searching the database
Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000225
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00247: Graphs —de-duplicate⟶ Graphs
Mp00251: Graphs —clique sizes⟶ Integer partitions
St000225: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00251: Graphs —clique sizes⟶ Integer partitions
St000225: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> 0
([],2)
=> ([],1)
=> [1]
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([],3)
=> ([],1)
=> [1]
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([],4)
=> ([],1)
=> [1]
=> 0
([(2,3)],4)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0
([],5)
=> ([],1)
=> [1]
=> 0
([(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
Description
Difference between largest and smallest parts in a partition.
Matching statistic: St001323
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
Description
The independence gap of a graph.
This is the difference between the independence number [[St000093]] and the minimal size of a maximally independent set of a graph.
In particular, this statistic is 0 for well covered graphs
Matching statistic: St001804
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St001804: Standard tableaux ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 100%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St001804: Standard tableaux ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1]
=> [[1]]
=> 1 = 0 + 1
([],2)
=> [1,1]
=> [2]
=> [[1,2]]
=> 1 = 0 + 1
([(0,1)],2)
=> [2]
=> [1,1]
=> [[1],[2]]
=> 1 = 0 + 1
([],3)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 1 = 0 + 1
([(1,2)],3)
=> [2,1]
=> [2,1]
=> [[1,3],[2]]
=> 2 = 1 + 1
([(0,2),(1,2)],3)
=> [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 1 = 0 + 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 1 = 0 + 1
([],4)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 1 = 0 + 1
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 2 = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 1 = 0 + 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 1 = 0 + 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 3 = 2 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2 = 1 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 1 = 0 + 1
([],5)
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 1 = 0 + 1
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 2 = 1 + 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> 2 = 1 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 2 = 1 + 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> 2 = 1 + 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 1 = 0 + 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3 = 2 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 1 = 0 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 3 = 2 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 2 = 1 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> ? = 1 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 0 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 3 = 2 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 2 = 1 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> 2 = 1 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 1 = 0 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2 = 1 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 0 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> 2 = 1 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 4 = 3 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 3 = 2 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> ? = 1 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1 = 0 + 1
([],6)
=> [1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> 1 = 0 + 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 2 = 1 + 1
([(3,5),(4,5)],6)
=> [2,2,1,1,1]
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 2 = 1 + 1
([(2,5),(3,5),(4,5)],6)
=> [2,2,2,1,1]
=> [5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> 2 = 1 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2,1]
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> ? = 1 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 0 + 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 2 = 1 + 1
([(2,5),(3,4),(4,5)],6)
=> [2,2,2,1,1]
=> [5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> 2 = 1 + 1
([(1,2),(3,5),(4,5)],6)
=> [2,2,2,1]
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> 2 = 1 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [2,2,2,2,1]
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> ? = 1 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 1 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,1,1]
=> [6,4]
=> [[1,2,3,4,9,10],[5,6,7,8]]
=> ? = 1 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,1]
=> [6,5]
=> [[1,2,3,4,5,11],[6,7,8,9,10]]
=> ? = 1 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 0 + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? = 0 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,1]
=> [4,3,2]
=> [[1,2,5,9],[3,4,8],[6,7]]
=> ? = 2 + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 1 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2]
=> [4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> ? = 1 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,1]
=> [7,6]
=> [[1,2,3,4,5,6,13],[7,8,9,10,11,12]]
=> ? = 1 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2]
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2]
=> [7,7]
=> [[1,2,3,4,5,6,7],[8,9,10,11,12,13,14]]
=> ? = 0 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,1]
=> [4,3,3]
=> [[1,2,3,10],[4,5,6],[7,8,9]]
=> ? = 2 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2]
=> [4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> ? = 1 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2]
=> [4,4,3]
=> [[1,2,3,7],[4,5,6,11],[8,9,10]]
=> ? = 1 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [8,8]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12,13,14,15,16]]
=> ? = 0 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 0 + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [2,2,2,2,1]
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> ? = 1 + 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 0 + 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 1 + 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,1]
=> [5,4,1]
=> [[1,3,4,5,10],[2,7,8,9],[6]]
=> ? = 2 + 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,2,1]
=> [4,3,2]
=> [[1,2,5,9],[3,4,8],[6,7]]
=> ? = 2 + 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 1 + 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2]
=> [4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> ? = 1 + 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,1]
=> [4,3,3]
=> [[1,2,3,10],[4,5,6],[7,8,9]]
=> ? = 2 + 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2]
=> [4,4,3]
=> [[1,2,3,7],[4,5,6,11],[8,9,10]]
=> ? = 1 + 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 0 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2]
=> [5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? = 0 + 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 1 + 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 1 + 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> ? = 1 + 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,2,2]
=> [4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> ? = 1 + 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3]
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> ? = 0 + 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2]
=> [4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> ? = 1 + 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2]
=> [7,7]
=> [[1,2,3,4,5,6,7],[8,9,10,11,12,13,14]]
=> ? = 0 + 1
Description
The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau.
