Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 49 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00105: Binary words complementBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00094: Integer compositions to binary wordBinary words
St000291: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => 1 => [1,1] => 11 => 0
1 => 0 => [2] => 10 => 1
00 => 11 => [1,1,1] => 111 => 0
01 => 10 => [1,2] => 110 => 1
10 => 01 => [2,1] => 101 => 1
11 => 00 => [3] => 100 => 1
000 => 111 => [1,1,1,1] => 1111 => 0
001 => 110 => [1,1,2] => 1110 => 1
010 => 101 => [1,2,1] => 1101 => 1
011 => 100 => [1,3] => 1100 => 1
100 => 011 => [2,1,1] => 1011 => 1
101 => 010 => [2,2] => 1010 => 2
110 => 001 => [3,1] => 1001 => 1
111 => 000 => [4] => 1000 => 1
0000 => 1111 => [1,1,1,1,1] => 11111 => 0
0001 => 1110 => [1,1,1,2] => 11110 => 1
0010 => 1101 => [1,1,2,1] => 11101 => 1
0011 => 1100 => [1,1,3] => 11100 => 1
0100 => 1011 => [1,2,1,1] => 11011 => 1
0101 => 1010 => [1,2,2] => 11010 => 2
0110 => 1001 => [1,3,1] => 11001 => 1
0111 => 1000 => [1,4] => 11000 => 1
1000 => 0111 => [2,1,1,1] => 10111 => 1
1001 => 0110 => [2,1,2] => 10110 => 2
1010 => 0101 => [2,2,1] => 10101 => 2
1011 => 0100 => [2,3] => 10100 => 2
1100 => 0011 => [3,1,1] => 10011 => 1
1101 => 0010 => [3,2] => 10010 => 2
1110 => 0001 => [4,1] => 10001 => 1
1111 => 0000 => [5] => 10000 => 1
00000 => 11111 => [1,1,1,1,1,1] => 111111 => 0
00001 => 11110 => [1,1,1,1,2] => 111110 => 1
00010 => 11101 => [1,1,1,2,1] => 111101 => 1
00011 => 11100 => [1,1,1,3] => 111100 => 1
00100 => 11011 => [1,1,2,1,1] => 111011 => 1
00101 => 11010 => [1,1,2,2] => 111010 => 2
00110 => 11001 => [1,1,3,1] => 111001 => 1
00111 => 11000 => [1,1,4] => 111000 => 1
01000 => 10111 => [1,2,1,1,1] => 110111 => 1
01001 => 10110 => [1,2,1,2] => 110110 => 2
01010 => 10101 => [1,2,2,1] => 110101 => 2
01011 => 10100 => [1,2,3] => 110100 => 2
01100 => 10011 => [1,3,1,1] => 110011 => 1
01101 => 10010 => [1,3,2] => 110010 => 2
01110 => 10001 => [1,4,1] => 110001 => 1
01111 => 10000 => [1,5] => 110000 => 1
10000 => 01111 => [2,1,1,1,1] => 101111 => 1
10001 => 01110 => [2,1,1,2] => 101110 => 2
10010 => 01101 => [2,1,2,1] => 101101 => 2
10011 => 01100 => [2,1,3] => 101100 => 2
Description
The number of descents of a binary word.
