Processing math: 40%

Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000260
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000260: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1] => ([],1)
=> 0
[[],[]]
=> [1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[],[],[[[]],[]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2
[[],[],[[[],[]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[],[],[[[[]]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[],[[]],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[[],[[]],[[],[]]]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 2
[[],[[]],[[[]]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[],[[[]]],[[]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[[],[[],[[],[]]]]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2
[[],[[],[[[]]]]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[],[[[]],[[]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[[],[[[],[[]]]]]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[[],[[[[[]]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[[]],[],[[]],[]]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[[[]],[],[[],[]]]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [3,4,1,6,2,5] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 2
[[[]],[],[[[]]]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[[]],[[[]]],[]]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[[[]],[[[]],[]]]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[[]],[[[],[]]]]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[[]],[[[[]]]]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[[],[]],[],[],[]]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[[[[]]],[],[],[]]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [4,1,5,2,6,3] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[[],[]],[],[[]]]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [3,5,1,2,6,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 2
[[[[]]],[],[[]]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [4,5,1,2,6,3] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[[],[]],[[]],[]]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,1,5,6,2,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 2
[[[[]]],[[]],[]]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [4,1,5,6,2,3] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Matching statistic: St001597
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001597: Skew partitions ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 50%
Values
[[]]
=> [1,0]
=> []
=> [[],[]]
=> ? = 0
[[],[]]
=> [1,0,1,0]
=> [1]
=> [[1],[]]
=> 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1]
=> [[1,1],[]]
=> 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [2]
=> [[2],[]]
=> 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [[3,2],[]]
=> 2
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [[2,2],[]]
=> 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [[3],[]]
=> 1
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> ? = 2
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> 2
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 2
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 1
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 2
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [[3,2,2],[]]
=> 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [[2,2,2],[]]
=> 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [[4,3,1],[]]
=> ? = 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [[4,3],[]]
=> 2
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [[3,3,1],[]]
=> 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [[3,3],[]]
=> 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [[4,2],[]]
=> 2
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [[4],[]]
=> 1
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [[4,3,3,2,1],[]]
=> ? = 3
[[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [[3,3,3,2,1],[]]
=> ? = 2
[[],[],[[[]],[]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> [[4,2,2,2,1],[]]
=> ? = 2
[[],[],[[[],[]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> [[3,2,2,2,1],[]]
=> ? = 2
[[],[],[[[[]]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> [[2,2,2,2,1],[]]
=> ? = 2
[[],[[]],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [[4,4,3,1,1],[]]
=> ? = 2
[[],[[]],[[],[]]]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> [[4,3,3,1,1],[]]
=> ? = 2
