Your data matches 16 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000237
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00239: Permutations CorteelPermutations
Mp00066: Permutations inversePermutations
St000237: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => [3,2,1] => 0
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 1
[1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => [2,3,1] => 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => [4,2,3,1] => 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1,4] => 0
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => [3,2,4,1] => 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => [1,4,3,2] => 0
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,1,3,2] => [2,4,3,1] => 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => [4,3,2,1] => 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => [2,3,1,4] => 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,3,4,2] => 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [2,3,4,1] => 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [5,2,3,4,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [4,2,3,1,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [3,2,1,5,4] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => [4,2,3,5,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,5,4,3] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [5,2,1,4,3] => [3,2,5,4,1] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [5,2,4,3,1] => [5,2,4,3,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => [3,2,4,1,5] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => [2,1,4,5,3] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [3,2,4,5,1] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,5,3,4,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => [1,4,3,5,2] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => [2,5,3,4,1] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [4,1,3,2,5] => [2,4,3,1,5] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [5,3,2,4,1] => [5,3,2,4,1] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [4,3,2,1,5] => [4,3,2,1,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => [2,3,1,5,4] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [5,1,3,2,4] => [2,4,3,5,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [5,3,2,1,4] => [4,3,2,5,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => [2,3,1,4,5] => 2
Description
The number of small exceedances. This is the number of indices $i$ such that $\pi_i=i+1$.
Matching statistic: St000932
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
St000932: Dyck paths ⟶ ℤResult quality: 73% values known / values provided: 75%distinct values known / distinct values provided: 73%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> ? = 0
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,1,4,5,7,8,6] => [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,4,3,7,5,8,6] => [1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> ? = 3
[1,0,1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [2,1,4,3,7,8,5,6] => [1,1,0,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0,1,0]
=> ? = 3
[1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,5,3,7,8,6] => [1,1,0,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0,1,0]
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5,8] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> ? = 0
[1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [2,4,1,3,7,5,8,6] => [1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> ? = 2
[1,0,1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [2,5,1,6,7,3,4,8] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 0
[1,0,1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [2,5,1,7,3,4,8,6] => [1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,6,7,5,8] => [1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 0
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6,8] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 3
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,5,4,6,7,8] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,0,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,3,5,2,7,4,8,6] => [1,0,1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> ? = 0
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,3,2,4,5,7,6,8] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,3,2,4,5,6,7,8] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,7,5,8,6] => [1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [3,4,5,6,7,1,2,8] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [3,4,5,1,2,7,8,6] => [1,1,1,0,1,0,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0,1,0]
=> ? = 0
[1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [3,4,5,1,2,6,7,8] => [1,1,1,0,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,1,0,0,0,0]
=> ? = 0
[1,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> [3,4,6,1,2,7,5,8] => [1,1,1,0,1,0,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0]
=> ? = 0
[1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [3,4,1,2,7,8,5,6] => [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0,1,0]
=> ? = 2
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [3,4,1,2,5,6,7,8] => [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> ? = 1
[1,1,0,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [3,5,6,1,7,2,4,8] => [1,1,1,0,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0]
=> ? = 0
[1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [3,5,6,7,1,2,4,8] => [1,1,1,0,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 1
[1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [3,5,1,7,2,8,4,6] => [1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> ? = 3