Matching statistic: St001280
Mp00105: Binary words complementBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
St001280: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => 1 => [1,1] => [1,1]
=> 0
1 => 0 => [2] => [2]
=> 1
00 => 11 => [1,1,1] => [1,1,1]
=> 0
01 => 10 => [1,2] => [2,1]
=> 1
10 => 01 => [2,1] => [2,1]
=> 1
11 => 00 => [3] => [3]
=> 1
000 => 111 => [1,1,1,1] => [1,1,1,1]
=> 0
001 => 110 => [1,1,2] => [2,1,1]
=> 1
010 => 101 => [1,2,1] => [2,1,1]
=> 1
011 => 100 => [1,3] => [3,1]
=> 1
100 => 011 => [2,1,1] => [2,1,1]
=> 1
101 => 010 => [2,2] => [2,2]
=> 2
110 => 001 => [3,1] => [3,1]
=> 1
111 => 000 => [4] => [4]
=> 1
0000 => 1111 => [1,1,1,1,1] => [1,1,1,1,1]
=> 0
0001 => 1110 => [1,1,1,2] => [2,1,1,1]
=> 1
0010 => 1101 => [1,1,2,1] => [2,1,1,1]
=> 1
0011 => 1100 => [1,1,3] => [3,1,1]
=> 1
0100 => 1011 => [1,2,1,1] => [2,1,1,1]
=> 1
0101 => 1010 => [1,2,2] => [2,2,1]
=> 2
0110 => 1001 => [1,3,1] => [3,1,1]
=> 1
0111 => 1000 => [1,4] => [4,1]
=> 1
1000 => 0111 => [2,1,1,1] => [2,1,1,1]
=> 1
1001 => 0110 => [2,1,2] => [2,2,1]
=> 2
1010 => 0101 => [2,2,1] => [2,2,1]
=> 2
1011 => 0100 => [2,3] => [3,2]
=> 2
1100 => 0011 => [3,1,1] => [3,1,1]
=> 1
1101 => 0010 => [3,2] => [3,2]
=> 2
1110 => 0001 => [4,1] => [4,1]
=> 1
1111 => 0000 => [5] => [5]
=> 1
00000 => 11111 => [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 0
00001 => 11110 => [1,1,1,1,2] => [2,1,1,1,1]
=> 1
00010 => 11101 => [1,1,1,2,1] => [2,1,1,1,1]
=> 1
00011 => 11100 => [1,1,1,3] => [3,1,1,1]
=> 1
00100 => 11011 => [1,1,2,1,1] => [2,1,1,1,1]
=> 1
00101 => 11010 => [1,1,2,2] => [2,2,1,1]
=> 2
00110 => 11001 => [1,1,3,1] => [3,1,1,1]
=> 1
00111 => 11000 => [1,1,4] => [4,1,1]
=> 1
01000 => 10111 => [1,2,1,1,1] => [2,1,1,1,1]
=> 1
01001 => 10110 => [1,2,1,2] => [2,2,1,1]
=> 2
01010 => 10101 => [1,2,2,1] => [2,2,1,1]
=> 2
01011 => 10100 => [1,2,3] => [3,2,1]
=> 2
01100 => 10011 => [1,3,1,1] => [3,1,1,1]
=> 1
01101 => 10010 => [1,3,2] => [3,2,1]
=> 2
01110 => 10001 => [1,4,1] => [4,1,1]
=> 1
01111 => 10000 => [1,5] => [5,1]
=> 1
10000 => 01111 => [2,1,1,1,1] => [2,1,1,1,1]
=> 1
10001 => 01110 => [2,1,1,2] => [2,2,1,1]
=> 2
10010 => 01101 => [2,1,2,1] => [2,2,1,1]
=> 2
10011 => 01100 => [2,1,3] => [3,2,1]
=> 2
1110111011 => 0001000100 => [4,4,3] => ?
=> ? = 3
Description
The number of parts of an integer partition that are at least two.