[[],[[]],[[[]]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> [[3,3,3,1,1],[]]
=> ? = 2
[[],[[[]]],[[]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [4,4,1,1,1]
=> [[4,4,1,1,1],[]]
=> ? = 2
[[],[[],[[],[]]]]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> [[3,2,2,1,1],[]]
=> ? = 2
[[],[[],[[[]]]]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> ? = 2
[[],[[[]],[[]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1,1]
=> [[3,3,1,1,1],[]]
=> ? = 2
[[],[[[],[[]]]]]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> 2
[[],[[[[[]]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 1
[[[]],[],[[]],[]]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> [[5,3,3,2],[]]
=> ? = 2
[[[]],[],[[],[]]]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2]
=> [[4,3,3,2],[]]
=> ? = 2
[[[]],[],[[[]]]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2]
=> [[3,3,3,2],[]]
=> ? = 2
[[[]],[[[]]],[]]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2]
=> [[5,2,2,2],[]]
=> ? = 2
[[[]],[[[]],[]]]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2]
=> [[4,2,2,2],[]]
=> ? = 2
[[[]],[[[],[]]]]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2]
=> [[3,2,2,2],[]]
=> ? = 2
[[[]],[[[[]]]]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2]
=> [[2,2,2,2],[]]
=> ? = 2
[[[],[]],[],[],[]]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1]
=> [[5,4,3,1],[]]
=> ? = 3
[[[[]]],[],[],[]]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [5,4,3]
=> [[5,4,3],[]]
=> ? = 2
[[[],[]],[],[[]]]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1]
=> [[4,4,3,1],[]]
=> ? = 2
[[[[]]],[],[[]]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [4,4,3]
=> [[4,4,3],[]]
=> ? = 2
[[[],[]],[[]],[]]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1]
=> [[5,3,3,1],[]]
=> ? = 2
[[[[]]],[[]],[]]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [5,3,3]
=> [[5,3,3],[]]
=> ? = 2
[[[],[]],[[],[]]]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1]
=> [[4,3,3,1],[]]
=> ? = 2
[[[],[]],[[[]]]]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1]
=> [[3,3,3,1],[]]
=> ? = 2
[[[[]]],[[],[]]]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [4,3,3]
=> [[4,3,3],[]]
=> ? = 2
[[[[]]],[[[]]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3,3]
=> [[3,3,3],[]]
=> ? = 2
[[[],[[]]],[],[]]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1]
=> [[5,4,1,1],[]]
=> ? = 2
[[[[],[]]],[],[]]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [5,4,1]
=> [[5,4,1],[]]
=> ? = 2
[[[[[]]]],[],[]]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [5,4]
=> [[5,4],[]]
=> ? = 2
[[[],[[]]],[[]]]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [4,4,1,1]
=> [[4,4,1,1],[]]
=> ? = 2
[[[[],[]]],[[]]]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [4,4,1]
=> [[4,4,1],[]]
=> ? = 2
[[[[[]]]],[[]]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> [[4,4],[]]
=> ? = 2
[[[[]],[[]]],[]]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [5,2,2]
=> [[5,2,2],[]]
=> ? = 2
[[[[],[]],[]],[]]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [5,3,1]
=> [[5,3,1],[]]
=> ? = 2
[[[[[]]],[]],[]]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [5,3]
=> [[5,3],[]]
=> ? = 2
[[[[[]],[]]],[]]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [5,2]
=> [[5,2],[]]
=> 2
[[[[[[]]]]],[]]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> [[5],[]]
=> 1
[[],[],[],[[],[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> [[5,4,3,3,2,1],[]]
=> ? = 3
[[],[],[],[[],[[]]]]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,4,3,3,2,1]
=> [[4,4,3,3,2,1],[]]
=> ? = 2
[[],[],[],[[[]],[]]]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,3,3,2,1]
=> [[5,3,3,3,2,1],[]]
=> ? = 3
[[],[],[],[[[],[]]]]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,3,3,2,1]
=> [[4,3,3,3,2,1],[]]
=> ? = 2
[[],[],[],[[[[]]]]]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,3,3,3,2,1]
=> [[3,3,3,3,2,1],[]]
=> ? = 2
[[],[],[[]],[[],[]]]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,2,1]
=> [[5,4,4,2,2,1],[]]
=> ? = 3
[[],[],[[]],[[[]]]]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,4,4,2,2,1]
=> [[4,4,4,2,2,1],[]]
=> ? = 2
[[],[[[[[[]]]]]]]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> 1
[[[[[[[]]]]]],[]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6]
=> [[6],[]]
=> 1
Description
The Frobenius rank of a skew partition. This is the minimal number of border strips in a border strip decomposition of the skew partition.