[1,1,0,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [3,6,1,7,8,2,4,5] => [1,1,1,0,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 2
[1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,6,5,7,8] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,4,5,6,7,8,2,3] => [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 0
[1,1,1,0,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,4,5,7,2,3,8,6] => [1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 0
[1,1,1,0,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,4,6,7,2,8,3,5] => [1,0,1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0,1,0]
=> ? = 0
[1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,4,2,3,7,5,6,8] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 4
[1,1,1,0,1,0,0,1,1,0,0,1,0,1,0,0]
=> [4,1,5,2,7,8,3,6] => [1,1,1,1,0,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,0,1,0,0]
=> ? = 3
[1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,0]
=> [4,5,6,1,7,2,3,8] => [1,1,1,1,0,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 1
[1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> [4,5,6,7,1,2,3,8] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 0
[1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> [4,5,6,1,2,3,7,8] => [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,1,0,0,0]
=> ? = 1
[1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [4,5,7,1,2,8,3,6] => [1,1,1,1,0,1,0,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,0,1,1,0,1,0,1,0,0,1,0,0,0]
=> [4,6,7,1,8,2,3,5] => [1,1,1,1,0,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0]
=> [4,6,7,1,2,3,5,8] => [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 2
[1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6,8] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,2,3,5,4,6,7,8] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> [1,5,6,7,2,8,3,4] => [1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0]
=> [5,1,2,3,6,7,8,4] => [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,1,0,0]
=> ? = 3
[1,1,1,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> [5,6,1,7,2,3,4,8] => [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,1,0,0]
=> ? = 2
[1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [5,6,7,1,2,3,4,8] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 2
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [5,1,2,3,4,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 4
[1,1,1,1,1,0,0,1,0,1,0,0,1,0,0,0]
=> [1,6,7,2,8,3,4,5] => [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 2
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [6,1,2,3,4,5,7,8] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 5
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,2,3,4,5,7,6,8] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1
Description
The number of occurrences of the pattern UDU in a Dyck path. The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00239: Permutations CorteelPermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
St000214: Permutations ⟶ ℤResult quality: 71% values known / values provided: 71%distinct values known / distinct values provided: 91%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => [2,3,1] => 0
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 1
[1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => [3,2,1] => 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => [2,3,4,1] => 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => [2,3,1,4] => 0
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => [2,4,3,1] => 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => [1,3,4,2] => 0
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,1,3,2] => [3,4,2,1] => 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => [3,2,4,1] => 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => [3,2,1,4] => 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,4,3,2] => 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [4,3,2,1] => 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [2,3,4,5,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [2,3,4,1,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [2,3,1,5,4] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => [2,3,5,4,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [2,3,1,4,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,4,5,3] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [5,2,1,4,3] => [2,4,5,3,1] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [5,2,4,3,1] => [2,4,3,5,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => [2,4,3,1,5] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => [2,1,5,4,3] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [2,5,4,3,1] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,5,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => [1,3,5,4,2] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => [3,4,5,2,1] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [4,1,3,2,5] => [3,4,2,1,5] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [5,3,2,4,1] => [3,2,4,5,1] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5,4,3,2,1] => [3,4,2,5,1] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [4,3,2,1,5] => [3,2,4,1,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => [3,2,1,5,4] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [5,1,3,2,4] => [3,5,4,2,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [5,3,2,1,4] => [3,2,5,4,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => [3,2,1,4,5] => 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,7,1,6] => [7,2,3,4,5,1,6] => [2,3,4,5,7,6,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,7,1,5,6] => [7,2,3,4,1,5,6] => [2,3,4,7,6,5,1] => ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,7,1,4,5,6] => [7,2,3,1,4,5,6] => [2,3,7,6,5,4,1] => ? = 3
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,4,5,6,1,3,7] => [6,2,5,4,3,1,7] => [2,4,5,3,6,1,7] => ? = 0