Mp00105: Binary words complementBinary words
Mp00280: Binary words path rowmotionBinary words
St000390: Binary words ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
0 => 1 => 0 => 0
1 => 0 => 1 => 1
00 => 11 => 00 => 0
01 => 10 => 11 => 1
10 => 01 => 10 => 1
11 => 00 => 01 => 1
000 => 111 => 000 => 0
001 => 110 => 111 => 1
010 => 101 => 110 => 1
011 => 100 => 011 => 1
100 => 011 => 100 => 1
101 => 010 => 101 => 2
110 => 001 => 010 => 1
111 => 000 => 001 => 1
0000 => 1111 => 0000 => 0
0001 => 1110 => 1111 => 1
0010 => 1101 => 1110 => 1
0011 => 1100 => 0111 => 1
0100 => 1011 => 1100 => 1
0101 => 1010 => 1101 => 2
0110 => 1001 => 0110 => 1
0111 => 1000 => 0011 => 1
1000 => 0111 => 1000 => 1
1001 => 0110 => 1011 => 2
1010 => 0101 => 1010 => 2
1011 => 0100 => 1001 => 2
1100 => 0011 => 0100 => 1
1101 => 0010 => 0101 => 2
1110 => 0001 => 0010 => 1
1111 => 0000 => 0001 => 1
00000 => 11111 => 00000 => 0
00001 => 11110 => 11111 => 1
00010 => 11101 => 11110 => 1
00011 => 11100 => 01111 => 1
00100 => 11011 => 11100 => 1
00101 => 11010 => 11101 => 2
00110 => 11001 => 01110 => 1
00111 => 11000 => 00111 => 1
01000 => 10111 => 11000 => 1
01001 => 10110 => 11011 => 2
01010 => 10101 => 11010 => 2
01011 => 10100 => 11001 => 2
01100 => 10011 => 01100 => 1
01101 => 10010 => 01101 => 2
01110 => 10001 => 00110 => 1
01111 => 10000 => 00011 => 1
10000 => 01111 => 10000 => 1
10001 => 01110 => 10111 => 2
10010 => 01101 => 10110 => 2
10011 => 01100 => 10011 => 2
1110111011 => 0001000100 => ? => ? = 3
1010000001 => 0101111110 => 1010111111 => ? = 3
=> => => ? = 0
0100000001 => 1011111110 => 1101111111 => ? = 2
0000000001 => 1111111110 => 1111111111 => ? = 1
00101010111 => 11010101000 => 11101010001 => ? = 4
00101011011 => 11010100100 => 11101001001 => ? = 4
00101101011 => 11010010100 => 11100101001 => ? = 4
00110101011 => 11001010100 => 01110101001 => ? = 4
01010101011 => 10101010100 => 11010101001 => ? = 5
01101010101 => 10010101010 => 01101010101 => ? = 5
10101001011 => 01010110100 => ? => ? = 5
00111000111 => 11000111000 => ? => ? = 2
10010110101 => 01101001010 => ? => ? = 5
10010101011 => 01101010100 => ? => ? = 5
00001110111 => 11110001000 => ? => ? = 2
11100000111 => 00011111000 => ? => ? = 2
Description
The number of runs of ones in a binary word.
Matching statistic: St000658
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St000658: Dyck paths ⟶ ℤResult quality: 36% values known / values provided: 36%distinct values known / distinct values provided: 71%
Values
0 => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
1 => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
00 => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
10 => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> 2
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 2
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> 2
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 2
1101001 => [1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
1101010 => [1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
1101011 => [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 3
1101100 => [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 2
1101101 => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 3
1101110 => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 2
1101111 => [1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 2
1110000 => [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
1110001 => [1,1,1,4,1] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
1110010 => [1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
1110011 => [1,1,1,3,1,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 2
1110100 => [1,1,1,2,3] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
1110101 => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
1110110 => [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 2
1110111 => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
1111000 => [1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1
1111001 => [1,1,1,1,3,1] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> ? = 2
1111010 => [1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 2
1111011 => [1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 2
1111100 => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
1111101 => [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
1111110 => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
1111111 => [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
00000000 => [9] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
00000001 => [8,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
00000010 => [7,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
00000011 => [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 1
00000100 => [6,3] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
00000101 => [6,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
00000110 => [6,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 1
00000111 => [6,1,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 1
00001000 => [5,4] => [1,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
00001001 => [5,3,1] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
00001010 => [5,2,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
00001011 => [5,2,1,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 2
00001100 => [5,1,3] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 1
00001101 => [5,1,2,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 2
00001110 => [5,1,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 1
00001111 => [5,1,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 1
00010000 => [4,5] => [1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
00010001 => [4,4,1] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
00010010 => [4,3,2] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
00010011 => [4,3,1,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 2
00010100 => [4,2,3] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
00010101 => [4,2,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
00010110 => [4,2,1,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ?
=> ? = 2
00010111 => [4,2,1,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
00011000 => [4,1,4] => [1,1,1,1,0,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1
00011001 => [4,1,3,1] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> ? = 2
00011010 => [4,1,2,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ?
=> ? = 2
Description
The number of rises of length 2 of a Dyck path. This is also the number of $(1,1)$ steps of the associated Łukasiewicz path, see [1]. A related statistic is the number of double rises in a Dyck path, [[St000024]].