Matching statistic: St001269
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St001269: Permutations ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 75%
Values
[[]]
=> [1,0]
=> [1,1,0,0]
=> [1,2] => 0
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => 2
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => 1
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => 2
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => 2
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => 2
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => 1
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [5,3,4,1,2,6] => 2
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [5,4,1,2,3,6] => 2
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,5,2,1,3,6] => 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,5,1,2,3,6] => 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [5,3,1,2,4,6] => 2
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,4,6] => 1
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [5,4,6,3,2,1,7] => ? = 3
[[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,2,1,7] => ? = 2
[[],[],[[[]],[]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [5,3,4,6,2,1,7] => ? = 2
[[],[],[[[],[]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [4,3,5,6,2,1,7] => ? = 2
[[],[],[[[[]]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,2,1,7] => ? = 2
[[],[[]],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [5,6,4,2,3,1,7] => ? = 2
[[],[[]],[[],[]]]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [5,4,6,2,3,1,7] => ? = 2
[[],[[]],[[[]]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [4,5,6,2,3,1,7] => ? = 2
[[],[[[]]],[[]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [5,6,2,3,4,1,7] => ? = 2
[[],[[],[[],[]]]]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [4,3,5,2,6,1,7] => ? = 2
[[],[[],[[[]]]]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [3,4,5,2,6,1,7] => ? = 2
[[],[[[]],[[]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [4,5,2,3,6,1,7] => ? = 2
[[],[[[],[[]]]]]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,1,7] => ? = 2
[[],[[[[[]]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,1,7] => ? = 1
[[[]],[],[[]],[]]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [6,4,5,3,1,2,7] => ? = 2
[[[]],[],[[],[]]]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [5,4,6,3,1,2,7] => ? = 2
[[[]],[],[[[]]]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,1,2,7] => ? = 2
[[[]],[[[]]],[]]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [6,3,4,5,1,2,7] => ? = 2
[[[]],[[[]],[]]]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [5,3,4,6,1,2,7] => ? = 2
[[[]],[[[],[]]]]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [4,3,5,6,1,2,7] => ? = 2
[[[]],[[[[]]]]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,1,2,7] => ? = 2
[[[],[]],[],[],[]]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,1,3,7] => ? = 3
[[[[]]],[],[],[]]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [6,5,4,1,2,3,7] => ? = 2
[[[],[]],[],[[]]]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [5,6,4,2,1,3,7] => ? = 2
[[[[]]],[],[[]]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [5,6,4,1,2,3,7] => ? = 2
[[[],[]],[[]],[]]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [6,4,5,2,1,3,7] => ? = 2
[[[[]]],[[]],[]]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [6,4,5,1,2,3,7] => ? = 2
[[[],[]],[[],[]]]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [5,4,6,2,1,3,7] => ? = 2
[[[],[]],[[[]]]]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [4,5,6,2,1,3,7] => ? = 2
[[[[]]],[[],[]]]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [5,4,6,1,2,3,7] => ? = 2
[[[[]]],[[[]]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [4,5,6,1,2,3,7] => ? = 2
[[[],[[]]],[],[]]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [6,5,2,3,1,4,7] => ? = 2
[[[[],[]]],[],[]]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [6,5,2,1,3,4,7] => ? = 2
[[[[[]]]],[],[]]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [6,5,1,2,3,4,7] => ? = 2
[[[],[[]]],[[]]]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> [5,6,2,3,1,4,7] => ? = 2
[[[[],[]]],[[]]]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> [5,6,2,1,3,4,7] => ? = 2
[[[[[]]]],[[]]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [5,6,1,2,3,4,7] => ? = 2
[[[[]],[[]]],[]]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [6,3,4,1,2,5,7] => ? = 2
[[[[],[]],[]],[]]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [6,4,2,1,3,5,7] => ? = 2
[[[[[]]],[]],[]]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [6,4,1,2,3,5,7] => ? = 2
[[[[[]],[]]],[]]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [6,3,1,2,4,5,7] => ? = 2
[[[[[[]]]]],[]]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,1,2,3,4,5,7] => ? = 1
[[],[],[],[[],[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [6,5,4,7,3,2,1,8] => ? = 3
[[],[],[],[[],[[]]]]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [5,6,4,7,3,2,1,8] => ? = 2
[[],[],[],[[[]],[]]]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [6,4,5,7,3,2,1,8] => ? = 3
[[],[],[],[[[],[]]]]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,1,8] => ? = 2
[[],[],[],[[[[]]]]]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [4,5,6,7,3,2,1,8] => ? = 2
[[],[],[[]],[[],[]]]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [6,5,7,3,4,2,1,8] => ? = 3
[[],[],[[]],[[[]]]]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [5,6,7,3,4,2,1,8] => ? = 2
[[],[],[[],[[]],[]]]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [6,4,5,3,7,2,1,8] => ? = 3
Description
The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation.