[1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,1,5,6,7,3,4] => [2,1,7,6,5,4,3] => [2,1,5,6,4,7,3] => ? = 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,5,6,1,3,4,7] => [6,2,5,3,4,1,7] => [2,5,4,3,6,1,7] => ? = 2
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,7,1,3,4,5,6] => [7,2,1,3,4,5,6] => [2,7,6,5,4,3,1] => ? = 4
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,5,6,7,2,4] => [1,7,3,6,5,4,2] => [1,3,5,6,4,7,2] => ? = 0
[1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,3,6,7,2,4,5] => [1,7,3,6,4,5,2] => [1,3,6,5,4,7,2] => ? = 2
[1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [3,4,5,1,6,2,7] => [6,4,3,2,5,1,7] => [3,4,2,5,6,1,7] => ? = 0
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [3,4,5,6,1,2,7] => [6,5,3,4,2,1,7] => [3,4,5,2,6,1,7] => ? = 0
[1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [3,4,5,1,2,7,6] => [5,4,3,2,1,7,6] => [3,4,2,5,1,7,6] => ? = 1
[1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6,7] => [5,4,3,2,1,6,7] => [3,4,2,5,1,6,7] => ? = 0
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,6,1,2,5,7] => [6,4,3,2,1,5,7] => [3,4,2,6,5,1,7] => ? = 1
[1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [3,4,1,7,2,5,6] => [7,3,2,4,1,5,6] => [3,2,4,7,6,5,1] => ? = 3
[1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [3,4,1,2,5,6,7] => [4,3,2,1,5,6,7] => [3,2,4,1,5,6,7] => ? = 1
[1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [3,5,1,6,2,4,7] => [6,3,2,5,4,1,7] => [3,2,5,4,6,1,7] => ? = 2
[1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [3,5,6,1,2,4,7] => [6,5,3,2,4,1,7] => [3,5,4,2,6,1,7] => ? = 1
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [3,7,1,2,4,5,6] => [7,3,2,1,4,5,6] => [3,2,7,6,5,4,1] => ? = 4
[1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [1,4,5,6,2,7,3] => [1,7,5,4,3,6,2] => [1,4,5,3,6,7,2] => ? = 0
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,4,5,6,7,2,3] => [1,7,6,4,5,3,2] => [1,4,5,6,3,7,2] => ? = 0
[1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,4,5,7,2,3,6] => [1,7,5,4,3,2,6] => [1,4,5,3,7,6,2] => ? = 1
[1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,4,6,2,7,3,5] => [1,7,4,3,6,5,2] => [1,4,3,6,5,7,2] => ? = 2
[1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,4,6,7,2,3,5] => [1,7,6,4,3,5,2] => [1,4,6,5,3,7,2] => ? = 1
[1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [4,5,1,2,6,3,7] => [6,4,2,3,5,1,7] => [4,3,2,5,6,1,7] => ? = 2
[1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [4,5,1,6,2,3,7] => [6,5,2,4,3,1,7] => [4,5,3,2,6,1,7] => ? = 1
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [4,5,6,7,1,2,3] => [7,6,5,4,3,2,1] => [4,5,3,6,2,7,1] => ? = 0
[1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [4,5,6,1,2,3,7] => [6,5,4,3,2,1,7] => [4,3,5,2,6,1,7] => ? = 1
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [4,1,2,3,5,7,6] => [4,1,2,3,5,7,6] => [4,3,2,1,5,7,6] => ? = 4
[1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,5,6,2,3,7,4] => [1,7,5,3,4,6,2] => [1,5,4,3,6,7,2] => ? = 2
[1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,5,6,2,7,3,4] => [1,7,6,3,5,4,2] => [1,5,6,4,3,7,2] => ? = 1
[1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,5,6,7,2,3,4] => [1,7,6,5,4,3,2] => [1,5,4,6,3,7,2] => ? = 1
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,4,8,1,5,6,7] => [8,2,3,4,1,5,6,7] => [2,3,4,8,7,6,5,1] => ? = 3
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,3,1,6,7,8,4,5] => [3,2,1,8,7,6,5,4] => [2,3,1,6,7,5,8,4] => ? = 0
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,3,8,1,4,5,6,7] => [8,2,3,1,4,5,6,7] => [2,3,8,7,6,5,4,1] => ? = 4
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => [3,2,1,4,5,6,7,8] => [2,3,1,4,5,6,7,8] => ? = 0
[1,0,1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [2,1,4,6,3,8,5,7] => [2,1,8,4,3,6,5,7] => [2,1,4,6,8,7,5,3] => ? = 2
[1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,4,3,7,5,8,6] => [2,1,4,3,8,5,7,6] => [2,1,4,3,7,8,6,5] => ? = 3
[1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,5,3,7,8,6] => [5,2,1,4,3,8,7,6] => [2,4,5,3,1,7,8,6] => ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5,8] => [7,2,1,4,3,6,5,8] => [2,4,6,7,5,3,1,8] => ? = 0
[1,0,1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [2,4,1,6,3,5,8,7] => [6,2,1,4,3,5,8,7] => [2,4,6,5,3,1,8,7] => ? = 2
[1,0,1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,8,5,7] => [8,2,1,4,3,6,5,7] => [2,4,6,8,7,5,3,1] => ? = 1
[1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,4,6,7,8,1,3,5] => [8,2,7,4,6,5,3,1] => [2,4,6,5,7,3,8,1] => ? = 1
[1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [2,4,1,3,7,5,8,6] => [4,2,1,3,8,5,7,6] => [2,4,3,1,7,8,6,5] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [2,1,5,3,6,4,8,7] => [2,1,6,3,5,4,8,7] => [2,1,5,6,4,3,8,7] => ? = 3
[1,0,1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [2,5,1,6,7,3,4,8] => [7,2,1,6,5,4,3,8] => [2,5,6,4,7,3,1,8] => ? = 0
[1,0,1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [2,5,1,7,3,4,8,6] => [8,2,1,5,4,3,7,6] => [2,5,4,7,8,6,3,1] => ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [2,1,6,3,4,7,8,5] => [2,1,8,3,4,6,7,5] => [2,1,6,7,8,5,4,3] => ? = 3
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,8,1,3,4,5,6,7] => [8,2,1,3,4,5,6,7] => [2,8,7,6,5,4,3,1] => ? = 5
[1,1,0,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,3,6,2,7,8,4,5] => [1,8,3,2,7,6,5,4] => [1,3,6,7,5,8,4,2] => ? = 0
Description
The number of adjacencies of a permutation. An adjacency of a permutation $\pi$ is an index $i$ such that $\pi(i)-1 = \pi(i+1)$. Adjacencies are also known as ''small descents''. This can be also described as an occurrence of the bivincular pattern ([2,1], {((0,1),(1,0),(1,1),(1,2),(2,1)}), i.e., the middle row and the middle column are shaded, see [3].
