searching the database
Your data matches 26 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000186
(load all 82 compositions to match this statistic)
(load all 82 compositions to match this statistic)
St000186: Gelfand-Tsetlin patterns ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1,0],[0]]
=> 1
[[1,0],[1]]
=> 1
[[2,0],[0]]
=> 2
[[2,0],[1]]
=> 2
[[2,0],[2]]
=> 2
[[1,1],[1]]
=> 2
[[1,0,0],[0,0],[0]]
=> 1
[[1,0,0],[1,0],[0]]
=> 1
[[1,0,0],[1,0],[1]]
=> 1
[[3,0],[0]]
=> 3
[[3,0],[1]]
=> 3
[[3,0],[2]]
=> 3
[[3,0],[3]]
=> 3
[[2,1],[1]]
=> 3
[[2,1],[2]]
=> 3
[[2,0,0],[0,0],[0]]
=> 2
[[2,0,0],[1,0],[0]]
=> 2
[[2,0,0],[1,0],[1]]
=> 2
[[2,0,0],[2,0],[0]]
=> 2
[[2,0,0],[2,0],[1]]
=> 2
[[2,0,0],[2,0],[2]]
=> 2
[[1,1,0],[1,0],[0]]
=> 2
[[1,1,0],[1,0],[1]]
=> 2
[[1,1,0],[1,1],[1]]
=> 2
[[1,0,0,0],[0,0,0],[0,0],[0]]
=> 1
[[1,0,0,0],[1,0,0],[0,0],[0]]
=> 1
[[1,0,0,0],[1,0,0],[1,0],[0]]
=> 1
[[1,0,0,0],[1,0,0],[1,0],[1]]
=> 1
[[4,0],[0]]
=> 4
[[4,0],[1]]
=> 4
[[4,0],[2]]
=> 4
[[4,0],[3]]
=> 4
[[4,0],[4]]
=> 4
[[3,1],[1]]
=> 4
[[3,1],[2]]
=> 4
[[3,1],[3]]
=> 4
[[2,2],[2]]
=> 4
[[3,0,0],[0,0],[0]]
=> 3
[[3,0,0],[1,0],[0]]
=> 3
[[3,0,0],[1,0],[1]]
=> 3
[[3,0,0],[2,0],[0]]
=> 3
[[3,0,0],[2,0],[1]]
=> 3
[[3,0,0],[2,0],[2]]
=> 3
[[3,0,0],[3,0],[0]]
=> 3
[[3,0,0],[3,0],[1]]
=> 3
[[3,0,0],[3,0],[2]]
=> 3
[[3,0,0],[3,0],[3]]
=> 3
[[2,1,0],[1,0],[0]]
=> 3
[[2,1,0],[1,0],[1]]
=> 3
[[2,1,0],[1,1],[1]]
=> 3
Description
The sum of the first row in a Gelfand-Tsetlin pattern.
Matching statistic: St000228
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
St000228: Integer partitions ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
St000228: Integer partitions ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Values
[[1,0],[0]]
=> [[2]]
=> [1]
=> 1
[[1,0],[1]]
=> [[1]]
=> [1]
=> 1
[[2,0],[0]]
=> [[2,2]]
=> [2]
=> 2
[[2,0],[1]]
=> [[1,2]]
=> [2]
=> 2
[[2,0],[2]]
=> [[1,1]]
=> [2]
=> 2
[[1,1],[1]]
=> [[1],[2]]
=> [1,1]
=> 2
[[1,0,0],[0,0],[0]]
=> [[3]]
=> [1]
=> 1
[[1,0,0],[1,0],[0]]
=> [[2]]
=> [1]
=> 1
[[1,0,0],[1,0],[1]]
=> [[1]]
=> [1]
=> 1
[[3,0],[0]]
=> [[2,2,2]]
=> [3]
=> 3
[[3,0],[1]]
=> [[1,2,2]]
=> [3]
=> 3
[[3,0],[2]]
=> [[1,1,2]]
=> [3]
=> 3
[[3,0],[3]]
=> [[1,1,1]]
=> [3]
=> 3
[[2,1],[1]]
=> [[1,2],[2]]
=> [2,1]
=> 3
[[2,1],[2]]
=> [[1,1],[2]]
=> [2,1]
=> 3
[[2,0,0],[0,0],[0]]
=> [[3,3]]
=> [2]
=> 2
[[2,0,0],[1,0],[0]]
=> [[2,3]]
=> [2]
=> 2
[[2,0,0],[1,0],[1]]
=> [[1,3]]
=> [2]
=> 2
[[2,0,0],[2,0],[0]]
=> [[2,2]]
=> [2]
=> 2
[[2,0,0],[2,0],[1]]
=> [[1,2]]
=> [2]
=> 2
[[2,0,0],[2,0],[2]]
=> [[1,1]]
=> [2]
=> 2
[[1,1,0],[1,0],[0]]
=> [[2],[3]]
=> [1,1]
=> 2
[[1,1,0],[1,0],[1]]
=> [[1],[3]]
=> [1,1]
=> 2
[[1,1,0],[1,1],[1]]
=> [[1],[2]]
=> [1,1]
=> 2
[[1,0,0,0],[0,0,0],[0,0],[0]]
=> [[4]]
=> [1]
=> 1
[[1,0,0,0],[1,0,0],[0,0],[0]]
=> [[3]]
=> [1]
=> 1
[[1,0,0,0],[1,0,0],[1,0],[0]]
=> [[2]]
=> [1]
=> 1
[[1,0,0,0],[1,0,0],[1,0],[1]]
=> [[1]]
=> [1]
=> 1
[[4,0],[0]]
=> [[2,2,2,2]]
=> [4]
=> 4
[[4,0],[1]]
=> [[1,2,2,2]]
=> [4]
=> 4
[[4,0],[2]]
=> [[1,1,2,2]]
=> [4]
=> 4
[[4,0],[3]]
=> [[1,1,1,2]]
=> [4]
=> 4
[[4,0],[4]]
=> [[1,1,1,1]]
=> [4]
=> 4
[[3,1],[1]]
=> [[1,2,2],[2]]
=> [3,1]
=> 4
[[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1]
=> 4
[[3,1],[3]]
=> [[1,1,1],[2]]
=> [3,1]
=> 4
[[2,2],[2]]
=> [[1,1],[2,2]]
=> [2,2]
=> 4
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [3]
=> 3
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [3]
=> 3
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [3]
=> 3
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [3]
=> 3
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [3]
=> 3
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [3]
=> 3
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [3]
=> 3
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [3]
=> 3
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [3]
=> 3
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [3]
=> 3
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1]
=> 3
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1]
=> 3
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1]
=> 3
[[4,1,1,0],[4,1,0],[4,1],[4]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[4]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[3]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[3]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[3]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[3]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[3]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[3]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[3]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[2]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[2]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[2]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[2]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[2]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[2]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,1],[2]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,1],[2,1],[2]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[2]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,1],[2]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,1],[2,1],[2]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,1],[2]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,0],[2]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,0],[2]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,0],[2]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,1],[2,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,1],[2,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,0],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[1,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,1],[1,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,0],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[1,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,1],[1,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,0],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,0],[1,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[1,1,1],[1,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[1,1,0],[1,1],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[1,0],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[1,0],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,0],[1,0],[1]]
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[1,1,0],[1,0],[1]]
=> ?