Matching statistic: St001874
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
St001874: Permutations ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 75%
Values
[[]]
=> [1,0]
=> [1,1,0,0]
=> [1,2] => 0
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,3,2] => 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,3] => 2
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,4] => 1
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,5,2,6,4] => 2
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,5,6,2,4] => 2
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,6,2,4,5] => 2
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,4,6,2,5] => 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,4,5,6,2] => 1
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,5,6,3] => 2
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,5,2,6,3] => 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,5,6,2,3] => 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,4,2,6,3,5] => 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,5,2,6,3,4] => 2
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,4,6,2,3,5] => 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,5,6,2,3,4] => 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,3,6,4] => 2
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,5] => 1
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,5,2,7,4,6] => ? = 3
[[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,5,7,2,4,6] => ? = 2
[[],[],[[[]],[]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,5,2,6,7,4] => ? = 2
[[],[],[[[],[]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,5,6,2,7,4] => ? = 2
[[],[],[[[[]]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,5,6,7,2,4] => ? = 2
[[],[[]],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,3,6,2,4,7,5] => ? = 2
[[],[[]],[[],[]]]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,3,6,2,7,4,5] => ? = 2
[[],[[]],[[[]]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,3,6,7,2,4,5] => ? = 2
[[],[[[]]],[[]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,3,7,2,4,5,6] => ? = 2
[[],[[],[[],[]]]]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,3,4,6,2,7,5] => ? = 2
[[],[[],[[[]]]]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,3,4,6,7,2,5] => ? = 2
[[],[[[]],[[]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,3,4,7,2,5,6] => ? = 2
[[],[[[],[[]]]]]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,3,4,5,7,2,6] => ? = 2
[[],[[[[[]]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,3,4,5,6,7,2] => ? = 1
[[[]],[],[[]],[]]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,4,2,5,7,3,6] => ? = 2
[[[]],[],[[],[]]]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,4,5,2,7,3,6] => ? = 2
[[[]],[],[[[]]]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,4,5,7,2,3,6] => ? = 2
[[[]],[[[]]],[]]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,4,2,5,6,7,3] => ? = 2
[[[]],[[[]],[]]]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,4,5,2,6,7,3] => ? = 2
[[[]],[[[],[]]]]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,4,5,6,2,7,3] => ? = 2
[[[]],[[[[]]]]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,4,5,6,7,2,3] => ? = 2
[[[],[]],[],[],[]]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,4,2,6,3,7,5] => ? = 3
[[[[]]],[],[],[]]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,5,2,6,3,7,4] => ? = 2
[[[],[]],[],[[]]]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,4,6,2,3,7,5] => ? = 2
[[[[]]],[],[[]]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,5,6,2,3,7,4] => ? = 2
[[[],[]],[[]],[]]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,6,7,3,5] => ? = 2
[[[[]]],[[]],[]]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,5,2,6,7,3,4] => ? = 2
[[[],[]],[[],[]]]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,4,6,2,7,3,5] => ? = 2
[[[],[]],[[[]]]]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => ? = 2
[[[[]]],[[],[]]]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => ? = 2
[[[[]]],[[[]]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => ? = 2
[[[],[[]]],[],[]]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,4,2,7,3,5,6] => ? = 2
[[[[],[]]],[],[]]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,5,2,7,3,4,6] => ? = 2
[[[[[]]]],[],[]]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,6,2,7,3,4,5] => ? = 2
[[[],[[]]],[[]]]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> [1,4,7,2,3,5,6] => ? = 2
[[[[],[]]],[[]]]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> [1,5,7,2,3,4,6] => ? = 2
[[[[[]]]],[[]]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,6,7,2,3,4,5] => ? = 2
[[[[]],[[]]],[]]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,7,4] => ? = 2
[[[[],[]],[]],[]]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,5,2,3,7,4,6] => ? = 2
[[[[[]]],[]],[]]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,6,2,3,7,4,5] => ? = 2
[[[[[]],[]]],[]]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,6,2,3,4,7,5] => ? = 2
[[[[[[]]]]],[]]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,7,2,3,4,5,6] => ? = 1
[[],[],[],[[],[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,3,5,2,7,4,8,6] => ? = 3
[[],[],[],[[],[[]]]]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,5,7,2,4,8,6] => ? = 2
[[],[],[],[[[]],[]]]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,5,2,7,8,4,6] => ? = 3
[[],[],[],[[[],[]]]]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,5,7,2,8,4,6] => ? = 2
[[],[],[],[[[[]]]]]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,5,7,8,2,4,6] => ? = 2
[[],[],[[]],[[],[]]]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,3,5,2,8,4,6,7] => ? = 3
[[],[],[[]],[[[]]]]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,3,5,8,2,4,6,7] => ? = 2
[[],[],[[],[[]],[]]]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,3,5,2,6,8,4,7] => ? = 3
Description
Lusztig's a-function for the symmetric group. Let x be a permutation corresponding to the pair of tableaux (P(x),Q(x)) by the Robinson-Schensted correspondence and shape(Q(x))=(λ1,...,λk) where Q(x) is the transposed tableau. Then a(x)=\sum\limits_{i=1}^{k}{\binom{\lambda_i}{2}}. See exercise 10 on page 198 in the book by Björner and Brenti "Combinatorics of Coxeter Groups" for equivalent characterisations and properties.