Matching statistic: St000502
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00239: Permutations CorteelPermutations
Mp00151: Permutations to cycle typeSet partitions
St000502: Set partitions ⟶ ℤResult quality: 65% values known / values provided: 65%distinct values known / distinct values provided: 73%
Values
[1,0]
=> [1] => [1] => {{1}}
=> ? = 0
[1,0,1,0]
=> [2,1] => [2,1] => {{1,2}}
=> 1
[1,1,0,0]
=> [1,2] => [1,2] => {{1},{2}}
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => {{1,3},{2}}
=> 0
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => {{1,2},{3}}
=> 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => {{1},{2,3}}
=> 1
[1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => {{1,2,3}}
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => {{1},{2},{3}}
=> 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => {{1,4},{2},{3}}
=> 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => {{1,3},{2},{4}}
=> 0
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => {{1,2},{3,4}}
=> 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => {{1,3,4},{2}}
=> 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => {{1,2},{3},{4}}
=> 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => {{1},{2,4},{3}}
=> 0
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => {{1},{2,3},{4}}
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,1,3,2] => {{1,2,4},{3}}
=> 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => {{1,4},{2,3}}
=> 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => {{1,2,3},{4}}
=> 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => {{1},{2},{3,4}}
=> 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => {{1},{2,3,4}}
=> 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => {{1,2,3,4}}
=> 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => {{1,5},{2},{3},{4}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => {{1,4},{2},{3},{5}}
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => {{1,3},{2},{4,5}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => {{1,4,5},{2},{3}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => {{1,3},{2},{4},{5}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => {{1,2},{3,5},{4}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => {{1,2},{3,4},{5}}
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [5,2,1,4,3] => {{1,3,5},{2},{4}}
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [5,2,4,3,1] => {{1,5},{2},{3,4}}
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => {{1,3,4},{2},{5}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => {{1,2},{3,4,5}}
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => {{1,3,4,5},{2}}
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => {{1},{2,5},{3},{4}}
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => {{1},{2,4,5},{3}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => {{1,2,5},{3},{4}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [4,1,3,2,5] => {{1,2,4},{3},{5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [5,3,2,4,1] => {{1,5},{2,3},{4}}
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5,4,3,2,1] => {{1,5},{2,4},{3}}
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [4,3,2,1,5] => {{1,4},{2,3},{5}}
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => {{1,2,3},{4,5}}
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [5,1,3,2,4] => {{1,2,4,5},{3}}
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [5,3,2,1,4] => {{1,4,5},{2,3}}
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => {{1,2,3},{4},{5}}
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,6,7,8,5] => [4,2,3,1,8,6,7,5] => {{1,4},{2},{3},{5,8},{6},{7}}
=> ? = 0
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,4,8,1,5,6,7] => [8,2,3,4,1,5,6,7] => {{1,5,6,7,8},{2},{3},{4}}
=> ? = 3
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,3,1,6,7,8,4,5] => [3,2,1,8,7,6,5,4] => {{1,3},{2},{4,8},{5,7},{6}}
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,1,4,5,7,8,6] => [3,2,1,4,5,8,7,6] => {{1,3},{2},{4},{5},{6,8},{7}}
=> ? = 0
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => [3,2,1,4,5,6,7,8] => {{1,3},{2},{4},{5},{6},{7},{8}}
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => {{1,2},{3,4},{5,6},{7,8}}
=> ? = 4
[1,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,8,5,7] => [2,1,4,3,8,6,5,7] => {{1,2},{3,4},{5,7,8},{6}}
=> ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,3,5,8,7] => [2,1,6,4,3,5,8,7] => {{1,2},{3,5,6},{4},{7,8}}
=> ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [2,1,4,6,3,8,5,7] => [2,1,8,4,3,6,5,7] => {{1,2},{3,5,7,8},{4},{6}}
=> ? = 2
[1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,4,3,7,5,8,6] => [2,1,4,3,8,5,7,6] => {{1,2},{3,4},{5,6,8},{7}}
=> ? = 3
[1,0,1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [2,1,4,3,7,8,5,6] => [2,1,4,3,8,7,6,5] => {{1,2},{3,4},{5,8},{6,7}}
=> ? = 3
[1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,5,3,7,8,6] => [5,2,1,4,3,8,7,6] => ?
=> ? = 0
[1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [2,4,1,3,6,5,8,7] => [4,2,1,3,6,5,8,7] => {{1,3,4},{2},{5,6},{7,8}}
=> ? = 3
[1,0,1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [2,4,1,3,6,8,5,7] => [4,2,1,3,8,6,5,7] => {{1,3,4},{2},{5,7,8},{6}}
=> ? = 2
[1,0,1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5,8] => [7,2,1,4,3,6,5,8] => {{1,3,5,7},{2},{4},{6},{8}}
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [2,4,1,6,3,5,8,7] => [6,2,1,4,3,5,8,7] => {{1,3,5,6},{2},{4},{7,8}}
=> ? = 2
[1,0,1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,8,5,7] => [8,2,1,4,3,6,5,7] => {{1,3,5,7,8},{2},{4},{6}}
=> ? = 1
[1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,4,6,7,8,1,3,5] => [8,2,7,4,6,5,3,1] => {{1,8},{2},{3,7},{4},{5,6}}
=> ? = 1
[1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [2,4,1,3,7,5,8,6] => [4,2,1,3,8,5,7,6] => {{1,3,4},{2},{5,6,8},{7}}
=> ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [2,1,5,3,6,4,8,7] => [2,1,6,3,5,4,8,7] => {{1,2},{3,4,6},{5},{7,8}}
=> ? = 3
[1,0,1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [2,1,5,6,3,4,8,7] => [2,1,6,5,4,3,8,7] => {{1,2},{3,6},{4,5},{7,8}}
=> ? = 3
[1,0,1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [2,1,5,7,3,8,4,6] => [2,1,8,5,4,7,6,3] => {{1,2},{3,8},{4,5},{6,7}}
=> ? = 3
[1,0,1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [2,5,1,6,7,3,4,8] => [7,2,1,6,5,4,3,8] => {{1,3,7},{2},{4,6},{5},{8}}
=> ? = 0
[1,0,1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [2,5,1,7,3,4,8,6] => [8,2,1,5,4,3,7,6] => {{1,3,6,8},{2},{4,5},{7}}
=> ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [2,1,6,3,4,7,8,5] => [2,1,8,3,4,6,7,5] => {{1,2},{3,4,5,8},{6},{7}}
=> ? = 3
[1,0,1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [2,1,6,7,8,3,4,5] => [2,1,8,7,6,5,4,3] => {{1,2},{3,8},{4,7},{5,6}}
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,1,3,4,5,6,8,7] => [2,1,3,4,5,6,8,7] => {{1,2},{3},{4},{5},{6},{7,8}}
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => [2,1,3,4,5,6,7,8] => {{1,2},{3},{4},{5},{6},{7},{8}}
=> ? = 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,6,7,5,8] => [1,4,3,2,7,6,5,8] => {{1},{2,4},{3},{5,7},{6},{8}}