=> ?
=> ? = 6
Description
The size of a partition.
This statistic is the constant statistic of the level sets.
Matching statistic: St000293
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000293: Binary words ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000293: Binary words ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Values
[[1,0],[0]]
=> [[2]]
=> [1]
=> 10 => 1
[[1,0],[1]]
=> [[1]]
=> [1]
=> 10 => 1
[[2,0],[0]]
=> [[2,2]]
=> [2]
=> 100 => 2
[[2,0],[1]]
=> [[1,2]]
=> [1,1]
=> 110 => 2
[[2,0],[2]]
=> [[1,1]]
=> [2]
=> 100 => 2
[[1,1],[1]]
=> [[1],[2]]
=> [1,1]
=> 110 => 2
[[1,0,0],[0,0],[0]]
=> [[3]]
=> [1]
=> 10 => 1
[[1,0,0],[1,0],[0]]
=> [[2]]
=> [1]
=> 10 => 1
[[1,0,0],[1,0],[1]]
=> [[1]]
=> [1]
=> 10 => 1
[[3,0],[0]]
=> [[2,2,2]]
=> [3]
=> 1000 => 3
[[3,0],[1]]
=> [[1,2,2]]
=> [2,1]
=> 1010 => 3
[[3,0],[2]]
=> [[1,1,2]]
=> [2,1]
=> 1010 => 3
[[3,0],[3]]
=> [[1,1,1]]
=> [3]
=> 1000 => 3
[[2,1],[1]]
=> [[1,2],[2]]
=> [2,1]
=> 1010 => 3
[[2,1],[2]]
=> [[1,1],[2]]
=> [2,1]
=> 1010 => 3
[[2,0,0],[0,0],[0]]
=> [[3,3]]
=> [2]
=> 100 => 2
[[2,0,0],[1,0],[0]]
=> [[2,3]]
=> [1,1]
=> 110 => 2
[[2,0,0],[1,0],[1]]
=> [[1,3]]
=> [1,1]
=> 110 => 2
[[2,0,0],[2,0],[0]]
=> [[2,2]]
=> [2]
=> 100 => 2
[[2,0,0],[2,0],[1]]
=> [[1,2]]
=> [1,1]
=> 110 => 2
[[2,0,0],[2,0],[2]]
=> [[1,1]]
=> [2]
=> 100 => 2
[[1,1,0],[1,0],[0]]
=> [[2],[3]]
=> [1,1]
=> 110 => 2
[[1,1,0],[1,0],[1]]
=> [[1],[3]]
=> [1,1]
=> 110 => 2
[[1,1,0],[1,1],[1]]
=> [[1],[2]]
=> [1,1]
=> 110 => 2
[[1,0,0,0],[0,0,0],[0,0],[0]]
=> [[4]]
=> [1]
=> 10 => 1
[[1,0,0,0],[1,0,0],[0,0],[0]]
=> [[3]]
=> [1]
=> 10 => 1
[[1,0,0,0],[1,0,0],[1,0],[0]]
=> [[2]]
=> [1]
=> 10 => 1
[[1,0,0,0],[1,0,0],[1,0],[1]]
=> [[1]]
=> [1]
=> 10 => 1
[[4,0],[0]]
=> [[2,2,2,2]]
=> [4]
=> 10000 => 4
[[4,0],[1]]
=> [[1,2,2,2]]
=> [3,1]
=> 10010 => 4
[[4,0],[2]]
=> [[1,1,2,2]]
=> [2,2]
=> 1100 => 4
[[4,0],[3]]
=> [[1,1,1,2]]
=> [3,1]
=> 10010 => 4
[[4,0],[4]]
=> [[1,1,1,1]]
=> [4]
=> 10000 => 4
[[3,1],[1]]
=> [[1,2,2],[2]]
=> [3,1]
=> 10010 => 4
[[3,1],[2]]
=> [[1,1,2],[2]]
=> [2,2]
=> 1100 => 4
[[3,1],[3]]
=> [[1,1,1],[2]]
=> [3,1]
=> 10010 => 4
[[2,2],[2]]
=> [[1,1],[2,2]]
=> [2,2]
=> 1100 => 4
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [3]
=> 1000 => 3
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [2,1]
=> 1010 => 3
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [2,1]
=> 1010 => 3
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [2,1]
=> 1010 => 3
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,1,1]
=> 1110 => 3
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [2,1]
=> 1010 => 3
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [3]
=> 1000 => 3
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [2,1]
=> 1010 => 3
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [2,1]
=> 1010 => 3
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [3]
=> 1000 => 3
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1]
=> 1010 => 3
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1]
=> 1010 => 3
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [1,1,1]
=> 1110 => 3
[[4,1,1,0],[4,1,0],[4,1],[4]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[4,0],[4]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[4,1],[3]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[4,0],[3]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[3,1],[3]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,1],[3,1],[3]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,0],[3,1],[3]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[3,0],[3]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,0],[3,0],[3]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[4,1],[2]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[4,0],[2]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[3,1],[2]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,1],[3,1],[2]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,0],[3,1],[2]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[3,0],[2]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[2,1],[2]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,1],[2,1],[2]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,0],[3,0],[2]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,0],[2,1],[2]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[2,1,1],[2,1],[2]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[2,1,0],[2,1],[2]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[2,0],[2]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,0],[2,0],[2]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[2,1,0],[2,0],[2]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[4,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[4,0],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[3,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,1],[3,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,0],[3,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[3,0],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[2,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,1],[2,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,0],[3,0],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,0],[2,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[2,1,1],[2,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[2,1,0],[2,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[2,0],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[1,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,1],[1,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,0],[2,0],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,0],[1,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[2,1,1],[1,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[2,1,0],[2,0],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[2,1,0],[1,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[1,1,1],[1,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[1,1,0],[1,1],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[4,1,0],[1,0],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[3,1,0],[1,0],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[2,1,0],[1,0],[1]]
=> ?