A cylindrical tableau associated with a standard Young tableau T is the skew row-strict tableau obtained by gluing two copies of T such that the inner shape is a rectangle.
This statistic equals max, where \ell denotes the number of rows of a tableau and the maximum is taken over all cylindrical tableaux.
Matching statistic: St001626
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([],2)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(0,1)],2)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([],3)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(0,2),(1,2)],3)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 2
([],4)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,3),(1,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 2 + 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 1 + 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 2
([],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(1,4),(2,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 1 + 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1 + 2
([(0,1),(2,4),(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 2 + 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 2 + 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 1 + 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 2 + 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,11),(2,10),(3,8),(3,9),(4,7),(4,8),(5,7),(5,9),(7,12),(8,2),(8,12),(9,1),(9,12),(10,6),(11,6),(12,10),(12,11)],13)
=> ? = 1 + 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 1 + 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(1,11),(1,13),(2,11),(2,12),(3,4),(3,5),(3,12),(3,13),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,15),(6,17),(7,15),(7,18),(8,16),(8,17),(9,16),(9,18),(10,15),(10,16),(11,14),(12,6),(12,7),(12,14),(13,8),(13,9),(13,14),(14,17),(14,18),(15,19),(16,19),(17,19),(18,19)],20)
=> ? = 0 + 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ?
=> ? = 1 + 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ?
=> ? = 1 + 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([],5)
=> ?
=> ? = 0 + 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],5)
=> ?
=> ? = 0 + 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(1,10),(2,7),(2,9),(3,11),(3,12),(4,2),(4,11),(4,13),(5,1),(5,12),(5,13),(6,17),(7,15),(8,16),(9,6),(9,15),(10,6),(10,16),(11,7),(11,14),(12,8),(12,14),(13,9),(13,10),(13,14),(14,15),(14,16),(15,17),(16,17)],18)
=> ? = 1 + 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(1,10),(2,7),(2,9),(3,11),(3,12),(4,2),(4,11),(4,13),(5,1),(5,12),(5,13),(6,17),(7,15),(8,16),(9,6),(9,15),(10,6),(10,16),(11,7),(11,14),(12,8),(12,14),(13,9),(13,10),(13,14),(14,15),(14,16),(15,17),(16,17)],18)
=> ? = 0 + 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,10),(2,7),(2,8),(3,9),(3,12),(4,9),(4,11),(5,2),(5,11),(5,12),(7,14),(8,14),(9,1),(9,13),(10,6),(11,7),(11,13),(12,8),(12,13),(13,10),(13,14),(14,6)],15)
=> ? = 1 + 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 3 + 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(2,8),(2,9),(3,9),(3,11),(3,12),(4,8),(4,10),(4,12),(5,7),(5,10),(5,11),(7,13),(7,14),(8,13),(8,15),(9,14),(9,15),(10,13),(10,16),(11,14),(11,16),(12,15),(12,16),(13,17),(14,17),(15,17),(16,1),(16,17),(17,6)],18)
=> ? = 2 + 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,16),(7,16),(8,1),(8,17),(8,18),(9,14),(9,17),(10,15),(10,17),(11,14),(11,18),(12,15),(12,18),(13,14),(13,15),(14,19),(15,19),(17,6),(17,19),(18,7),(18,19),(19,16)],20)
=> ? = 1 + 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 1 + 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ?