=> ? = 0
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6,8] => [1,3,2,5,4,7,6,8] => {{1},{2,3},{4,5},{6,7},{8}}
=> ? = 3
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,5,4,6,7,8] => [1,3,2,5,4,6,7,8] => {{1},{2,3},{4,5},{6},{7},{8}}
=> ? = 2
[1,1,0,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,3,5,2,7,4,8,6] => [1,8,3,2,5,4,7,6] => {{1},{2,4,6,8},{3},{5},{7}}
=> ? = 0
[1,1,0,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,3,6,2,7,8,4,5] => [1,8,3,2,7,6,5,4] => {{1},{2,4,8},{3},{5,7},{6}}
=> ? = 0
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,3,2,4,5,7,6,8] => [1,3,2,4,5,7,6,8] => {{1},{2,3},{4},{5},{6,7},{8}}
=> ? = 2
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,3,2,4,5,6,7,8] => [1,3,2,4,5,6,7,8] => {{1},{2,3},{4},{5},{6},{7},{8}}
=> ? = 1
[1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,2,6,5,8,7] => [4,1,3,2,6,5,8,7] => {{1,2,4},{3},{5,6},{7,8}}
=> ? = 3
[1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,4,2,6,8,5,7] => [4,1,3,2,8,6,5,7] => {{1,2,4},{3},{5,7,8},{6}}
=> ? = 2
[1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,7,5,8,6] => [4,1,3,2,8,5,7,6] => {{1,2,4},{3},{5,6,8},{7}}
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [3,4,5,6,7,1,2,8] => [7,6,3,4,5,2,1,8] => {{1,7},{2,6},{3},{4},{5},{8}}
=> ? = 0
[1,1,0,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [3,4,5,1,2,7,8,6] => [5,4,3,2,1,8,7,6] => {{1,5},{2,4},{3},{6,8},{7}}
=> ? = 0
[1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [3,4,5,1,2,6,7,8] => [5,4,3,2,1,6,7,8] => {{1,5},{2,4},{3},{6},{7},{8}}
=> ? = 0
[1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [3,4,1,2,6,5,8,7] => [4,3,2,1,6,5,8,7] => {{1,4},{2,3},{5,6},{7,8}}
=> ? = 3
[1,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> [3,4,6,1,2,7,5,8] => [7,4,3,2,1,6,5,8] => {{1,5,7},{2,4},{3},{6},{8}}
=> ? = 0
[1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [3,4,1,2,7,8,5,6] => [4,3,2,1,8,7,6,5] => {{1,4},{2,3},{5,8},{6,7}}
=> ? = 2
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [3,4,1,2,5,6,7,8] => [4,3,2,1,5,6,7,8] => {{1,4},{2,3},{5},{6},{7},{8}}
=> ? = 1
[1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [3,5,1,2,6,8,4,7] => [8,3,2,1,5,6,4,7] => {{1,4,7,8},{2,3},{5},{6}}
=> ? = 2
[1,1,0,1,1,0,1,0,0,1,1,0,0,0,1,0]
=> [3,5,1,6,2,4,8,7] => [6,3,2,5,4,1,8,7] => {{1,6},{2,3},{4,5},{7,8}}
=> ? = 3
[1,1,0,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [3,5,6,1,7,2,4,8] => [7,6,3,2,5,4,1,8] => {{1,7},{2,4,6},{3},{5},{8}}
=> ? = 0
[1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [3,5,6,7,1,2,4,8] => [7,6,3,5,4,2,1,8] => {{1,7},{2,6},{3},{4,5},{8}}
=> ? = 1
Description
The number of successions of a set partitions. This is the number of indices $i$ such that $i$ and $i+1$ belonging to the same block.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001189: Dyck paths ⟶ ℤResult quality: 64% values known / values provided: 64%distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1] => [1,0]
=> 0
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> 1
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 0
[1,0,1,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,6,7,8,5] => [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,4,8,1,5,6,7] => [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,3,1,6,7,8,4,5] => [1,1,0,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,1,4,5,7,8,6] => [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,3,8,1,4,5,6,7] => [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,8,7] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 4
[1,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,8,5,7] => [1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,3,5,8,7] => [1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [2,1,4,6,3,8,5,7] => [1,1,0,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 2
[1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,4,3,7,5,8,6] => [1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 3
[1,0,1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [2,1,4,3,7,8,5,6] => [1,1,0,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> ? = 3
[1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,5,3,7,8,6] => [1,1,0,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [2,4,1,3,6,5,8,7] => [1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,0,1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [2,4,1,3,6,8,5,7] => [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> ? = 2
[1,0,1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5,8] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [2,4,1,6,3,5,8,7] => [1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> ? = 2
[1,0,1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,8,5,7] => [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 1
[1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,4,6,7,8,1,3,5] => [1,1,0,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 1
[1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [2,4,1,3,7,5,8,6] => [1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [2,1,5,3,6,4,8,7] => [1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> ? = 3
[1,0,1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [2,1,5,6,3,4,8,7] => [1,1,0,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> ? = 3
[1,0,1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [2,1,5,7,3,8,4,6] => [1,1,0,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> ? = 3
[1,0,1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [2,5,1,6,7,3,4,8] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> ? = 0
[1,0,1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [2,5,1,7,3,4,8,6] => [1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [2,1,6,3,4,7,8,5] => [1,1,0,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 3
[1,0,1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [2,1,6,7,8,3,4,5] => [1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,1,3,4,5,6,8,7] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,8,1,3,4,5,6,7] => [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 5
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,6,7,5,8] => [1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 0
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6,8] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,5,4,6,7,8] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,1,0,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,3,5,2,7,4,8,6] => [1,0,1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 0
[1,1,0,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,3,6,2,7,8,4,5] => [1,0,1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 0
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,3,2,4,5,7,6,8] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,3,2,4,5,6,7,8] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,2,6,5,8,7] => [1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,4,2,6,8,5,7] => [1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 2