=> ?
=> ? => ? = 6
[[4,1,1,0],[1,1,0],[1,0],[1]]
=> ?
=> ?
=> ? => ? = 6
Description
The number of inversions of a binary word.
Matching statistic: St000459
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
St000459: Integer partitions ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
St000459: Integer partitions ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Values
[[1,0],[0]]
=> [[2]]
=> [1] => [1]
=> 1
[[1,0],[1]]
=> [[1]]
=> [1] => [1]
=> 1
[[2,0],[0]]
=> [[2,2]]
=> [1,2] => [1,1]
=> 2
[[2,0],[1]]
=> [[1,2]]
=> [1,2] => [1,1]
=> 2
[[2,0],[2]]
=> [[1,1]]
=> [1,2] => [1,1]
=> 2
[[1,1],[1]]
=> [[1],[2]]
=> [2,1] => [2]
=> 2
[[1,0,0],[0,0],[0]]
=> [[3]]
=> [1] => [1]
=> 1
[[1,0,0],[1,0],[0]]
=> [[2]]
=> [1] => [1]
=> 1
[[1,0,0],[1,0],[1]]
=> [[1]]
=> [1] => [1]
=> 1
[[3,0],[0]]
=> [[2,2,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0],[1]]
=> [[1,2,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0],[2]]
=> [[1,1,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0],[3]]
=> [[1,1,1]]
=> [1,2,3] => [1,1,1]
=> 3
[[2,1],[1]]
=> [[1,2],[2]]
=> [2,1,3] => [2,1]
=> 3
[[2,1],[2]]
=> [[1,1],[2]]
=> [3,1,2] => [2,1]
=> 3
[[2,0,0],[0,0],[0]]
=> [[3,3]]
=> [1,2] => [1,1]
=> 2
[[2,0,0],[1,0],[0]]
=> [[2,3]]
=> [1,2] => [1,1]
=> 2
[[2,0,0],[1,0],[1]]
=> [[1,3]]
=> [1,2] => [1,1]
=> 2
[[2,0,0],[2,0],[0]]
=> [[2,2]]
=> [1,2] => [1,1]
=> 2
[[2,0,0],[2,0],[1]]
=> [[1,2]]
=> [1,2] => [1,1]
=> 2
[[2,0,0],[2,0],[2]]
=> [[1,1]]
=> [1,2] => [1,1]
=> 2
[[1,1,0],[1,0],[0]]
=> [[2],[3]]
=> [2,1] => [2]
=> 2
[[1,1,0],[1,0],[1]]
=> [[1],[3]]
=> [2,1] => [2]
=> 2
[[1,1,0],[1,1],[1]]
=> [[1],[2]]
=> [2,1] => [2]
=> 2
[[1,0,0,0],[0,0,0],[0,0],[0]]
=> [[4]]
=> [1] => [1]
=> 1
[[1,0,0,0],[1,0,0],[0,0],[0]]
=> [[3]]
=> [1] => [1]
=> 1
[[1,0,0,0],[1,0,0],[1,0],[0]]
=> [[2]]
=> [1] => [1]
=> 1
[[1,0,0,0],[1,0,0],[1,0],[1]]
=> [[1]]
=> [1] => [1]
=> 1
[[4,0],[0]]
=> [[2,2,2,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[[4,0],[1]]
=> [[1,2,2,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[[4,0],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[[4,0],[3]]
=> [[1,1,1,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[[4,0],[4]]
=> [[1,1,1,1]]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[[3,1],[1]]
=> [[1,2,2],[2]]
=> [2,1,3,4] => [2,1,1]
=> 4
[[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1,2,4] => [2,1,1]
=> 4
[[3,1],[3]]
=> [[1,1,1],[2]]
=> [4,1,2,3] => [2,1,1]
=> 4
[[2,2],[2]]
=> [[1,1],[2,2]]
=> [3,4,1,2] => [2,1,1]
=> 4
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [1,2,3] => [1,1,1]
=> 3
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1,3] => [2,1]
=> 3
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1,3] => [2,1]
=> 3
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1,3] => [2,1]
=> 3
[[4,1,1,0],[4,1,0],[4,1],[4]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[4]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,1],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,1],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,1],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[1,1,1],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[1,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[1,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
Description
The hook length of the base cell of a partition.
This is also known as the perimeter of a partition. In particular, the perimeter of the empty partition is zero.