Matching statistic: St000387
Mp00047: Ordered trees to posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00203: Graphs coneGraphs
St000387: Graphs ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 75%
Values
[[]]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[],[],[],[[],[]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[],[],[[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[],[],[[[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[],[],[[[[]]]]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[],[[]],[[],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[],[[],[[],[]]]]
=> ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[],[[[],[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 + 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[]],[],[[],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[]],[[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,6),(4,6),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[]],[[[[]]]]]
=> ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[],[]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
[[[[]]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[],[]],[],[[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[],[]],[[]],[]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[],[]],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,6),(5,6)],7)
=> ([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,3),(1,4),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,3),(1,4),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[[]]],[[[]]]]
=> ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[],[[]]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[[],[]]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[[[]]]],[],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[],[[]]],[[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[[],[]]],[[]]]
=> ([(0,5),(1,5),(2,3),(3,6),(4,6),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[[[]]]],[[]]]
=> ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[[]],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[[],[]],[]],[]]
=> ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[[[]]],[]],[]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[[[]],[]]],[]]
=> ([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
[[[[[[]]]]],[]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 + 1
[[],[],[],[[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 3 + 1
[[],[],[],[[],[[]]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 2 + 1
[[],[],[],[[[]],[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 3 + 1
[[],[],[],[[[],[]]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,7),(6,5)],8)
=> ?
=> ?
=> ? = 2 + 1
[[],[],[],[[[[]]]]]
=> ([(0,4),(1,7),(2,7),(3,7),(4,6),(5,7),(6,5)],8)
=> ?
=> ?
=> ? = 2 + 1
[[],[],[[]],[[],[]]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 3 + 1
[[],[],[[]],[[[]]]]
=> ([(0,7),(1,7),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 2 + 1
[[],[],[[],[[]],[]]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 3 + 1
Description
The matching number of a graph. For a graph G, this is defined as the maximal size of a '''matching''' or '''independent edge set''' (a set of edges without common vertices) contained in G.
Mp00139: Ordered trees Zeilberger's Strahler bijectionBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
St001569: Permutations ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 50%
Values
[[]]
=> [.,.]
=> [1] => ? = 0
[[],[]]
=> [.,[.,.]]
=> [2,1] => 1
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => 1
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => 2
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => 1
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => 2
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => 2
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => 1
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => 2
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => 2
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => 2
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => 2
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => 1
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => 2
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => 2
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => 2
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => 2
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => 2
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => 2
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => 2
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => 1
[[],[],[],[[],[]]]
=> [.,[.,[.,[[.,.],[.,.]]]]]
=> [6,4,5,3,2,1] => ? = 3
[[],[],[],[[[]]]]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ? = 2
[[],[],[[[]],[]]]
=> [.,[.,[[[.,.],.],[.,.]]]]
=> [6,3,4,5,2,1] => ? = 2
[[],[],[[[],[]]]]
=> [.,[.,[[[.,.],[.,.]],.]]]