[1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,7,5,8,6] => [1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [3,4,5,6,7,1,2,8] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 0
[1,1,0,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [3,4,5,1,2,7,8,6] => [1,1,1,0,1,0,1,0,0,0,1,1,0,1,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [3,4,5,1,2,6,7,8] => [1,1,1,0,1,0,1,0,0,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [3,4,1,2,6,5,8,7] => [1,1,1,0,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> [3,4,6,1,2,7,5,8] => [1,1,1,0,1,0,1,1,0,0,0,1,0,0,1,0]
=> ? = 0
[1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [3,4,1,2,7,8,5,6] => [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> ? = 2
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [3,4,1,2,5,6,7,8] => [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [3,5,1,2,6,8,4,7] => [1,1,1,0,1,1,0,0,0,1,0,1,1,0,0,0]
=> ? = 2
[1,1,0,1,1,0,1,0,0,1,1,0,0,0,1,0]
=> [3,5,1,6,2,4,8,7] => [1,1,1,0,1,1,0,0,1,0,0,0,1,1,0,0]
=> ? = 3
[1,1,0,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [3,5,6,1,7,2,4,8] => [1,1,1,0,1,1,0,1,0,0,1,0,0,0,1,0]
=> ? = 0
Description
The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001067
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
St001067: Dyck paths ⟶ ℤResult quality: 64% values known / values provided: 64%distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,6,7,8,5] => [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,4,8,1,5,6,7] => [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,3,1,6,7,8,4,5] => [1,1,0,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,1,4,5,7,8,6] => [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,3,8,1,4,5,6,7] => [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 4
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,8,7] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 4
[1,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,8,5,7] => [1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,3,5,8,7] => [1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [2,1,4,6,3,8,5,7] => [1,1,0,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,4,3,7,5,8,6] => [1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> ? = 3
[1,0,1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [2,1,4,3,7,8,5,6] => [1,1,0,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0,1,0]
=> ? = 3
[1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,5,3,7,8,6] => [1,1,0,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0,1,0]
=> ? = 0
[1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [2,4,1,3,6,5,8,7] => [1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> ? = 3
[1,0,1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [2,4,1,3,6,8,5,7] => [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> ? = 2
[1,0,1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5,8] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [2,4,1,6,3,5,8,7] => [1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 2
[1,0,1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,8,5,7] => [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> ? = 1
[1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,4,6,7,8,1,3,5] => [1,1,0,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [2,4,1,3,7,5,8,6] => [1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [2,1,5,3,6,4,8,7] => [1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? = 3
[1,0,1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [2,1,5,6,3,4,8,7] => [1,1,0,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> ? = 3
[1,0,1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [2,1,5,7,3,8,4,6] => [1,1,0,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 3
[1,0,1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [2,5,1,6,7,3,4,8] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 0
[1,0,1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [2,5,1,7,3,4,8,6] => [1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [2,1,6,3,4,7,8,5] => [1,1,0,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3
[1,0,1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [2,1,6,7,8,3,4,5] => [1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,1,3,4,5,6,8,7] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,8,1,3,4,5,6,7] => [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 5
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,6,7,5,8] => [1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 0
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6,8] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 3
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,5,4,6,7,8] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,0,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,3,5,2,7,4,8,6] => [1,0,1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> ? = 0
[1,1,0,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,3,6,2,7,8,4,5] => [1,0,1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 0
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,3,2,4,5,7,6,8] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,3,2,4,5,6,7,8] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,2,6,5,8,7] => [1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 3
[1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,4,2,6,8,5,7] => [1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> ? = 2
[1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,7,5,8,6] => [1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [3,4,5,6,7,1,2,8] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [3,4,5,1,2,7,8,6] => [1,1,1,0,1,0,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0,1,0]
=> ? = 0
[1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [3,4,5,1,2,6,7,8] => [1,1,1,0,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,1,0,0,0,0]
=> ? = 0
[1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [3,4,1,2,6,5,8,7] => [1,1,1,0,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 3
[1,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> [3,4,6,1,2,7,5,8] => [1,1,1,0,1,0,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0]
=> ? = 0
[1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [3,4,1,2,7,8,5,6] => [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0,1,0]
=> ? = 2
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [3,4,1,2,5,6,7,8] => [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> ? = 1
[1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [3,5,1,2,6,8,4,7] => [1,1,1,0,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> ? = 2
[1,1,0,1,1,0,1,0,0,1,1,0,0,0,1,0]
=> [3,5,1,6,2,4,8,7] => [1,1,1,0,1,1,0,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> ? = 3
[1,1,0,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [3,5,6,1,7,2,4,8] => [1,1,1,0,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0]
=> ? = 0
Description
The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra.
Matching statistic: St001061
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St001061: Permutations ⟶ ℤResult quality: 53% values known / values provided: 53%distinct values known / distinct values provided: 55%
Values
[1,0]
=> [1] => [1,0]
=> [1] => ? = 0