=> ? = 0 + 2
([],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(2,5),(3,4)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 1 + 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1 + 2
([(1,2),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 1 + 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 2 + 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1 + 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 2 + 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 2 + 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 1 + 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1 + 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(1,11),(1,13),(2,11),(2,12),(3,4),(3,5),(3,12),(3,13),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,15),(6,17),(7,15),(7,18),(8,16),(8,17),(9,16),(9,18),(10,15),(10,16),(11,14),(12,6),(12,7),(12,14),(13,8),(13,9),(13,14),(14,17),(14,18),(15,19),(16,19),(17,19),(18,19)],20)
=> ? = 0 + 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 2 + 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,9),(3,8),(4,10),(4,11),(5,7),(5,10),(6,7),(6,11),(7,13),(8,12),(9,12),(10,3),(10,13),(11,2),(11,13),(12,1),(13,8),(13,9)],14)
=> ? = 2 + 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([],7)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
Description
The number of maximal proper sublattices of a lattice.
Matching statistic: St001875
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> ? = 0 + 3
([],2)
=> ([],1)
=> ([(0,1)],2)
=> ? = 0 + 3
([(0,1)],2)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 0 + 3
([],3)
=> ([],1)
=> ([(0,1)],2)
=> ? = 0 + 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(0,2),(1,2)],3)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 0 + 3
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 3
([],4)
=> ([],1)
=> ([(0,1)],2)
=> ? = 0 + 3
([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 0 + 3
([(0,3),(1,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 2 + 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 1 + 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 0 + 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 3
([],5)
=> ([],1)
=> ([(0,1)],2)
=> ? = 0 + 3
([(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 0 + 3
([(1,4),(2,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 1 + 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1 + 3
([(0,1),(2,4),(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 3
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 2 + 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 2 + 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 1 + 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 2 + 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,11),(2,10),(3,8),(3,9),(4,7),(4,8),(5,7),(5,9),(7,12),(8,2),(8,12),(9,1),(9,12),(10,6),(11,6),(12,10),(12,11)],13)
=> ? = 1 + 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 1 + 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 0 + 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(1,11),(1,13),(2,11),(2,12),(3,4),(3,5),(3,12),(3,13),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,15),(6,17),(7,15),(7,18),(8,16),(8,17),(9,16),(9,18),(10,15),(10,16),(11,14),(12,6),(12,7),(12,14),(13,8),(13,9),(13,14),(14,17),(14,18),(15,19),(16,19),(17,19),(18,19)],20)
=> ? = 0 + 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ?
=> ? = 1 + 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ?
=> ? = 1 + 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([],5)
=> ?
=> ? = 0 + 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],5)
=> ?