=> [5,3,4,6,2,1] => ? = 2
[[],[],[[[[]]]]]
=> [.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => ? = 2
[[],[[]],[],[[]]]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> [4,5,3,2,6,1] => ? = 2
[[],[[]],[[],[]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> [6,4,5,2,3,1] => ? = 2
[[],[[]],[[[]]]]
=> [.,[[.,[[[.,.],.],.]],.]]
=> [3,4,5,2,6,1] => ? = 2
[[],[[[]]],[[]]]
=> [.,[[[.,[[.,.],.]],.],.]]
=> [3,4,2,5,6,1] => ? = 2
[[],[[],[[],[]]]]
=> [.,[[.,[[.,.],[.,.]]],.]]
=> [5,3,4,2,6,1] => ? = 2
[[],[[],[[[]]]]]
=> [.,[[.,.],[[[.,.],.],.]]]
=> [4,5,6,2,3,1] => ? = 2
[[],[[[]],[[]]]]
=> [.,[[[.,.],.],[[.,.],.]]]
=> [5,6,2,3,4,1] => ? = 2
[[],[[[],[[]]]]]
=> [.,[[[.,.],[[.,.],.]],.]]
=> [4,5,2,3,6,1] => ? = 2
[[],[[[[[]]]]]]
=> [.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => ? = 1
[[[]],[],[[]],[]]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> [4,3,5,2,1,6] => ? = 2
[[[]],[],[[],[]]]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> [6,4,5,3,1,2] => ? = 2
[[[]],[],[[[]]]]
=> [[.,[.,[[[.,.],.],.]]],.]
=> [3,4,5,2,1,6] => ? = 2
[[[]],[[[]]],[]]
=> [[.,[[[.,[.,.]],.],.]],.]
=> [3,2,4,5,1,6] => ? = 2
[[[]],[[[]],[]]]
=> [[.,.],[[[.,.],.],[.,.]]]
=> [6,3,4,5,1,2] => ? = 2
[[[]],[[[],[]]]]
=> [[.,.],[[[.,.],[.,.]],.]]
=> [5,3,4,6,1,2] => ? = 2
[[[]],[[[[]]]]]
=> [[.,[[[[.,.],.],.],.]],.]
=> [2,3,4,5,1,6] => ? = 2
[[[],[]],[],[],[]]
=> [[.,[.,.]],[.,[.,[.,.]]]]
=> [6,5,4,2,1,3] => ? = 3
[[[[]]],[],[],[]]
=> [[[.,[.,[.,[.,.]]]],.],.]
=> [4,3,2,1,5,6] => ? = 2
[[[],[]],[],[[]]]
=> [[.,[.,.]],[.,[[.,.],.]]]
=> [5,6,4,2,1,3] => ? = 2
[[[[]]],[],[[]]]
=> [[[.,[.,[[.,.],.]]],.],.]
=> [3,4,2,1,5,6] => ? = 2
[[[],[]],[[]],[]]
=> [[.,[.,.]],[[.,[.,.]],.]]
=> [5,4,6,2,1,3] => ? = 2
[[[[]]],[[]],[]]
=> [[[.,[[.,[.,.]],.]],.],.]
=> [3,2,4,1,5,6] => ? = 2
[[[],[]],[[],[]]]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> [6,4,5,2,1,3] => ? = 2
[[[],[]],[[[]]]]
=> [[.,[.,.]],[[[.,.],.],.]]
=> [4,5,6,2,1,3] => ? = 2
[[[[]]],[[],[]]]
=> [[[.,.],.],[[.,.],[.,.]]]
=> [6,4,5,1,2,3] => ? = 2
[[[[]]],[[[]]]]
=> [[[.,[[[.,.],.],.]],.],.]
=> [2,3,4,1,5,6] => ? = 2
[[[],[[]]],[],[]]
=> [[.,[[.,.],.]],[.,[.,.]]]
=> [6,5,2,3,1,4] => ? = 2
[[[[],[]]],[],[]]
=> [[[.,[.,.]],[.,[.,.]]],.]
=> [5,4,2,1,3,6] => ? = 2
[[[[[]]]],[],[]]
=> [[[[.,[.,[.,.]]],.],.],.]