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [2,3,1] => 0
[1,0,1,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> [3,2,1] => 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 0
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 0
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,7,1,6] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,5,7,6,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,7,1,5,6] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,4,7,6,5,1] => ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,7,1,4,5,6] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,7,6,5,4,1] => ? = 3
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7] => ? = 0
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,4,5,6,1,3,7] => [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [2,4,5,6,3,1,7] => ? = 0
[1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,1,5,6,7,3,4] => [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [2,1,5,6,7,4,3] => ? = 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,5,6,1,3,4,7] => [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [2,5,6,4,3,1,7] => ? = 2
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,7,1,3,4,5,6] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,7,6,5,4,3,1] => ? = 4
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => ? = 1
[1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [3,4,5,1,6,2,7] => [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [3,4,5,2,6,1,7] => ? = 0
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [3,4,5,6,1,2,7] => [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,6,2,1,7] => ? = 0
[1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [3,4,5,1,2,7,6] => [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [3,4,5,2,1,7,6] => ? = 1
[1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6,7] => [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [3,4,5,2,1,6,7] => ? = 0
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,6,1,2,5,7] => [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [3,4,6,5,2,1,7] => ? = 1
[1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [3,4,1,7,2,5,6] => [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [3,4,2,7,6,5,1] => ? = 3
[1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [3,4,1,2,5,6,7] => [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [3,4,2,1,5,6,7] => ? = 1
[1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [3,5,1,6,2,4,7] => [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [3,5,4,6,2,1,7] => ? = 2
[1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [3,5,6,1,2,4,7] => [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,4,2,1,7] => ? = 1
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [3,7,1,2,4,5,6] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [3,7,6,5,4,2,1] => ? = 4
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,2,4,5,6,7] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6,7] => ? = 2
[1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,4,6,2,7,3,5] => [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,5,7,3,2] => ? = 2
[1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,4,6,7,2,3,5] => [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,5,3,2] => ? = 1
[1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [4,1,5,6,2,3,7] => [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,3,5,6,2,1,7] => ? = 1
[1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [4,5,1,2,6,3,7] => [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [4,5,3,2,6,1,7] => ? = 2
[1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [4,5,1,6,2,3,7] => [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [4,5,3,6,2,1,7] => ? = 1
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [4,5,6,7,1,2,3] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 0
[1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [4,5,6,1,2,3,7] => [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [4,5,6,3,2,1,7] => ? = 1
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [4,1,2,3,5,7,6] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [4,3,2,1,5,7,6] => ? = 4
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [4,1,2,3,5,6,7] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [4,3,2,1,5,6,7] => ? = 3
[1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,5,2,6,7,3,4] => [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,4,6,7,3,2] => ? = 1
[1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,5,6,2,3,7,4] => [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,4,3,7,2] => ? = 2
[1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,5,6,2,7,3,4] => [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,4,7,3,2] => ? = 1
[1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,5,6,7,2,3,4] => [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,4,3,2] => ? = 1
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [5,6,1,2,3,4,7] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,4,3,2,1,7] => ? = 3
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,7,6] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,4,3,2,1,7,6] => ? = 5
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [5,1,2,3,4,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,4,3,2,1,6,7] => ? = 4
[1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,6,7,2,3,4,5] => [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 3
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [6,1,2,3,4,5,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => ? = 5
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [7,1,2,3,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => ? = 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,6,7,8,5] => [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [2,3,4,1,6,7,8,5] => ? = 0
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,4,8,1,5,6,7] => [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,8,7,6,5,1] => ? = 3
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,3,1,6,7,8,4,5] => [1,1,0,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [2,3,1,6,7,8,5,4] => ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,1,4,5,7,8,6] => [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,5,7,8,6] => ? = 0
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,3,8,1,4,5,6,7] => [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,8,7,6,5,4,1] => ? = 4
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7,8] => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,8,7] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,8,7] => ? = 4
[1,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,8,5,7] => [1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,3,6,8,7,5] => ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,3,5,8,7] => [1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,1,4,6,5,3,8,7] => ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [2,1,4,6,3,8,5,7] => [1,1,0,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,1,4,6,5,8,7,3] => ? = 2
Description
The number of indices that are both descents and recoils of a permutation.