Matching statistic: St000460
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
St000460: Integer partitions ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
St000460: Integer partitions ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Values
[[1,0],[0]]
=> [[2]]
=> [1] => [1]
=> 1
[[1,0],[1]]
=> [[1]]
=> [1] => [1]
=> 1
[[2,0],[0]]
=> [[2,2]]
=> [1,2] => [1,1]
=> 2
[[2,0],[1]]
=> [[1,2]]
=> [1,2] => [1,1]
=> 2
[[2,0],[2]]
=> [[1,1]]
=> [1,2] => [1,1]
=> 2
[[1,1],[1]]
=> [[1],[2]]
=> [2,1] => [2]
=> 2
[[1,0,0],[0,0],[0]]
=> [[3]]
=> [1] => [1]
=> 1
[[1,0,0],[1,0],[0]]
=> [[2]]
=> [1] => [1]
=> 1
[[1,0,0],[1,0],[1]]
=> [[1]]
=> [1] => [1]
=> 1
[[3,0],[0]]
=> [[2,2,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0],[1]]
=> [[1,2,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0],[2]]
=> [[1,1,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0],[3]]
=> [[1,1,1]]
=> [1,2,3] => [1,1,1]
=> 3
[[2,1],[1]]
=> [[1,2],[2]]
=> [2,1,3] => [2,1]
=> 3
[[2,1],[2]]
=> [[1,1],[2]]
=> [3,1,2] => [2,1]
=> 3
[[2,0,0],[0,0],[0]]
=> [[3,3]]
=> [1,2] => [1,1]
=> 2
[[2,0,0],[1,0],[0]]
=> [[2,3]]
=> [1,2] => [1,1]
=> 2
[[2,0,0],[1,0],[1]]
=> [[1,3]]
=> [1,2] => [1,1]
=> 2
[[2,0,0],[2,0],[0]]
=> [[2,2]]
=> [1,2] => [1,1]
=> 2
[[2,0,0],[2,0],[1]]
=> [[1,2]]
=> [1,2] => [1,1]
=> 2
[[2,0,0],[2,0],[2]]
=> [[1,1]]
=> [1,2] => [1,1]
=> 2
[[1,1,0],[1,0],[0]]
=> [[2],[3]]
=> [2,1] => [2]
=> 2
[[1,1,0],[1,0],[1]]
=> [[1],[3]]
=> [2,1] => [2]
=> 2
[[1,1,0],[1,1],[1]]
=> [[1],[2]]
=> [2,1] => [2]
=> 2
[[1,0,0,0],[0,0,0],[0,0],[0]]
=> [[4]]
=> [1] => [1]
=> 1
[[1,0,0,0],[1,0,0],[0,0],[0]]
=> [[3]]
=> [1] => [1]
=> 1
[[1,0,0,0],[1,0,0],[1,0],[0]]
=> [[2]]
=> [1] => [1]
=> 1
[[1,0,0,0],[1,0,0],[1,0],[1]]
=> [[1]]
=> [1] => [1]
=> 1
[[4,0],[0]]
=> [[2,2,2,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[[4,0],[1]]
=> [[1,2,2,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[[4,0],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[[4,0],[3]]
=> [[1,1,1,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[[4,0],[4]]
=> [[1,1,1,1]]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[[3,1],[1]]
=> [[1,2,2],[2]]
=> [2,1,3,4] => [2,1,1]
=> 4
[[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1,2,4] => [2,1,1]
=> 4
[[3,1],[3]]
=> [[1,1,1],[2]]
=> [4,1,2,3] => [2,1,1]
=> 4
[[2,2],[2]]
=> [[1,1],[2,2]]
=> [3,4,1,2] => [2,1,1]
=> 4
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [1,2,3] => [1,1,1]
=> 3
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1,3] => [2,1]
=> 3
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1,3] => [2,1]
=> 3
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1,3] => [2,1]
=> 3
[[4,1,1,0],[4,1,0],[4,1],[4]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[4]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,1],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,1],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,1],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[1,1,1],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[1,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[1,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
Description
The hook length of the last cell along the main diagonal of an integer partition.
Matching statistic: St000870
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
St000870: Integer partitions ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
St000870: Integer partitions ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Values
[[1,0],[0]]
=> [[2]]
=> [1] => [1]
=> 1
[[1,0],[1]]
=> [[1]]
=> [1] => [1]
=> 1
[[2,0],[0]]
=> [[2,2]]
=> [1,2] => [1,1]
=> 2
[[2,0],[1]]
=> [[1,2]]
=> [1,2] => [1,1]
=> 2
[[2,0],[2]]
=> [[1,1]]
=> [1,2] => [1,1]
=> 2
[[1,1],[1]]
=> [[1],[2]]
=> [2,1] => [2]
=> 2
[[1,0,0],[0,0],[0]]
=> [[3]]
=> [1] => [1]
=> 1
[[1,0,0],[1,0],[0]]
=> [[2]]
=> [1] => [1]
=> 1
[[1,0,0],[1,0],[1]]
=> [[1]]
=> [1] => [1]
=> 1
[[3,0],[0]]
=> [[2,2,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0],[1]]
=> [[1,2,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0],[2]]
=> [[1,1,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0],[3]]
=> [[1,1,1]]
=> [1,2,3] => [1,1,1]
=> 3
[[2,1],[1]]
=> [[1,2],[2]]
=> [2,1,3] => [2,1]
=> 3
[[2,1],[2]]
=> [[1,1],[2]]
=> [3,1,2] => [2,1]
=> 3
[[2,0,0],[0,0],[0]]
=> [[3,3]]
=> [1,2] => [1,1]
=> 2
[[2,0,0],[1,0],[0]]
=> [[2,3]]
=> [1,2] => [1,1]
=> 2
[[2,0,0],[1,0],[1]]
=> [[1,3]]
=> [1,2] => [1,1]
=> 2
[[2,0,0],[2,0],[0]]
=> [[2,2]]
=> [1,2] => [1,1]
=> 2
[[2,0,0],[2,0],[1]]
=> [[1,2]]
=> [1,2] => [1,1]
=> 2
[[2,0,0],[2,0],[2]]
=> [[1,1]]
=> [1,2] => [1,1]
=> 2
[[1,1,0],[1,0],[0]]
=> [[2],[3]]
=> [2,1] => [2]
=> 2
[[1,1,0],[1,0],[1]]
=> [[1],[3]]
=> [2,1] => [2]
=> 2
[[1,1,0],[1,1],[1]]
=> [[1],[2]]
=> [2,1] => [2]
=> 2
[[1,0,0,0],[0,0,0],[0,0],[0]]
=> [[4]]
=> [1] => [1]
=> 1
[[1,0,0,0],[1,0,0],[0,0],[0]]
=> [[3]]
=> [1] => [1]
=> 1
[[1,0,0,0],[1,0,0],[1,0],[0]]
=> [[2]]
=> [1] => [1]
=> 1
[[1,0,0,0],[1,0,0],[1,0],[1]]
=> [[1]]
=> [1] => [1]
=> 1
[[4,0],[0]]
=> [[2,2,2,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[[4,0],[1]]
=> [[1,2,2,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[[4,0],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[[4,0],[3]]
=> [[1,1,1,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[[4,0],[4]]
=> [[1,1,1,1]]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[[3,1],[1]]
=> [[1,2,2],[2]]
=> [2,1,3,4] => [2,1,1]
=> 4
[[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1,2,4] => [2,1,1]
=> 4
[[3,1],[3]]
=> [[1,1,1],[2]]
=> [4,1,2,3] => [2,1,1]
=> 4
[[2,2],[2]]
=> [[1,1],[2,2]]
=> [3,4,1,2] => [2,1,1]
=> 4
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [1,2,3] => [1,1,1]
=> 3
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [1,2,3] => [1,1,1]
=> 3
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1,3] => [2,1]
=> 3
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1,3] => [2,1]
=> 3
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1,3] => [2,1]
=> 3
[[4,1,1,0],[4,1,0],[4,1],[4]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[4]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,1],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,1],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,1],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[1,1,1],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[1,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[1,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
Description
The product of the hook lengths of the diagonal cells in an integer partition.
