Identifier
-
Mp00178:
Binary words
—to composition⟶
Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St000703: Permutations ⟶ ℤ
Values
0 => [2] => [1,1,0,0] => [1,2] => 0
1 => [1,1] => [1,0,1,0] => [2,1] => 1
00 => [3] => [1,1,1,0,0,0] => [1,2,3] => 0
01 => [2,1] => [1,1,0,0,1,0] => [1,3,2] => 1
10 => [1,2] => [1,0,1,1,0,0] => [2,1,3] => 1
11 => [1,1,1] => [1,0,1,0,1,0] => [2,3,1] => 1
000 => [4] => [1,1,1,1,0,0,0,0] => [1,2,3,4] => 0
001 => [3,1] => [1,1,1,0,0,0,1,0] => [1,2,4,3] => 1
010 => [2,2] => [1,1,0,0,1,1,0,0] => [1,3,2,4] => 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0] => [1,3,4,2] => 1
100 => [1,3] => [1,0,1,1,1,0,0,0] => [2,1,3,4] => 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0] => [2,1,4,3] => 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0] => [2,3,1,4] => 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0] => [2,3,4,1] => 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,2,3,5,4] => 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,2,4,3,5] => 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,2,4,5,3] => 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,3,2,4,5] => 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4] => 2
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,3,4,2,5] => 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,3,4,5,2] => 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0] => [2,1,3,4,5] => 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [2,1,3,5,4] => 2
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [2,1,4,3,5] => 2
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [2,1,4,5,3] => 2
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [2,3,1,4,5] => 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [2,3,1,5,4] => 2
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [2,3,4,1,5] => 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,1] => 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,2,3,4,5,6] => 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,2,3,4,6,5] => 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,2,3,5,4,6] => 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,2,3,5,6,4] => 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,2,4,3,5,6] => 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,2,4,3,6,5] => 2
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,2,4,5,3,6] => 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,2,4,5,6,3] => 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,4,5,6] => 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,3,2,4,6,5] => 2
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,3,2,5,4,6] => 2
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,3,2,5,6,4] => 2
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,3,4,2,5,6] => 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,3,4,2,6,5] => 2
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,3,4,5,2,6] => 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,3,4,5,6,2] => 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [2,1,3,4,5,6] => 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [2,1,3,4,6,5] => 2
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [2,1,3,5,4,6] => 2
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [2,1,3,5,6,4] => 2
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [2,1,4,3,5,6] => 2
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [2,1,4,3,6,5] => 3
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [2,1,4,5,3,6] => 2
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [2,1,4,5,6,3] => 2
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [2,3,1,4,5,6] => 1
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [2,3,1,4,6,5] => 2
11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [2,3,1,5,4,6] => 2
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [2,3,1,5,6,4] => 2
11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [2,3,4,1,5,6] => 1
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [2,3,4,1,6,5] => 2
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [2,3,4,5,1,6] => 1
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,6,1] => 1
000000 => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7] => 0
000001 => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,2,3,4,5,7,6] => 1
000010 => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,2,3,4,6,5,7] => 1
000011 => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => [1,2,3,4,6,7,5] => 1
000100 => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => 1
000101 => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => [1,2,3,5,4,7,6] => 2
000110 => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => [1,2,3,5,6,4,7] => 1
000111 => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0] => [1,2,3,5,6,7,4] => 1
001000 => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => 1
001001 => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => [1,2,4,3,5,7,6] => 2
001010 => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0] => [1,2,4,3,6,5,7] => 2
001011 => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0] => [1,2,4,3,6,7,5] => 2
001100 => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,2,4,5,3,6,7] => 1
001101 => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0] => [1,2,4,5,3,7,6] => 2
001110 => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [1,2,4,5,6,3,7] => 1
001111 => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [1,2,4,5,6,7,3] => 1
010000 => [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => 1
010001 => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,3,2,4,5,7,6] => 2
010010 => [2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => 2
010011 => [2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0] => [1,3,2,4,6,7,5] => 2
010100 => [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0] => [1,3,2,5,4,6,7] => 2
010101 => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4,7,6] => 3
010110 => [2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [1,3,2,5,6,4,7] => 2
010111 => [2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,5,6,7,4] => 2
011000 => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,3,4,2,5,6,7] => 1
011001 => [2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0] => [1,3,4,2,5,7,6] => 2
011010 => [2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [1,3,4,2,6,5,7] => 2
011011 => [2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [1,3,4,2,6,7,5] => 2
011100 => [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,3,4,5,2,6,7] => 1
011101 => [2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [1,3,4,5,2,7,6] => 2
011110 => [2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,3,4,5,6,2,7] => 1
011111 => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,3,4,5,6,7,2] => 1
100000 => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [2,1,3,4,5,6,7] => 1
110000 => [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [2,3,1,4,5,6,7] => 1
111000 => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [2,3,4,1,5,6,7] => 1
111001 => [1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [2,3,4,1,5,7,6] => 2
111100 => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [2,3,4,5,1,6,7] => 1
111101 => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [2,3,4,5,1,7,6] => 2
111110 => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [2,3,4,5,6,1,7] => 1
>>> Load all 140 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of deficiencies of a permutation.
This is defined as
$$\operatorname{dec}(\sigma)=\#\{i:\sigma(i) < i\}.$$
The number of exceedances is St000155The number of exceedances (also excedences) of a permutation..
This is defined as
$$\operatorname{dec}(\sigma)=\#\{i:\sigma(i) < i\}.$$
The number of exceedances is St000155The number of exceedances (also excedences) of a permutation..
Map
to 321-avoiding permutation (Billey-Jockusch-Stanley)
Description
The Billey-Jockusch-Stanley bijection to 321-avoiding permutations.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!