=> [3,2,1,4,5,6] => ? = 2
[[[],[[]]],[[]]]
=> [[.,[[.,.],.]],[[.,.],.]]
=> [5,6,2,3,1,4] => ? = 2
[[[[],[]]],[[]]]
=> [[[.,[.,.]],[[.,.],.]],.]
=> [4,5,2,1,3,6] => ? = 2
[[[[[]]]],[[]]]
=> [[[[.,[[.,.],.]],.],.],.]
=> [2,3,1,4,5,6] => ? = 2
[[[[]],[[]]],[]]
=> [[[.,[[.,.],.]],.],[.,.]]
=> [6,2,3,1,4,5] => ? = 2
[[[[],[]],[]],[]]
=> [[[.,[.,.]],[.,.]],[.,.]]
=> [6,4,2,1,3,5] => ? = 2
[[[[[]]],[]],[]]
=> [[[[.,[.,.]],.],.],[.,.]]
=> [6,2,1,3,4,5] => ? = 2
[[[[[]],[]]],[]]
=> [[[[.,[.,.]],.],[.,.]],.]
=> [5,2,1,3,4,6] => ? = 2
[[[[[[]]]]],[]]
=> [[[[[.,[.,.]],.],.],.],.]
=> [2,1,3,4,5,6] => ? = 1
[[],[],[],[[],[],[]]]
=> [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [7,6,4,5,3,2,1] => ? = 3
[[],[],[],[[],[[]]]]
=> [.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [6,7,4,5,3,2,1] => ? = 2
[[],[],[],[[[]],[]]]
=> [.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [7,4,5,6,3,2,1] => ? = 3
[[],[],[],[[[],[]]]]
=> [.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [6,4,5,7,3,2,1] => ? = 2
[[],[],[],[[[[]]]]]
=> [.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => ? = 2
[[],[],[[]],[[],[]]]
=> [.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [7,5,6,3,4,2,1] => ? = 3
[[],[],[[]],[[[]]]]
=> [.,[.,[[.,[[[.,.],.],.]],.]]]
=> [4,5,6,3,7,2,1] => ? = 2
Description
The maximal modular displacement of a permutation. This is \max_{1\leq i \leq n} \left(\min(\pi(i)-i\pmod n, i-\pi(i)\pmod n)\right) for a permutation \pi of \{1,\dots,n\}.
Mp00328: Ordered trees DeBruijn-Morselt plane tree automorphismOrdered trees
Mp00046: Ordered trees to graphGraphs
St000455: Graphs ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 75%
Values
[[]]
=> [[]]
=> ([(0,1)],2)
=> -1 = 0 - 1
[[],[]]
=> [[[]]]
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[],[[]]]
=> [[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[[]],[]]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 1
[[],[],[[]]]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 - 1
[[],[[[]]]]
=> [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[]],[],[]]
=> [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 2 - 1
[[[]],[[]]]
=> [[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 - 1
[[[[]]],[]]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 - 1
[[],[],[[],[]]]
=> [[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[],[],[[[]]]]
=> [[[[],[],[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2 - 1
[[],[[]],[[]]]
=> [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 2 - 1
[[],[[],[[]]]]
=> [[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 2 - 1
[[],[[[[]]]]]
=> [[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[[[]],[[]],[]]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[[]],[[],[]]]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[[]],[[[]]]]
=> [[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2 - 1
[[[],[]],[],[]]
=> [[[]],[[[]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2 - 1
[[[[]]],[],[]]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 2 - 1
[[[],[]],[[]]]
=> [[[]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 2 - 1
[[[[]]],[[]]]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 2 - 1
[[[[]],[]],[]]
=> [[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[[[[]]]],[]]
=> [[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 1 - 1
[[],[],[],[[],[]]]
=> [[[[[[]],[]]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ? = 3 - 1
[[],[],[],[[[]]]]
=> [[[[[],[],[]]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 2 - 1
[[],[],[[[]],[]]]
=> [[[[],[[]],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1 = 2 - 1
[[],[],[[[],[]]]]
=> [[[[[]],[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1 = 2 - 1
[[],[],[[[[]]]]]
=> [[[[],[],[],[]]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 2 - 1
[[],[[]],[],[[]]]
=> [[[],[[[],[]]]]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ? = 2 - 1
[[],[[]],[[],[]]]
=> [[[],[[[]],[]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 2 - 1
[[],[[]],[[[]]]]
