 16
[1,2,1,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 16
[1,2,2,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 16
[1,3,1,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,7,5,4,6,3,2] => ? = 15
[1,6,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [6,3,5,4,2,1,7] => ? = 3
[1,7] => [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [7,6,4,5,3,2,1,8] => ? = 1
[2,1,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,8,7,5,6,4,3,2] => ? = 21
[2,1,1,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 16
[2,1,1,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 16
[2,1,1,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 16
[2,1,2,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 16
[2,2,1,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 16
[2,6] => [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [6,4,3,5,2,1,7] => ? = 2
[3,1,1,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,7,5,4,6,3,2] => ? = 15
[6,1,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [6,3,5,4,2,1,7] => ? = 3
[6,2] => [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [6,4,3,5,2,1,7] => ? = 2
[7,1] => [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [7,6,4,5,3,2,1,8] => ? = 1
[8] => [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,7,6,5,4,3,2,1,9] => ? = 0
[1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10,9,8,7,6,5,4,3,2] => ? = 36
Description
The number of occurrences of the pattern 123 or of the pattern 132 in a permutation.
Matching statistic: St000436
Mp00040: Integer compositions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000436: Permutations ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 63%
Values
[1] => [1]
=> [1,0,1,0]
=> [2,1] => 0
[1,1] => [1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 1
[2] => [2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 0
[1,1,1] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3
[1,2] => [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 1
[2,1] => [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 1
[3] => [3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[1,1,1,1] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 6
[1,1,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[1,2,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 1
[2,1,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2
[3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 1
[4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 10
[1,1,1,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 6
[1,1,2,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 6
[1,1,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
[1,2,1,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 6
[1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 4
[1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
[1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 1
[2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 6
[2,1,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 4
[2,2,1] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 4
[2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
[3,1,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
[3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
[4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 1
[5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => 10
[1,1,1,3] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => 10
[1,1,2,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 7
[1,1,3,1] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 6
[1,1,4] => [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => 10
[1,2,1,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 7
[1,2,2,1] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 7
[1,2,3] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 4
[1,3,1,1] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 6
[1,3,2] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 4
[1,4,1] => [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 3
[1,5] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [6,2,1,3,4,5] => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => 10
[2,1,1,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 7
[2,1,2,1] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 7
[2,1,3] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 4
[6] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 0
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 21
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 15
[1,1,1,1,2,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 15
[1,1,1,2,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 15
[1,1,2,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 15
[1,2,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 15
[1,6] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 1
[2,1,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? = 15
[6,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 1
[7] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => ? = 0
[1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,1] => ? = 28
[1,1,1,1,1,1,2] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 21
[1,1,1,1,1,2,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 21
[1,1,1,1,1,3] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? = 15
[1,1,1,1,2,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 21
[1,1,1,1,2,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 16
[1,1,1,1,3,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? = 15
[1,1,1,2,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 21
[1,1,1,2,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 16
[1,1,1,2,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 16
[1,1,1,3,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? = 15
[1,1,2,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 21
[1,1,2,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 16
[1,1,2,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 16
[1,1,2,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 16
[1,1,3,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? = 15
[1,1,6] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 3
[1,2,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 21
[1,2,1,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 16
[1,2,1,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 16
[1,2,1,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 16
[1,2,2,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 16
[1,3,1,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? = 15
[1,6,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 3
[1,7] => [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => ? = 1
[2,1,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? = 21
[2,1,1,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 16
[2,1,1,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 16
[2,1,1,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 16
[2,1,2,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 16
[2,2,1,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? = 16
[2,6] => [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => ? = 2
[3,1,1,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? = 15
[6,1,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? = 3
[6,2] => [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => ? = 2
[7,1] => [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => ? = 1
[8] => [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => ? = 0
[1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,1] => ? = 36
Description
The number of occurrences of the pattern 231 or of the pattern 321 in a permutation.