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St000659: Dyck paths ⟶ ℤResult quality: 36% values known / values provided: 36%distinct values known / distinct values provided: 71%
Values
0 => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
1 => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
00 => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
10 => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> 2
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 2
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> 2
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 2
1101001 => [1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
1101010 => [1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
1101011 => [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 3
1101100 => [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 2
1101101 => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 3
1101110 => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 2
1101111 => [1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 2
1110000 => [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
1110001 => [1,1,1,4,1] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
1110010 => [1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
1110011 => [1,1,1,3,1,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 2
1110100 => [1,1,1,2,3] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
1110101 => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
1110110 => [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 2
1110111 => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
1111000 => [1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1
1111001 => [1,1,1,1,3,1] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> ? = 2
1111010 => [1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 2
1111011 => [1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 2
1111100 => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
1111101 => [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
1111110 => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
1111111 => [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
00000000 => [9] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
00000001 => [8,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
00000010 => [7,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
00000011 => [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 1
00000100 => [6,3] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
00000101 => [6,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
00000110 => [6,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 1
00000111 => [6,1,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 1
00001000 => [5,4] => [1,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
00001001 => [5,3,1] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
00001010 => [5,2,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
00001011 => [5,2,1,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 2
00001100 => [5,1,3] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 1
00001101 => [5,1,2,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 2
00001110 => [5,1,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 1
00001111 => [5,1,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 1
00010000 => [4,5] => [1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
00010001 => [4,4,1] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
00010010 => [4,3,2] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
00010011 => [4,3,1,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 2
00010100 => [4,2,3] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
00010101 => [4,2,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
00010110 => [4,2,1,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ?
=> ? = 2
00010111 => [4,2,1,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
00011000 => [4,1,4] => [1,1,1,1,0,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1
00011001 => [4,1,3,1] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> ? = 2
00011010 => [4,1,2,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ?
=> ? = 2
Description
The number of rises of length at least 2 of a Dyck path.
Matching statistic: St000340
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
St000340: Dyck paths ⟶ ℤResult quality: 29% values known / values provided: 29%distinct values known / distinct values provided: 57%
Values
0 => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
1 => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
00 => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
10 => [1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 2
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 2
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 2
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 2
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 2
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 2
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 2
0000001 => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
0000011 => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 1
0000101 => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2
0000111 => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 1
0001001 => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 2
0001011 => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 2
0001101 => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 2
0001111 => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 1
0010001 => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 2
0010011 => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 2
0010101 => [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 3
0010111 => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 2
0011001 => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2
0011011 => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 2
0011101 => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 2
0011111 => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 1
0100001 => [2,5,1] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 2
0100011 => [2,4,1,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,1,0,0,0,0]
=> ? = 2
0100101 => [2,3,2,1] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> ? = 3
0100111 => [2,3,1,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 2
0101001 => [2,2,3,1] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 3
0101011 => [2,2,2,1,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 3
0101101 => [2,2,1,2,1] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 3
0101111 => [2,2,1,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> ? = 2
0110001 => [2,1,4,1] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 2
0110011 => [2,1,3,1,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0]
=> ? = 2
0110101 => [2,1,2,2,1] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
0110111 => [2,1,2,1,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 2
0111001 => [2,1,1,3,1] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 2
0111011 => [2,1,1,2,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 2
0111101 => [2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 2
0111111 => [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1
1000001 => [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 2
1000011 => [1,5,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 2
1000101 => [1,4,2,1] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 3
1000111 => [1,4,1,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> ? = 2
1001001 => [1,3,3,1] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 3
1001011 => [1,3,2,1,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0]
=> ? = 3
1001101 => [1,3,1,2,1] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> ? = 3
1001111 => [1,3,1,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> ? = 2
1010001 => [1,2,4,1] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 3
1010011 => [1,2,3,1,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 3
1010101 => [1,2,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 4
1010111 => [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 3
1011001 => [1,2,1,3,1] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 3
1011011 => [1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 3
1011101 => [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 3
1011111 => [1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? = 2
1100001 => [1,1,5,1] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 2
1100011 => [1,1,4,1,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 2
Description
The number of non-final maximal constant sub-paths of length greater than one. This is the total number of occurrences of the patterns $110$ and $001$.