=> ? = 0 + 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(1,10),(2,7),(2,9),(3,11),(3,12),(4,2),(4,11),(4,13),(5,1),(5,12),(5,13),(6,17),(7,15),(8,16),(9,6),(9,15),(10,6),(10,16),(11,7),(11,14),(12,8),(12,14),(13,9),(13,10),(13,14),(14,15),(14,16),(15,17),(16,17)],18)
=> ? = 1 + 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(1,10),(2,7),(2,9),(3,11),(3,12),(4,2),(4,11),(4,13),(5,1),(5,12),(5,13),(6,17),(7,15),(8,16),(9,6),(9,15),(10,6),(10,16),(11,7),(11,14),(12,8),(12,14),(13,9),(13,10),(13,14),(14,15),(14,16),(15,17),(16,17)],18)
=> ? = 0 + 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,10),(2,7),(2,8),(3,9),(3,12),(4,9),(4,11),(5,2),(5,11),(5,12),(7,14),(8,14),(9,1),(9,13),(10,6),(11,7),(11,13),(12,8),(12,13),(13,10),(13,14),(14,6)],15)
=> ? = 1 + 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 3 + 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(2,8),(2,9),(3,9),(3,11),(3,12),(4,8),(4,10),(4,12),(5,7),(5,10),(5,11),(7,13),(7,14),(8,13),(8,15),(9,14),(9,15),(10,13),(10,16),(11,14),(11,16),(12,15),(12,16),(13,17),(14,17),(15,17),(16,1),(16,17),(17,6)],18)
=> ? = 2 + 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,16),(7,16),(8,1),(8,17),(8,18),(9,14),(9,17),(10,15),(10,17),(11,14),(11,18),(12,15),(12,18),(13,14),(13,15),(14,19),(15,19),(17,6),(17,19),(18,7),(18,19),(19,16)],20)
=> ? = 1 + 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 1 + 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ?
=> ? = 0 + 3
([],6)
=> ([],1)
=> ([(0,1)],2)
=> ? = 0 + 3
([(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 0 + 3
([(2,5),(3,4)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 1 + 3
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1 + 3
([(1,2),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 1 + 3
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 2 + 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1 + 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 2 + 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 2 + 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 1 + 3
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 0 + 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 0 + 3
([(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 0 + 3
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 0 + 3
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 1 + 3
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 0 + 3
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St001435
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
Mp00189: Skew partitions —rotate⟶ Skew partitions
St001435: Skew partitions ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 67%
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
Mp00189: Skew partitions —rotate⟶ Skew partitions
St001435: Skew partitions ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 67%
Values
([],1)
=> [1]
=> [[1],[]]
=> [[1],[]]
=> 0
([],2)
=> [1,1]
=> [[1,1],[]]
=> [[1,1],[]]
=> 0
([(0,1)],2)
=> [2]
=> [[2],[]]
=> [[2],[]]
=> 0
([],3)
=> [1,1,1]
=> [[1,1,1],[]]
=> [[1,1,1],[]]
=> 0
([(1,2)],3)
=> [2,1]
=> [[2,1],[]]
=> [[2,2],[1]]
=> 1
([(0,2),(1,2)],3)
=> [2,2]
=> [[2,2],[]]
=> [[2,2],[]]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[3],[]]
=> [[3],[]]
=> 0
([],4)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> [[1,1,1,1],[]]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [[2,1,1],[]]
=> [[2,2,2],[1,1]]
=> 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [[2,2,1],[]]
=> [[2,2,2],[1]]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [[2,2,2],[]]
=> [[2,2,2],[]]
=> ? = 0
([(0,3),(1,2)],4)
=> [2,2]
=> [[2,2],[]]
=> [[2,2],[]]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [[2,2,2],[]]
=> [[2,2,2],[]]
=> ? = 0
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[3,1],[]]
=> [[3,3],[2]]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [[3,2],[]]
=> [[3,3],[1]]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [[2,2,2,2],[]]
=> [[2,2,2,2],[]]
=> ? = 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [[3,3],[]]
=> [[3,3],[]]
=> ? = 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[4],[]]
=> [[4],[]]
=> 0
([],5)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> [[1,1,1,1,1],[]]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> [[2,2,2,2],[1,1,1]]
=> 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> [[2,2,2,2],[1,1]]
=> ? = 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> [[2,2,2,2],[1]]
=> ? = 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [[2,2,2,2],[]]
=> [[2,2,2,2],[]]