Matching statistic: St000008
Mp00040: Integer compositions to partitionInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00207: Standard tableaux horizontal strip sizesInteger compositions
St000008: Integer compositions ⟶ ℤResult quality: 30% values known / values provided: 30%distinct values known / distinct values provided: 80%
Values
[1] => [1]
=> [[1]]
=> [1] => 0
[1,1] => [1,1]
=> [[1],[2]]
=> [1,1] => 1
[2] => [2]
=> [[1,2]]
=> [2] => 0
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> [1,1,1] => 3
[1,2] => [2,1]
=> [[1,3],[2]]
=> [1,2] => 1
[2,1] => [2,1]
=> [[1,3],[2]]
=> [1,2] => 1
[3] => [3]
=> [[1,2,3]]
=> [3] => 0
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [1,1,1,1] => 6
[1,1,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 3
[1,2,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 3
[1,3] => [3,1]
=> [[1,3,4],[2]]
=> [1,3] => 1
[2,1,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 3
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> [2,2] => 2
[3,1] => [3,1]
=> [[1,3,4],[2]]
=> [1,3] => 1
[4] => [4]
=> [[1,2,3,4]]
=> [4] => 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => 10
[1,1,1,2] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 6
[1,1,2,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 6
[1,1,3] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 3
[1,2,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 6
[1,2,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 4
[1,3,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 3
[1,4] => [4,1]
=> [[1,3,4,5],[2]]
=> [1,4] => 1
[2,1,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 6
[2,1,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 4
[2,2,1] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 4
[2,3] => [3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => 2
[3,1,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 3
[3,2] => [3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => 2
[4,1] => [4,1]
=> [[1,3,4,5],[2]]
=> [1,4] => 1
[5] => [5]
=> [[1,2,3,4,5]]
=> [5] => 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 10
[1,1,1,3] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 10
[1,1,2,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 7
[1,1,3,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 6
[1,1,4] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 10
[1,2,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 7
[1,2,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 7
[1,2,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 4
[1,3,1,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 6
[1,3,2] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 4
[1,4,1] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 3
[1,5] => [5,1]
=> [[1,3,4,5,6],[2]]
=> [1,5] => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 10
[2,1,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 7
[2,1,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 7
[1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [1,1,1,1,1,1,1,1,1] => ? = 36
[1,1,1,1,1,1,1,2] => [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> [1,1,1,1,1,1,1,2] => ? = 28
[1,1,1,1,1,1,2,1] => [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> [1,1,1,1,1,1,1,2] => ? = 28
[1,1,1,1,1,1,3] => [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,3] => ? = 21
[1,1,1,1,1,2,1,1] => [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> [1,1,1,1,1,1,1,2] => ? = 28
[1,1,1,1,1,2,2] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? = 22
[1,1,1,1,1,3,1] => [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,3] => ? = 21
[1,1,1,1,1,4] => [4,1,1,1,1,1]
=> [[1,7,8,9],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,4] => ? = 15
[1,1,1,1,2,1,1,1] => [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> [1,1,1,1,1,1,1,2] => ? = 28
[1,1,1,1,2,1,2] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? = 22
[1,1,1,1,2,2,1] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? = 22
[1,1,1,1,2,3] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? = 16
[1,1,1,1,3,1,1] => [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,3] => ? = 21
[1,1,1,1,3,2] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? = 16
[1,1,1,1,4,1] => [4,1,1,1,1,1]
=> [[1,7,8,9],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,4] => ? = 15
[1,1,1,1,5] => [5,1,1,1,1]
=> [[1,6,7,8,9],[2],[3],[4],[5]]
=> [1,1,1,1,5] => ? = 10
[1,1,1,2,1,1,1,1] => [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> [1,1,1,1,1,1,1,2] => ? = 28
[1,1,1,2,1,1,2] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? = 22
[1,1,1,2,1,2,1] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? = 22
[1,1,1,2,1,3] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? = 16
[1,1,1,2,2,1,1] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? = 22
[1,1,1,2,2,2] => [2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> [1,1,1,2,2,2] => ? = 18
[1,1,1,2,3,1] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? = 16
[1,1,1,2,4] => [4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> [1,1,1,2,4] => ? = 11
[1,1,1,3,1,1,1] => [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,3] => ? = 21
[1,1,1,3,1,2] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? = 16
[1,1,1,3,2,1] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? = 16
[1,1,1,3,3] => [3,3,1,1,1]
=> [[1,5,6],[2,8,9],[3],[4],[7]]
=> [1,1,1,3,3] => ? = 12
[1,1,1,4,1,1] => [4,1,1,1,1,1]
=> [[1,7,8,9],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,4] => ? = 15
[1,1,1,4,2] => [4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> [1,1,1,2,4] => ? = 11
[1,1,1,5,1] => [5,1,1,1,1]
=> [[1,6,7,8,9],[2],[3],[4],[5]]
=> [1,1,1,1,5] => ? = 10
[1,1,1,6] => [6,1,1,1]
=> [[1,5,6,7,8,9],[2],[3],[4]]
=> [1,1,1,6] => ? = 6
[1,1,2,1,1,1,1,1] => [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> [1,1,1,1,1,1,1,2] => ? = 28
[1,1,2,1,1,1,2] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? = 22
[1,1,2,1,1,2,1] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? = 22
[1,1,2,1,1,3] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? = 16
[1,1,2,1,2,1,1] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? = 22
[1,1,2,1,2,2] => [2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> [1,1,1,2,2,2] => ? = 18
[1,1,2,1,3,1] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? = 16
[1,1,2,1,4] => [4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> [1,1,1,2,4] => ? = 11
[1,1,2,2,1,1,1] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? = 22
[1,1,2,2,1,2] => [2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> [1,1,1,2,2,2] => ? = 18
[1,1,2,2,2,1] => [2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> [1,1,1,2,2,2] => ? = 18
[1,1,2,2,3] => [3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> [1,1,2,2,3] => ? = 13
[1,1,2,3,1,1] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? = 16
[1,1,2,3,2] => [3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> [1,1,2,2,3] => ? = 13
[1,1,2,4,1] => [4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> [1,1,1,2,4] => ? = 11
[1,1,2,5] => [5,2,1,1]
=> [[1,4,7,8,9],[2,6],[3],[5]]
=> [1,1,2,5] => ? = 7
[1,1,3,1,1,1,1] => [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,3] => ? = 21
[1,1,3,1,1,2] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? = 16
Description
The major index of the composition. The descents of a composition $[c_1,c_2,\dots,c_k]$ are the partial sums $c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}$, excluding the sum of all parts. The major index of a composition is the sum of its descents. For details about the major index see [[Permutations/Descents-Major]].
The following 14 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001697The shifted natural comajor index of a standard Young tableau. St000012The area of a Dyck path. St000683The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps. St000984The number of boxes below precisely one peak. St000492The rob statistic of a set partition. St000493The los statistic of a set partition. St000498The lcs statistic of a set partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St000446The disorder of a permutation. St001874Lusztig's a-function for the symmetric group. St000004The major index of a permutation. St000305The inverse major index of a permutation. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.