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000035: Permutations ⟶ ℤResult quality: 24% values known / values provided: 24%distinct values known / distinct values provided: 71%
Values
0 => [2] => [1,1,0,0]
=> [1,2] => 0
1 => [1,1] => [1,0,1,0]
=> [2,1] => 1
00 => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0
01 => [2,1] => [1,1,0,0,1,0]
=> [3,1,2] => 1
10 => [1,2] => [1,0,1,1,0,0]
=> [2,3,1] => 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [3,2,1] => 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 2
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 2
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 2
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 2
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [5,6,1,2,3,4] => 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [6,5,1,2,3,4] => 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [4,5,6,1,2,3] => 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [6,4,5,1,2,3] => 2
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [5,6,4,1,2,3] => 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [6,5,4,1,2,3] => 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,1,2] => 2
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,1,2] => 2
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,1,2] => 2
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,1,2] => 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,1,2] => 2
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,1,2] => 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,2] => 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => 2
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => 2
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => 2
000110 => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [6,7,5,1,2,3,4] => ? = 1
001000 => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,1,2,3] => ? = 1
001100 => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,1,2,3] => ? = 1
001101 => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,1,2,3] => ? = 2
001110 => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,1,2,3] => ? = 1
010001 => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,1,2] => ? = 2
010010 => [2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,5,1,2] => ? = 2
010011 => [2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,4,5,1,2] => ? = 2
010100 => [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,1,2] => ? = 2
010110 => [2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,4,1,2] => ? = 2
011000 => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,1,2] => ? = 1
011001 => [2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,1,2] => ? = 2
011010 => [2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,1,2] => ? = 2
011011 => [2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,1,2] => ? = 2
011100 => [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,1,2] => ? = 1
011101 => [2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,1,2] => ? = 2
011110 => [2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,1,2] => ? = 1
100001 => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [7,2,3,4,5,6,1] => ? = 2
100010 => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [6,7,2,3,4,5,1] => ? = 2
100011 => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [7,6,2,3,4,5,1] => ? = 2
100100 => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [5,6,7,2,3,4,1] => ? = 2
100101 => [1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [7,5,6,2,3,4,1] => ? = 3
100110 => [1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [6,7,5,2,3,4,1] => ? = 2
100111 => [1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [7,6,5,2,3,4,1] => ? = 2
101000 => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,2,3,1] => ? = 2
101001 => [1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,2,3,1] => ? = 3
101010 => [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,2,3,1] => ? = 3
101011 => [1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,2,3,1] => ? = 3
101100 => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,2,3,1] => ? = 2
101101 => [1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,2,3,1] => ? = 3
101110 => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,2,3,1] => ? = 2
101111 => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,3,1] => ? = 2
110000 => [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,2,1] => ? = 1
110001 => [1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,2,1] => ? = 2
110010 => [1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,5,2,1] => ? = 2
110011 => [1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,4,5,2,1] => ? = 2
110100 => [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,2,1] => ? = 2
110101 => [1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,2,1] => ? = 3
110110 => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,4,2,1] => ? = 2
110111 => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,2,1] => ? = 2
111000 => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 1
111001 => [1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => ? = 2
111010 => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,2,1] => ? = 2
111011 => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => ? = 2
111100 => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => ? = 1
111101 => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => ? = 2
111110 => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => ? = 1
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> [7,8,6,1,2,3,4,5] => ? = 1
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> [6,7,8,5,1,2,3,4] => ? = 1
0001101 => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> [8,6,7,5,1,2,3,4] => ? = 2
Description
The number of left outer peaks of a permutation. A left outer peak in a permutation $w = [w_1,..., w_n]$ is either a position $i$ such that $w_{i-1} < w_i > w_{i+1}$ or $1$ if $w_1 > w_2$. In other words, it is a peak in the word $[0,w_1,..., w_n]$. This appears in [1, def.3.1]. The joint distribution with [[St000366]] is studied in [3], where left outer peaks are called ''exterior peaks''.