For a cell in the Ferrers diagram of a partition, the hook length is given by the number of boxes to its right plus the number of boxes below + 1. This statistic is the product of the hook lengths of the diagonal cells $(i,i)$ of a partition.
Matching statistic: St001020
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001020: Dyck paths ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001020: Dyck paths ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Values
[[1,0],[0]]
=> [[2]]
=> [1] => [1,0]
=> 1
[[1,0],[1]]
=> [[1]]
=> [1] => [1,0]
=> 1
[[2,0],[0]]
=> [[2,2]]
=> [1,2] => [1,0,1,0]
=> 2
[[2,0],[1]]
=> [[1,2]]
=> [1,2] => [1,0,1,0]
=> 2
[[2,0],[2]]
=> [[1,1]]
=> [1,2] => [1,0,1,0]
=> 2
[[1,1],[1]]
=> [[1],[2]]
=> [2,1] => [1,1,0,0]
=> 2
[[1,0,0],[0,0],[0]]
=> [[3]]
=> [1] => [1,0]
=> 1
[[1,0,0],[1,0],[0]]
=> [[2]]
=> [1] => [1,0]
=> 1
[[1,0,0],[1,0],[1]]
=> [[1]]
=> [1] => [1,0]
=> 1
[[3,0],[0]]
=> [[2,2,2]]
=> [1,2,3] => [1,0,1,0,1,0]
=> 3
[[3,0],[1]]
=> [[1,2,2]]
=> [1,2,3] => [1,0,1,0,1,0]
=> 3
[[3,0],[2]]
=> [[1,1,2]]
=> [1,2,3] => [1,0,1,0,1,0]
=> 3
[[3,0],[3]]
=> [[1,1,1]]
=> [1,2,3] => [1,0,1,0,1,0]
=> 3
[[2,1],[1]]
=> [[1,2],[2]]
=> [2,1,3] => [1,1,0,0,1,0]
=> 3
[[2,1],[2]]
=> [[1,1],[2]]
=> [3,1,2] => [1,1,1,0,0,0]
=> 3
[[2,0,0],[0,0],[0]]
=> [[3,3]]
=> [1,2] => [1,0,1,0]
=> 2
[[2,0,0],[1,0],[0]]
=> [[2,3]]
=> [1,2] => [1,0,1,0]
=> 2
[[2,0,0],[1,0],[1]]
=> [[1,3]]
=> [1,2] => [1,0,1,0]
=> 2
[[2,0,0],[2,0],[0]]
=> [[2,2]]
=> [1,2] => [1,0,1,0]
=> 2
[[2,0,0],[2,0],[1]]
=> [[1,2]]
=> [1,2] => [1,0,1,0]
=> 2
[[2,0,0],[2,0],[2]]
=> [[1,1]]
=> [1,2] => [1,0,1,0]
=> 2
[[1,1,0],[1,0],[0]]
=> [[2],[3]]
=> [2,1] => [1,1,0,0]
=> 2
[[1,1,0],[1,0],[1]]
=> [[1],[3]]
=> [2,1] => [1,1,0,0]
=> 2
[[1,1,0],[1,1],[1]]
=> [[1],[2]]
=> [2,1] => [1,1,0,0]
=> 2
[[1,0,0,0],[0,0,0],[0,0],[0]]
=> [[4]]
=> [1] => [1,0]
=> 1
[[1,0,0,0],[1,0,0],[0,0],[0]]
=> [[3]]
=> [1] => [1,0]
=> 1
[[1,0,0,0],[1,0,0],[1,0],[0]]
=> [[2]]
=> [1] => [1,0]
=> 1
[[1,0,0,0],[1,0,0],[1,0],[1]]
=> [[1]]
=> [1] => [1,0]
=> 1
[[4,0],[0]]
=> [[2,2,2,2]]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4
[[4,0],[1]]
=> [[1,2,2,2]]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4
[[4,0],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4
[[4,0],[3]]
=> [[1,1,1,2]]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4
[[4,0],[4]]
=> [[1,1,1,1]]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4
[[3,1],[1]]
=> [[1,2,2],[2]]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 4
[[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 4
[[3,1],[3]]
=> [[1,1,1],[2]]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 4
[[2,2],[2]]
=> [[1,1],[2,2]]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 4
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [1,2,3] => [1,0,1,0,1,0]
=> 3
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [1,2,3] => [1,0,1,0,1,0]
=> 3
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [1,2,3] => [1,0,1,0,1,0]
=> 3
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [1,2,3] => [1,0,1,0,1,0]
=> 3
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => [1,0,1,0,1,0]
=> 3
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [1,2,3] => [1,0,1,0,1,0]
=> 3
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [1,2,3] => [1,0,1,0,1,0]
=> 3
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [1,2,3] => [1,0,1,0,1,0]
=> 3
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [1,2,3] => [1,0,1,0,1,0]
=> 3
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [1,2,3] => [1,0,1,0,1,0]
=> 3
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1,3] => [1,1,0,0,1,0]
=> 3
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1,3] => [1,1,0,0,1,0]
=> 3
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1,3] => [1,1,0,0,1,0]
=> 3
[[4,1,1,0],[4,1,0],[4,1],[4]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[4]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[3]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,1],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,0],[2]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,1],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,1],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,1],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[1,1,1],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[1,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[4,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[3,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[2,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
[[4,1,1,0],[1,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6
Description
Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001034
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001034: Dyck paths ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001034: Dyck paths ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Values
[[1,0],[0]]
=> [[2]]
=> [1]
=> [1,0]
=> 1
[[1,0],[1]]
=> [[1]]
=> [1]
=> [1,0]
=> 1
[[2,0],[0]]
=> [[2,2]]
=> [2]
=> [1,0,1,0]
=> 2
[[2,0],[1]]
=> [[1,2]]
=> [2]
=> [1,0,1,0]
=> 2
[[2,0],[2]]
=> [[1,1]]
=> [2]
=> [1,0,1,0]
=> 2
[[1,1],[1]]
=> [[1],[2]]
=> [1,1]
=> [1,1,0,0]
=> 2
[[1,0,0],[0,0],[0]]
=> [[3]]
=> [1]
=> [1,0]
=> 1
[[1,0,0],[1,0],[0]]
=> [[2]]
=> [1]
=> [1,0]
=> 1
[[1,0,0],[1,0],[1]]
=> [[1]]
=> [1]
=> [1,0]
=> 1
[[3,0],[0]]
=> [[2,2,2]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[3,0],[1]]
=> [[1,2,2]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[3,0],[2]]
=> [[1,1,2]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[3,0],[3]]
=> [[1,1,1]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[2,1],[1]]
=> [[1,2],[2]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[[2,1],[2]]