=> ? = 0
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[2,2,1],[]]
=> [[2,2,2],[1]]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> [[2,2,2,2],[1]]
=> ? = 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [[2,2,2],[]]
=> [[2,2,2],[]]
=> ? = 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[3,1,1],[]]
=> [[3,3,3],[2,2]]
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [[2,2,2,2],[]]
=> [[2,2,2,2],[]]
=> ? = 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [[3,2,1],[]]
=> [[3,3,3],[2,1]]
=> ? = 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[3,2,2],[]]
=> [[3,3,3],[1,1]]
=> ? = 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [[2,2,2,2,1],[]]
=> [[2,2,2,2,2],[1]]
=> ? = 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [[2,2,2,2,2],[]]
=> [[2,2,2,2,2],[]]
=> ? = 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [[3,3,1],[]]
=> [[3,3,3],[2]]
=> ? = 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[3,2,2],[]]
=> [[3,3,3],[1,1]]
=> ? = 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[3,3,2],[]]
=> [[3,3,3],[1]]
=> ? = 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [[2,2,2,2,2,2],[]]
=> [[2,2,2,2,2,2],[]]
=> ? = 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[3,3,3],[]]
=> [[3,3,3],[]]
=> ? = 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [[2,2,2,2],[]]
=> [[2,2,2,2],[]]
=> ? = 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[3,2],[]]
=> [[3,3],[1]]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [[3,2,2],[]]
=> [[3,3,3],[1,1]]
=> ? = 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [[3,3],[]]
=> [[3,3],[]]
=> ? = 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [[2,2,2,2,2],[]]
=> [[2,2,2,2,2],[]]
=> ? = 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [[3,2,2,2],[]]
=> [[3,3,3,3],[1,1,1]]
=> ? = 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[3,3,3],[]]
=> [[3,3,3],[]]
=> ? = 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[3,3,2],[]]
=> [[3,3,3],[1]]
=> ? = 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[4,1],[]]
=> [[4,4],[3]]
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [[4,2],[]]
=> [[4,4],[2]]
=> ? = 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [[4,3],[]]
=> [[4,4],[1]]
=> ? = 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [[3,3,2,2],[]]
=> [[3,3,3,3],[1,1]]
=> ? = 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [[3,3,3,3],[]]
=> [[3,3,3,3],[]]
=> ? = 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [[4,4],[]]
=> [[4,4],[]]
=> ? = 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[5],[]]
=> [[5],[]]
=> 0
([],6)
=> [1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1],[]]
=> ? = 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1,1]]
=> ? = 1
([(3,5),(4,5)],6)
=> [2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1]]
=> ? = 1
([(2,5),(3,5),(4,5)],6)
=> [2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> [[2,2,2,2,2],[1,1]]
=> ? = 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2,1]
=> [[2,2,2,2,1],[]]
=> [[2,2,2,2,2],[1]]
=> ? = 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2,2]
=> [[2,2,2,2,2],[]]
=> [[2,2,2,2,2],[]]
=> ? = 0
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> [[2,2,2,2],[1,1]]
=> ? = 1
([(2,5),(3,4),(4,5)],6)
=> [2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> [[2,2,2,2,2],[1,1]]
=> ? = 1
([(1,2),(3,5),(4,5)],6)
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> [[2,2,2,2],[1]]
=> ? = 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> [[3,3,3,3],[2,2,2]]
=> ? = 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [2,2,2,2,1]
=> [[2,2,2,2,1],[]]
=> [[2,2,2,2,2],[1]]
=> ? = 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2]
=> [[2,2,2,2],[]]
=> [[2,2,2,2],[]]
=> ? = 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> [[3,3,3,3],[2,2,1]]
=> ? = 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [2,2,2,2,2]
=> [[2,2,2,2,2],[]]
=> [[2,2,2,2,2],[]]
=> ? = 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> [[3,3,3,3],[2,1,1]]
=> ? = 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2]
=> [[3,2,2,2],[]]
=> [[3,3,3,3],[1,1,1]]
=> ? = 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,1,1]
=> [[2,2,2,2,1,1],[]]
=> [[2,2,2,2,2,2],[1,1]]
=> ? = 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2,2]
=> [[2,2,2,2],[]]
=> [[2,2,2,2],[]]
=> ? = 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,1]
=> [[2,2,2,2,2,1],[]]
=> [[2,2,2,2,2,2],[1]]
=> ? = 1
Description
The number of missing boxes in the first row.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!