Matching statistic: St000834
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000834: Permutations ⟶ ℤResult quality: 22% values known / values provided: 22%distinct values known / distinct values provided: 71%
Values
0 => [2] => [1,1,0,0]
=> [2,1] => 0
1 => [1,1] => [1,0,1,0]
=> [1,2] => 1
00 => [3] => [1,1,1,0,0,0]
=> [3,2,1] => 0
01 => [2,1] => [1,1,0,0,1,0]
=> [2,1,3] => 1
10 => [1,2] => [1,0,1,1,0,0]
=> [1,3,2] => 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 2
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 2
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,5,4,3,2,1] => 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,4,3,2,1,6] => 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,3,2,1,6,5] => 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [4,3,2,1,5,6] => 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,2,1,6,5,4] => 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,2,1,5,4,6] => 2
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,2,1,4,6,5] => 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6] => 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,5,4,3] => 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,5,4,3,6] => 2
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5] => 2
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => 2
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3,6,5,4] => 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => 2
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => 2
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => 2
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => 2
000100 => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,3,2,1,7,6,5] => ? = 1
000101 => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [4,3,2,1,6,5,7] => ? = 2
000110 => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [4,3,2,1,5,7,6] => ? = 1
001000 => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,2,1,7,6,5,4] => ? = 1
001001 => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [3,2,1,6,5,4,7] => ? = 2
001010 => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [3,2,1,5,4,7,6] => ? = 2
001011 => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [3,2,1,5,4,6,7] => ? = 2
001100 => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,2,1,4,7,6,5] => ? = 1
001101 => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [3,2,1,4,6,5,7] => ? = 2
001110 => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [3,2,1,4,5,7,6] => ? = 1
010001 => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,5,4,3,7] => ? = 2
010010 => [2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,4,3,7,6] => ? = 2
010011 => [2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,4,3,6,7] => ? = 2
010100 => [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => ? = 2
010101 => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => ? = 3
010110 => [2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => ? = 2
010111 => [2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => ? = 2
011000 => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,7,6,5,4] => ? = 1
011001 => [2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,6,5,4,7] => ? = 2
011010 => [2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => ? = 2
011011 => [2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => ? = 2
011100 => [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,6,5] => ? = 1
011101 => [2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,3,4,6,5,7] => ? = 2
011110 => [2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => ? = 1
100001 => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 2
100010 => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
100011 => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 2
0000101 => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [5,4,3,2,1,7,6,8] => ? = 2
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> [5,4,3,2,1,6,8,7] => ? = 1
0001001 => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [4,3,2,1,7,6,5,8] => ? = 2
0001011 => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> [4,3,2,1,6,5,7,8] => ? = 2
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> [4,3,2,1,5,8,7,6] => ? = 1
0001101 => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> [4,3,2,1,5,7,6,8] => ? = 2
0001110 => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> [4,3,2,1,5,6,8,7] => ? = 1
0010001 => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [3,2,1,7,6,5,4,8] => ? = 2
0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,6,5,4,8,7] => ? = 2
0010011 => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,6,5,4,7,8] => ? = 2
0010100 => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [3,2,1,5,4,8,7,6] => ? = 2
0010101 => [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [3,2,1,5,4,7,6,8] => ? = 3
0010110 => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> [3,2,1,5,4,6,8,7] => ? = 2
0010111 => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> [3,2,1,5,4,6,7,8] => ? = 2
0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> [3,2,1,4,8,7,6,5] => ? = 1
0011001 => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [3,2,1,4,7,6,5,8] => ? = 2
0011010 => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> [3,2,1,4,6,5,8,7] => ? = 2
0011011 => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> [3,2,1,4,6,5,7,8] => ? = 2
0011101 => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> [3,2,1,4,5,7,6,8] => ? = 2
0011110 => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [3,2,1,4,5,6,8,7] => ? = 1
0100001 => [2,5,1] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,7,6,5,4,3,8] => ? = 2
0100011 => [2,4,1,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,1,6,5,4,3,7,8] => ? = 2
0100100 => [2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3,8,7,6] => ? = 2
Description
The number of right outer peaks of a permutation. A right outer peak in a permutation $w = [w_1,..., w_n]$ is either a position $i$ such that $w_{i-1} < w_i > w_{i+1}$ or $n$ if $w_n > w_{n-1}$. In other words, it is a peak in the word $[w_1,..., w_n,0]$.