=> [[1,1],[2]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[[2,0,0],[0,0],[0]]
=> [[3,3]]
=> [2]
=> [1,0,1,0]
=> 2
[[2,0,0],[1,0],[0]]
=> [[2,3]]
=> [2]
=> [1,0,1,0]
=> 2
[[2,0,0],[1,0],[1]]
=> [[1,3]]
=> [2]
=> [1,0,1,0]
=> 2
[[2,0,0],[2,0],[0]]
=> [[2,2]]
=> [2]
=> [1,0,1,0]
=> 2
[[2,0,0],[2,0],[1]]
=> [[1,2]]
=> [2]
=> [1,0,1,0]
=> 2
[[2,0,0],[2,0],[2]]
=> [[1,1]]
=> [2]
=> [1,0,1,0]
=> 2
[[1,1,0],[1,0],[0]]
=> [[2],[3]]
=> [1,1]
=> [1,1,0,0]
=> 2
[[1,1,0],[1,0],[1]]
=> [[1],[3]]
=> [1,1]
=> [1,1,0,0]
=> 2
[[1,1,0],[1,1],[1]]
=> [[1],[2]]
=> [1,1]
=> [1,1,0,0]
=> 2
[[1,0,0,0],[0,0,0],[0,0],[0]]
=> [[4]]
=> [1]
=> [1,0]
=> 1
[[1,0,0,0],[1,0,0],[0,0],[0]]
=> [[3]]
=> [1]
=> [1,0]
=> 1
[[1,0,0,0],[1,0,0],[1,0],[0]]
=> [[2]]
=> [1]
=> [1,0]
=> 1
[[1,0,0,0],[1,0,0],[1,0],[1]]
=> [[1]]
=> [1]
=> [1,0]
=> 1
[[4,0],[0]]
=> [[2,2,2,2]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4
[[4,0],[1]]
=> [[1,2,2,2]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4
[[4,0],[2]]
=> [[1,1,2,2]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4
[[4,0],[3]]
=> [[1,1,1,2]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4
[[4,0],[4]]
=> [[1,1,1,1]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4
[[3,1],[1]]
=> [[1,2,2],[2]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 4
[[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 4
[[3,1],[3]]
=> [[1,1,1],[2]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 4
[[2,2],[2]]
=> [[1,1],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 4
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[[4,1,1,0],[4,1,0],[4,1],[4]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[4]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[3]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[3]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[3]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[3]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[3]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[3]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[3]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[2]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[2]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[2]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[2]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[2]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[2]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,1],[2]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,1],[2,1],[2]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[2]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,1],[2]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,1],[2,1],[2]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,1],[2]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,0],[2]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,0],[2]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,0],[2]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[4,0],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,1],[3,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[3,0],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,1],[2,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[3,0],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,1],[2,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[2,0],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[1,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,1],[1,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[2,0],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[1,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,1],[1,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,0],[2,0],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,0],[1,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[1,1,1],[1,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[1,1,0],[1,1],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[4,1,0],[1,0],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[3,1,0],[1,0],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[2,1,0],[1,0],[1]]
=> ?
=> ?
=> ?
=> ? = 6
[[4,1,1,0],[1,1,0],[1,0],[1]]
=> ?
=> ?
=> ?
=> ? = 6
Description
The area of the parallelogram polyomino associated with the Dyck path.
The (bivariate) generating function is given in [1].
Matching statistic: St001332
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
St001332: Permutations ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
St001332: Permutations ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Values
[[1,0],[0]]
=> [[2]]
=> [1] => [1] => 0 = 1 - 1
[[1,0],[1]]
=> [[1]]
=> [1] => [1] => 0 = 1 - 1
[[2,0],[0]]
=> [[2,2]]
=> [1,2] => [1,2] => 1 = 2 - 1
[[2,0],[1]]
=> [[1,2]]
=> [1,2] => [1,2] => 1 = 2 - 1
[[2,0],[2]]
=> [[1,1]]
=> [1,2] => [1,2] => 1 = 2 - 1
[[1,1],[1]]
=> [[1],[2]]
=> [2,1] => [1,2] => 1 = 2 - 1
[[1,0,0],[0,0],[0]]
=> [[3]]
=> [1] => [1] => 0 = 1 - 1
[[1,0,0],[1,0],[0]]
=> [[2]]
=> [1] => [1] => 0 = 1 - 1
[[1,0,0],[1,0],[1]]
=> [[1]]
=> [1] => [1] => 0 = 1 - 1
[[3,0],[0]]
=> [[2,2,2]]
=> [1,2,3] => [1,2,3] => 2 = 3 - 1
[[3,0],[1]]
=> [[1,2,2]]
=> [1,2,3] => [1,2,3] => 2 = 3 - 1
[[3,0],[2]]
=> [[1,1,2]]
=> [1,2,3] => [1,2,3] => 2 = 3 - 1
[[3,0],[3]]
=> [[1,1,1]]
=> [1,2,3] => [1,2,3] => 2 = 3 - 1
[[2,1],[1]]
=> [[1,2],[2]]
=> [2,1,3] => [1,3,2] => 2 = 3 - 1
[[2,1],[2]]
=> [[1,1],[2]]
=> [3,1,2] => [1,2,3] => 2 = 3 - 1
[[2,0,0],[0,0],[0]]
=> [[3,3]]
=> [1,2] => [1,2] => 1 = 2 - 1
[[2,0,0],[1,0],[0]]
=> [[2,3]]
=> [1,2] => [1,2] => 1 = 2 - 1
[[2,0,0],[1,0],[1]]
=> [[1,3]]
=> [1,2] => [1,2] => 1 = 2 - 1
[[2,0,0],[2,0],[0]]
=> [[2,2]]
=> [1,2] => [1,2] => 1 = 2 - 1
[[2,0,0],[2,0],[1]]
=> [[1,2]]
=> [1,2] => [1,2] => 1 = 2 - 1