Matching statistic: St001483
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
St001483: Dyck paths ⟶ ℤResult quality: 51% values known / values provided: 51%distinct values known / distinct values provided: 55%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0,1,0]
=> ? = 3 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,1,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,1,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0,1,0]
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,1,0,0]
=> ? = 1 + 1
[1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> ? = 3 + 1
[1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 1 + 1
[1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 1 + 1
[1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 2 + 1
[1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 4 + 1
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3 + 1
[1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 3 + 1
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 5 + 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4 + 1
[1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 1 + 1
[1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 3 + 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5 + 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1 + 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 3 + 1
Description
The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module.
St001216: Dyck paths ⟶ ℤResult quality: 51% values known / values provided: 51%distinct values known / distinct values provided: 55%
Values
[1,0]
=> 0
[1,0,1,0]
=> 1
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 0
[1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 2
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 4
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 2
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> ? = 1
[1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 0
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 1
[1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 3
[1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> ? = 2
[1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 1
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 4
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> ? = 1
[1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> ? = 2
[1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> ? = 1
[1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> ? = 1
[1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> ? = 2
[1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> ? = 1
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 0
[1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 1
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> ? = 4
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> ? = 1
[1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> ? = 2
[1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> ? = 1
[1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> ? = 3
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? = 5
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 4
[1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 1
[1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 3
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 5
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 6
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3
Description
The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module.
Matching statistic: St001223
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
St001223: Dyck paths ⟶ ℤResult quality: 51% values known / values provided: 51%distinct values known / distinct values provided: 55%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,7,1,6] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,7,1,5,6] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,7,1,4,5,6] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,4,5,6,1,3,7] => [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> ? = 0
[1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,1,5,6,7,3,4] => [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,5,6,1,3,4,7] => [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> ? = 2
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,7,1,3,4,5,6] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 4
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,5,6,7,2,4] => [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 0
[1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,3,6,7,2,4,5] => [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 2
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,3,2,4,5,6,7] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [3,4,5,1,6,2,7] => [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [3,4,5,6,1,2,7] => [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [3,4,5,1,2,7,6] => [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 1
[1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6,7] => [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> ? = 0
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,6,1,2,5,7] => [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 1
[1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [3,4,1,7,2,5,6] => [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 3
[1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [3,4,1,2,5,6,7] => [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 1
[1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [3,5,1,6,2,4,7] => [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> ? = 2
[1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [3,5,6,1,2,4,7] => [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> ? = 1
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [3,7,1,2,4,5,6] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 4
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,2,4,5,6,7] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 2
[1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [1,4,5,6,2,7,3] => [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> ? = 0
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,4,5,6,7,2,3] => [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 0
[1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,4,5,7,2,3,6] => [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 1
[1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,4,6,2,7,3,5] => [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 2
[1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,4,6,7,2,3,5] => [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 1
[1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [4,1,5,6,2,3,7] => [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> ? = 1
[1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [4,5,1,2,6,3,7] => [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> ? = 2
[1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [4,5,1,6,2,3,7] => [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> ? = 1
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [4,5,6,7,1,2,3] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 0
[1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [4,5,6,1,2,3,7] => [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> ? = 1
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [4,1,2,3,5,7,6] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 4
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [4,1,2,3,5,6,7] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 3
[1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,5,2,6,7,3,4] => [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 1
[1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,5,6,2,3,7,4] => [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 2
[1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,5,6,2,7,3,4] => [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 1
[1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,5,6,7,2,3,4] => [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 1
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [5,6,1,2,3,4,7] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 3
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,7,6] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 5
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [5,1,2,3,4,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 4
[1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,2,3,4,6,5,7] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,6,7,2,3,4,5] => [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [6,1,2,3,4,5,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 5
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,7,6] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [7,1,2,3,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,6,7,8,5] => [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,4,8,1,5,6,7] => [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 3
Description
Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless.
The following 6 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000731The number of double exceedences of a permutation. St000366The number of double descents of a permutation. St000732The number of double deficiencies of a permutation. St000317The cycle descent number of a permutation. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.