Matching statistic: St000374
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St000374: Permutations ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> [1,2] => 0
1 => [1,1] => [1,0,1,0]
=> [2,1] => 1
00 => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0
01 => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 1
10 => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [2,3,1] => 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 2
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 2
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => 2
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => 2
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,2,3,5,6,4] => 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => 2
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,4,5,6,3] => 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => 2
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => 2
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4] => 2
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => 2
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => 2
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => 2
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,3,5,6,4] => 2
100001 => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
100010 => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,3,4,6,5,7] => ? = 2
100011 => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,1,3,4,6,7,5] => ? = 2
100100 => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
100101 => [1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,1,3,5,4,7,6] => ? = 3
100110 => [1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,1,3,5,6,4,7] => ? = 2
100111 => [1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,1,3,5,6,7,4] => ? = 2
101000 => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
101001 => [1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,4,3,5,7,6] => ? = 3
101010 => [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => ? = 3
101011 => [1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => ? = 3
101100 => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => ? = 2
101101 => [1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3,7,6] => ? = 3
101110 => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
101111 => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
110001 => [1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 2
110010 => [1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,1,4,6,5,7] => ? = 2
110011 => [1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,3,1,4,6,7,5] => ? = 2
110100 => [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => ? = 2
110101 => [1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,7,6] => ? = 3
110110 => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
110111 => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,1,5,6,7,4] => ? = 2
111010 => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
111011 => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,4,1,6,7,5] => ? = 2
0000011 => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,5,7,8,6] => ? = 1
0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,4,6,5,7,8] => ? = 1
0000101 => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,8,7] => ? = 2
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,4,6,7,5,8] => ? = 1
0000111 => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,2,3,4,6,7,8,5] => ? = 1
0001001 => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [1,2,3,5,4,6,8,7] => ? = 2
0001011 => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,7,8,6] => ? = 2
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> [1,2,3,5,6,4,7,8] => ? = 1
0001101 => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,6,4,8,7] => ? = 2
0001110 => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,6,7,4,8] => ? = 1
0010000 => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,4,3,5,6,7,8] => ? = 1
0010001 => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,4,3,5,6,8,7] => ? = 2
0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5,7,6,8] => ? = 2
0010011 => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,3,5,7,8,6] => ? = 2
0010101 => [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,8,7] => ? = 3
0010110 => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,6,7,5,8] => ? = 2
0010111 => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,6,7,8,5] => ? = 2
0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,4,5,3,6,7,8] => ? = 1
0011001 => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,4,5,3,6,8,7] => ? = 2
0011010 => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6,8] => ? = 2
0011011 => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,5,3,7,8,6] => ? = 2
0011100 => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,4,5,6,3,7,8] => ? = 1
0011101 => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,5,6,3,8,7] => ? = 2
0011110 => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,4,5,6,7,3,8] => ? = 1
0011111 => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,6,7,8,3] => ? = 1
0100001 => [2,5,1] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,3,2,4,5,6,8,7] => ? = 2
Description
The number of exclusive right-to-left minima of a permutation. This is the number of right-to-left minima that are not left-to-right maxima. This is also the number of non weak exceedences of a permutation that are also not mid-points of a decreasing subsequence of length 3. Given a permutation $\pi = [\pi_1,\ldots,\pi_n]$, this statistic counts the number of position $j$ such that $\pi_j < j$ and there do not exist indices $i,k$ with $i < j < k$ and $\pi_i > \pi_j > \pi_k$. See also [[St000213]] and [[St000119]].