[[2,0,0],[2,0],[2]]
=> [[1,1]]
=> [1,2] => [1,2] => 1 = 2 - 1
[[1,1,0],[1,0],[0]]
=> [[2],[3]]
=> [2,1] => [1,2] => 1 = 2 - 1
[[1,1,0],[1,0],[1]]
=> [[1],[3]]
=> [2,1] => [1,2] => 1 = 2 - 1
[[1,1,0],[1,1],[1]]
=> [[1],[2]]
=> [2,1] => [1,2] => 1 = 2 - 1
[[1,0,0,0],[0,0,0],[0,0],[0]]
=> [[4]]
=> [1] => [1] => 0 = 1 - 1
[[1,0,0,0],[1,0,0],[0,0],[0]]
=> [[3]]
=> [1] => [1] => 0 = 1 - 1
[[1,0,0,0],[1,0,0],[1,0],[0]]
=> [[2]]
=> [1] => [1] => 0 = 1 - 1
[[1,0,0,0],[1,0,0],[1,0],[1]]
=> [[1]]
=> [1] => [1] => 0 = 1 - 1
[[4,0],[0]]
=> [[2,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => 3 = 4 - 1
[[4,0],[1]]
=> [[1,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => 3 = 4 - 1
[[4,0],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => [1,2,3,4] => 3 = 4 - 1
[[4,0],[3]]
=> [[1,1,1,2]]
=> [1,2,3,4] => [1,2,3,4] => 3 = 4 - 1
[[4,0],[4]]
=> [[1,1,1,1]]
=> [1,2,3,4] => [1,2,3,4] => 3 = 4 - 1
[[3,1],[1]]
=> [[1,2,2],[2]]
=> [2,1,3,4] => [1,3,4,2] => 3 = 4 - 1
[[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1,2,4] => [1,2,4,3] => 3 = 4 - 1
[[3,1],[3]]
=> [[1,1,1],[2]]
=> [4,1,2,3] => [1,2,3,4] => 3 = 4 - 1
[[2,2],[2]]
=> [[1,1],[2,2]]
=> [3,4,1,2] => [1,2,3,4] => 3 = 4 - 1
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [1,2,3] => [1,2,3] => 2 = 3 - 1
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [1,2,3] => [1,2,3] => 2 = 3 - 1
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [1,2,3] => [1,2,3] => 2 = 3 - 1
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [1,2,3] => [1,2,3] => 2 = 3 - 1
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => [1,2,3] => 2 = 3 - 1
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [1,2,3] => [1,2,3] => 2 = 3 - 1
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [1,2,3] => [1,2,3] => 2 = 3 - 1
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [1,2,3] => [1,2,3] => 2 = 3 - 1
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [1,2,3] => [1,2,3] => 2 = 3 - 1
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [1,2,3] => [1,2,3] => 2 = 3 - 1
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1,3] => [1,3,2] => 2 = 3 - 1
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1,3] => [1,3,2] => 2 = 3 - 1
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1,3] => [1,3,2] => 2 = 3 - 1
[[4,1,1,0],[4,1,0],[4,1],[4]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[4,0],[4]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[4,1],[3]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[4,0],[3]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[3,1],[3]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,1],[3,1],[3]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,0],[3,1],[3]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[3,0],[3]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,0],[3,0],[3]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[4,1],[2]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[4,0],[2]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[3,1],[2]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,1],[3,1],[2]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,0],[3,1],[2]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[3,0],[2]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[2,1],[2]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,1],[2,1],[2]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,0],[3,0],[2]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,0],[2,1],[2]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[2,1,1],[2,1],[2]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[2,1,0],[2,1],[2]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[2,0],[2]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,0],[2,0],[2]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[2,1,0],[2,0],[2]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[4,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[4,0],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[3,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,1],[3,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,0],[3,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[3,0],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[2,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,1],[2,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,0],[3,0],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,0],[2,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[2,1,1],[2,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[2,1,0],[2,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[2,0],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[1,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,1],[1,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,0],[2,0],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,0],[1,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[2,1,1],[1,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[2,1,0],[2,0],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[2,1,0],[1,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[1,1,1],[1,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[1,1,0],[1,1],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[4,1,0],[1,0],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[3,1,0],[1,0],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[2,1,0],[1,0],[1]]
=> ?
=> ? => ? => ? = 6 - 1
[[4,1,1,0],[1,1,0],[1,0],[1]]
=> ?
=> ? => ? => ? = 6 - 1
Description
The number of steps on the non-negative side of the walk associated with the permutation.
Consider the walk taking an up step for each ascent, and a down step for each descent of the permutation. Then this statistic is the number of steps that begin and end at non-negative height.