=> [[[],[[],[],[]]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 2 - 1
[[],[[[]]],[[]]]
=> [[[],[],[[],[]]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 2 - 1
[[],[[],[[],[]]]]
=> [[[[[]],[]],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 2 - 1
[[],[[],[[[]]]]]
=> [[[[],[],[]],[]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 2 - 1
[[],[[[]],[[]]]]
=> [[[],[[],[]],[]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 2 - 1
[[],[[[],[[]]]]]
=> [[[[],[]],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 2 - 1
[[],[[[[[]]]]]]
=> [[[],[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 1 - 1
[[[]],[],[[]],[]]
=> [[],[[[],[[]]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ? = 2 - 1
[[[]],[],[[],[]]]
=> [[],[[[[]],[]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ? = 2 - 1
[[[]],[],[[[]]]]
=> [[],[[[],[],[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 2 - 1
[[[]],[[[]]],[]]
=> [[],[[],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1 = 2 - 1
[[[]],[[[]],[]]]
=> [[],[[],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1 = 2 - 1
[[[]],[[[],[]]]]
=> [[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1 = 2 - 1
[[[]],[[[[]]]]]
=> [[],[[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 2 - 1
[[[],[]],[],[],[]]
=> [[[]],[[[[]]]]]
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 3 - 1
[[[[]]],[],[],[]]
=> [[],[],[[[[]]]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ? = 2 - 1
[[[],[]],[],[[]]]
=> [[[]],[[[],[]]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ? = 2 - 1
[[[[]]],[],[[]]]
=> [[],[],[[[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ? = 2 - 1
[[[],[]],[[]],[]]
=> [[[]],[[],[[]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ? = 2 - 1
[[[[]]],[[]],[]]
=> [[],[],[[],[[]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 2 - 1
[[[],[]],[[],[]]]
=> [[[]],[[[]],[]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ? = 2 - 1
[[[],[]],[[[]]]]
=> [[[]],[[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 2 - 1
[[[[]]],[[],[]]]
=> [[],[],[[[]],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 2 - 1
[[[[]]],[[[]]]]
=> [[],[],[[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 2 - 1
[[[],[[]]],[],[]]
=> [[[],[]],[[[]]]]
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ? = 2 - 1
[[[[],[]]],[],[]]
=> [[[]],[],[[[]]]]
=> ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ? = 2 - 1
[[[[[]]]],[],[]]
=> [[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 2 - 1
[[[],[[]]],[[]]]
=> [[[],[]],[[],[]]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ? = 2 - 1
[[[[],[]]],[[]]]
=> [[[]],[],[[],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 2 - 1
[[[[[]]]],[[]]]
=> [[],[],[],[[],[]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 2 - 1
[[[[]],[[]]],[]]
=> [[],[[],[]],[[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 2 - 1
[[[[],[]],[]],[]]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1 = 2 - 1
[[[[[]]],[]],[]]
=> [[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1 = 2 - 1
[[[[[]],[]]],[]]
=> [[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1 = 2 - 1
[[[[[[]]]]],[]]
=> [[],[],[],[],[[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 1 - 1
[[],[],[],[[],[],[]]]
=> [[[[[[[]]],[]]]]]
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 3 - 1
[[],[],[],[[],[[]]]]
=> [[[[[[],[]],[]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8)
=> ? = 2 - 1
[[],[],[],[[[]],[]]]
=> [[[[[],[[]],[]]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 3 - 1
[[],[],[],[[[],[]]]]
=> [[[[[[]],[],[]]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> ? = 2 - 1
[[],[],[],[[[[]]]]]
=> [[[[[],[],[],[]]]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? = 2 - 1
[[],[],[[]],[[],[]]]
=> [[[[],[[[]],[]]]]]
=> ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? = 3 - 1
[[],[],[[]],[[[]]]]
=> [[[[],[[],[],[]]]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8)
=> ? = 2 - 1
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.