Matching statistic: St000703
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St000703: Permutations ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> [1,2] => 0
1 => [1,1] => [1,0,1,0]
=> [2,1] => 1
00 => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0
01 => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 1
10 => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [2,3,1] => 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 2
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 2
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => 2
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => 2
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,2,3,5,6,4] => 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => 2
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,4,5,6,3] => 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => 2
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => 2
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4] => 2
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => 2
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => 2
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => 2
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,3,5,6,4] => 2
100001 => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
100010 => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,3,4,6,5,7] => ? = 2
100011 => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,1,3,4,6,7,5] => ? = 2
100100 => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
100101 => [1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,1,3,5,4,7,6] => ? = 3
100110 => [1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,1,3,5,6,4,7] => ? = 2
100111 => [1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,1,3,5,6,7,4] => ? = 2
101000 => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
101001 => [1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,4,3,5,7,6] => ? = 3
101010 => [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => ? = 3
101011 => [1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => ? = 3
101100 => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => ? = 2
101101 => [1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3,7,6] => ? = 3
101110 => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 2
101111 => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 2
110001 => [1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 2
110010 => [1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,1,4,6,5,7] => ? = 2
110011 => [1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,3,1,4,6,7,5] => ? = 2
110100 => [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => ? = 2
110101 => [1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,7,6] => ? = 3
110110 => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 2
110111 => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,1,5,6,7,4] => ? = 2
111010 => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 2
111011 => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,4,1,6,7,5] => ? = 2
0000011 => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,5,7,8,6] => ? = 1
0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,4,6,5,7,8] => ? = 1
0000101 => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,8,7] => ? = 2
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,4,6,7,5,8] => ? = 1
0000111 => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,2,3,4,6,7,8,5] => ? = 1
0001001 => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [1,2,3,5,4,6,8,7] => ? = 2
0001011 => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,7,8,6] => ? = 2
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> [1,2,3,5,6,4,7,8] => ? = 1
0001101 => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,6,4,8,7] => ? = 2
0001110 => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,6,7,4,8] => ? = 1
0010000 => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,4,3,5,6,7,8] => ? = 1
0010001 => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,4,3,5,6,8,7] => ? = 2
0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5,7,6,8] => ? = 2
0010011 => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,3,5,7,8,6] => ? = 2
0010101 => [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,8,7] => ? = 3
0010110 => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,6,7,5,8] => ? = 2
0010111 => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,6,7,8,5] => ? = 2
0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,4,5,3,6,7,8] => ? = 1
0011001 => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,4,5,3,6,8,7] => ? = 2
0011010 => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6,8] => ? = 2
0011011 => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,5,3,7,8,6] => ? = 2
0011100 => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,4,5,6,3,7,8] => ? = 1
0011101 => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,5,6,3,8,7] => ? = 2
0011110 => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,4,5,6,7,3,8] => ? = 1
0011111 => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,6,7,8,3] => ? = 1
0100001 => [2,5,1] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,3,2,4,5,6,8,7] => ? = 2
Description
The number of deficiencies of a permutation. This is defined as $$\operatorname{dec}(\sigma)=\#\{i:\sigma(i) < i\}.$$ The number of exceedances is [[St000155]].
The following 39 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000994The number of cycle peaks and the number of cycle valleys of a permutation. St000884The number of isolated descents of a permutation. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001512The minimum rank of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St000024The number of double up and double down steps of a Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001354The number of series nodes in the modular decomposition of a graph. St000299The number of nonisomorphic vertex-induced subtrees. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St001269The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation. St001489The maximum of the number of descents and the number of inverse descents. St001665The number of pure excedances of a permutation. St001729The number of visible descents of a permutation. St001737The number of descents of type 2 in a permutation. St001928The number of non-overlapping descents in a permutation. St000470The number of runs in a permutation. St000354The number of recoils of a permutation. St000829The Ulam distance of a permutation to the identity permutation. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St000021The number of descents of a permutation. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000238The number of indices that are not small weak excedances. St000316The number of non-left-to-right-maxima of a permutation. St001874Lusztig's a-function for the symmetric group. St000325The width of the tree associated to a permutation. St000443The number of long tunnels of a Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001859The number of factors of the Stanley symmetric function associated with a permutation. St000353The number of inner valleys of a permutation. St000711The number of big exceedences of a permutation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000092The number of outer peaks of a permutation.