Matching statistic: St001382
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
St001382: Integer partitions ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
St001382: Integer partitions ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 88%
Values
[[1,0],[0]]
=> [[2]]
=> [1] => [1]
=> 0 = 1 - 1
[[1,0],[1]]
=> [[1]]
=> [1] => [1]
=> 0 = 1 - 1
[[2,0],[0]]
=> [[2,2]]
=> [1,2] => [1,1]
=> 1 = 2 - 1
[[2,0],[1]]
=> [[1,2]]
=> [1,2] => [1,1]
=> 1 = 2 - 1
[[2,0],[2]]
=> [[1,1]]
=> [1,2] => [1,1]
=> 1 = 2 - 1
[[1,1],[1]]
=> [[1],[2]]
=> [2,1] => [2]
=> 1 = 2 - 1
[[1,0,0],[0,0],[0]]
=> [[3]]
=> [1] => [1]
=> 0 = 1 - 1
[[1,0,0],[1,0],[0]]
=> [[2]]
=> [1] => [1]
=> 0 = 1 - 1
[[1,0,0],[1,0],[1]]
=> [[1]]
=> [1] => [1]
=> 0 = 1 - 1
[[3,0],[0]]
=> [[2,2,2]]
=> [1,2,3] => [1,1,1]
=> 2 = 3 - 1
[[3,0],[1]]
=> [[1,2,2]]
=> [1,2,3] => [1,1,1]
=> 2 = 3 - 1
[[3,0],[2]]
=> [[1,1,2]]
=> [1,2,3] => [1,1,1]
=> 2 = 3 - 1
[[3,0],[3]]
=> [[1,1,1]]
=> [1,2,3] => [1,1,1]
=> 2 = 3 - 1
[[2,1],[1]]
=> [[1,2],[2]]
=> [2,1,3] => [2,1]
=> 2 = 3 - 1
[[2,1],[2]]
=> [[1,1],[2]]
=> [3,1,2] => [2,1]
=> 2 = 3 - 1
[[2,0,0],[0,0],[0]]
=> [[3,3]]
=> [1,2] => [1,1]
=> 1 = 2 - 1
[[2,0,0],[1,0],[0]]
=> [[2,3]]
=> [1,2] => [1,1]
=> 1 = 2 - 1
[[2,0,0],[1,0],[1]]
=> [[1,3]]
=> [1,2] => [1,1]
=> 1 = 2 - 1
[[2,0,0],[2,0],[0]]
=> [[2,2]]
=> [1,2] => [1,1]
=> 1 = 2 - 1
[[2,0,0],[2,0],[1]]
=> [[1,2]]
=> [1,2] => [1,1]
=> 1 = 2 - 1
[[2,0,0],[2,0],[2]]
=> [[1,1]]
=> [1,2] => [1,1]
=> 1 = 2 - 1
[[1,1,0],[1,0],[0]]
=> [[2],[3]]
=> [2,1] => [2]
=> 1 = 2 - 1
[[1,1,0],[1,0],[1]]
=> [[1],[3]]
=> [2,1] => [2]
=> 1 = 2 - 1
[[1,1,0],[1,1],[1]]
=> [[1],[2]]
=> [2,1] => [2]
=> 1 = 2 - 1
[[1,0,0,0],[0,0,0],[0,0],[0]]
=> [[4]]
=> [1] => [1]
=> 0 = 1 - 1
[[1,0,0,0],[1,0,0],[0,0],[0]]
=> [[3]]
=> [1] => [1]
=> 0 = 1 - 1
[[1,0,0,0],[1,0,0],[1,0],[0]]
=> [[2]]
=> [1] => [1]
=> 0 = 1 - 1
[[1,0,0,0],[1,0,0],[1,0],[1]]
=> [[1]]
=> [1] => [1]
=> 0 = 1 - 1
[[4,0],[0]]
=> [[2,2,2,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 3 = 4 - 1
[[4,0],[1]]
=> [[1,2,2,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 3 = 4 - 1
[[4,0],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 3 = 4 - 1
[[4,0],[3]]
=> [[1,1,1,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 3 = 4 - 1
[[4,0],[4]]
=> [[1,1,1,1]]
=> [1,2,3,4] => [1,1,1,1]
=> 3 = 4 - 1
[[3,1],[1]]
=> [[1,2,2],[2]]
=> [2,1,3,4] => [2,1,1]
=> 3 = 4 - 1
[[3,1],[2]]
=> [[1,1,2],[2]]
=> [3,1,2,4] => [2,1,1]
=> 3 = 4 - 1
[[3,1],[3]]
=> [[1,1,1],[2]]
=> [4,1,2,3] => [2,1,1]
=> 3 = 4 - 1
[[2,2],[2]]
=> [[1,1],[2,2]]
=> [3,4,1,2] => [2,1,1]
=> 3 = 4 - 1
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [1,2,3] => [1,1,1]
=> 2 = 3 - 1
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [1,2,3] => [1,1,1]
=> 2 = 3 - 1
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [1,2,3] => [1,1,1]
=> 2 = 3 - 1
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [1,2,3] => [1,1,1]
=> 2 = 3 - 1
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,2,3] => [1,1,1]
=> 2 = 3 - 1
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [1,2,3] => [1,1,1]
=> 2 = 3 - 1
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [1,2,3] => [1,1,1]
=> 2 = 3 - 1
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [1,2,3] => [1,1,1]
=> 2 = 3 - 1
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [1,2,3] => [1,1,1]
=> 2 = 3 - 1
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [1,2,3] => [1,1,1]
=> 2 = 3 - 1
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1,3] => [2,1]
=> 2 = 3 - 1
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1,3] => [2,1]
=> 2 = 3 - 1
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1,3] => [2,1]
=> 2 = 3 - 1
[[4,1,1,0],[4,1,0],[4,1],[4]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[4,0],[4]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[4,1],[3]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[4,0],[3]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[3,1],[3]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,1],[3,1],[3]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,0],[3,1],[3]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[3,0],[3]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,0],[3,0],[3]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[4,1],[2]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[4,0],[2]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[3,1],[2]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,1],[3,1],[2]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,0],[3,1],[2]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[3,0],[2]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,1],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,0],[3,0],[2]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,0],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[2,1,1],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[2,1,0],[2,1],[2]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[2,0],[2]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,0],[2,0],[2]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[2,1,0],[2,0],[2]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[4,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[4,0],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[3,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,1],[3,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,0],[3,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[3,0],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,1],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,0],[3,0],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,0],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[2,1,1],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[2,1,0],[2,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[2,0],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,1],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,0],[2,0],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[2,1,1],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[2,1,0],[2,0],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[2,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[1,1,1],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[1,1,0],[1,1],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[4,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[3,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[2,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
[[4,1,1,0],[1,1,0],[1,0],[1]]
=> ?
=> ? => ?
=> ? = 6 - 1
Description
The number of boxes in the diagram of a partition that do not lie in its Durfee square.
The following 16 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000189The number of elements in the poset. St001430The number of positive entries in a signed permutation. St001622The number of join-irreducible elements of a lattice. St001190Number of simple modules with projective dimension at most 4 in the corresponding Nakayama algebra. St000876The number of factors in the Catalan decomposition of a binary word. St000885The number of critical steps in the Catalan decomposition of a binary word. St001925The minimal number of zeros in a row of an alternating sign matrix. St000890The number of nonzero entries in an alternating sign matrix. St000197The number of entries equal to positive one in the alternating sign matrix. St000135The number of lucky cars of the parking function. St001927Sparre Andersen's number of positives of a signed permutation. St001621The number of atoms of a lattice. St001926Sparre Andersen's position of the maximum of a signed permutation. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001876The number of 2-regular simple modules in the incidence algebra of the lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!