Processing math: 100%

Your data matches 26 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000291
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00130: Permutations descent topsBinary words
St000291: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> [2,1] => [1,2] => 0 => 0
[[.,.],.]
=> [1,2] => [1,2] => 0 => 0
[.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => 00 => 0
[.,[[.,.],.]]
=> [2,3,1] => [1,2,3] => 00 => 0
[[.,.],[.,.]]
=> [3,1,2] => [1,2,3] => 00 => 0
[[.,[.,.]],.]
=> [2,1,3] => [1,3,2] => 01 => 0
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => 00 => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => 000 => 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,3,4] => 000 => 0
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [1,2,3,4] => 000 => 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,2,4,3] => 001 => 0
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,3,4] => 000 => 0
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [1,2,3,4] => 000 => 0
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [1,2,3,4] => 000 => 0
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [1,3,2,4] => 010 => 1
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [1,2,3,4] => 000 => 0
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,4,2,3] => 001 => 0
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,4,2,3] => 001 => 0
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [1,2,4,3] => 001 => 0
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3,4,2] => 001 => 0
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => 000 => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 0000 => 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,4,5] => 0000 => 0
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [1,2,3,4,5] => 0000 => 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,2,3,5,4] => 0001 => 0
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,3,4,5] => 0000 => 0
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [1,2,3,4,5] => 0000 => 0
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [1,2,3,4,5] => 0000 => 0
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [1,2,4,3,5] => 0010 => 1
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [1,2,3,4,5] => 0000 => 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,2,5,3,4] => 0001 => 0
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,2,5,3,4] => 0001 => 0
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [1,2,3,5,4] => 0001 => 0
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,2,4,5,3] => 0001 => 0
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,2,3,4,5] => 0000 => 0
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [1,2,3,4,5] => 0000 => 0
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [1,2,3,4,5] => 0000 => 0
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [1,2,3,4,5] => 0000 => 0
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [1,2,3,5,4] => 0001 => 0
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [1,2,3,4,5] => 0000 => 0
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [1,3,2,4,5] => 0100 => 1
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [1,3,2,4,5] => 0100 => 1
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [1,2,3,4,5] => 0000 => 0
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [1,2,3,4,5] => 0000 => 0
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [1,4,2,3,5] => 0010 => 1
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [1,4,2,3,5] => 0010 => 1
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [1,2,4,3,5] => 0010 => 1
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [1,3,4,2,5] => 0010 => 1
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [1,2,3,4,5] => 0000 => 0
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [1,5,2,3,4] => 0001 => 0
Description
The number of descents of a binary word.
Matching statistic: St001330
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00160: Permutations graph of inversionsGraphs
St001330: Graphs ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 33%
Values
[.,[.,.]]
=> [1,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[[.,.],.]
=> [1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[[[.,.],.],.]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[[.,[[.,.],.]],.]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[[[.,[.,.]],.],.]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 2
[[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 0 + 2
[.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[.,[[[.,[.,.]],.],.]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[.,[[[[.,.],.],.],.]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[[.,.],[[[.,.],.],.]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[[[.,.],.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[[.,.],.],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[[[.,.],[.,.]],[.,.]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[[[.,[.,.]],.],[.,.]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[[.,[.,[.,[.,.]]]],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 0 + 2
[[.,[.,[[.,.],.]]],.]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[[.,[[.,.],[.,.]]],.]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[[.,[[.,[.,.]],.]],.]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[[.,[[[.,.],.],.]],.]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[[[.,.],[.,[.,.]]],.]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[[[.,.],[[.,.],.]],.]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 0 + 2
[[[.,[.,.]],[.,.]],.]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[[[[.,.],.],[.,.]],.]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[[[.,[.,[.,.]]],.],.]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[[[.,[[.,.],.]],.],.]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[[[[.,.],[.,.]],.],.]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[[[[.,[.,.]],.],.],.]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[[[[[.,.],.],.],.],.]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[.,[.,[.,[[.,.],[.,.]]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[.,[.,[.,[[.,[.,.]],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[.,[.,[[.,.],[.,[.,.]]]]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[.,[.,[[.,.],[[.,.],.]]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[.,[.,[[.,[.,.]],[.,.]]]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[.,[[[.,.],.],[.,.]]]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[.,[.,[[.,[.,[.,.]]],.]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[.,[.,[[.,[[.,.],.]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => ([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[.,[.,[[[.,.],[.,.]],.]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7)
=> ? = 0 + 2
[.,[.,[[[.,[.,.]],.],.]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0 + 2
[.,[.,[[[[.,.],.],.],.]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[.,[[.,.],[.,[.,[.,.]]]]]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[.,[[.,.],[.,[[.,.],.]]]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[.,[[.,.],[[.,.],[.,.]]]]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 0 + 2
[.,[[.,.],[[.,[.,.]],.]]]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => ([(0,4),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> ? = 0 + 2
[.,[[.,.],[[[.,.],.],.]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[.,[[.,[.,.]],[.,[.,.]]]]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[[.,[.,.]],[[.,.],.]]]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => ([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[[[.,.],.],[.,[.,.]]]]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[.,[[[.,.],.],[[.,.],.]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[.,[[.,[.,[.,.]]],[.,.]]]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[[.,[[.,.],.]],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => ([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[[[.,.],[.,.]],[.,.]]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => ([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[[[.,[.,.]],.],[.,.]]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 2
[.,[[[[.,.],.],.],[.,.]]]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[.,[[.,[.,[.,[.,.]]]],.]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0 + 2
[.,[[.,[.,[[.,.],.]]],.]]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[.,[[.,[[.,.],[.,.]]],.]]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0 + 2
[.,[[.,[[.,[.,.]],.]],.]]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[.,[[[[[.,.],.],.],.],.]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[[.,.],[.,[.,[[.,.],.]]]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[.,.],[.,[[.,.],[.,.]]]]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[[.,.],[.,[[[.,.],.],.]]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000455
Mp00015: Binary trees to ordered tree: right child = right brotherOrdered trees
Mp00047: Ordered trees to posetPosets
Mp00198: Posets incomparability graphGraphs
St000455: Graphs ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 33%
Values
[.,[.,.]]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 0
[[.,.],.]
=> [[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[.,[.,[.,.]]]
=> [[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
[.,[[.,.],.]]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
[[.,.],[.,.]]
=> [[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
[[.,[.,.]],.]
=> [[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 0
[[[.,.],.],.]
=> [[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[.,[.,[.,[.,.]]]]
=> [[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[.,[[.,.],.]]]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,.],[.,.]]]
=> [[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,[.,.]],.]]
=> [[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[.,[[[.,.],.],.]]
=> [[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
[[.,.],[.,[.,.]]]
=> [[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[.,.],[[.,.],.]]
=> [[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0
[[.,[.,.]],[.,.]]
=> [[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[[[.,.],.],[.,.]]
=> [[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
[[.,[.,[.,.]]],.]
=> [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0
[[.,[[.,.],.]],.]
=> [[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0
[[[.,.],[.,.]],.]
=> [[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0
[[[.,[.,.]],.],.]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 0
[[[[.,.],.],.],.]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 0
[.,[.,[.,[.,[.,.]]]]]
=> [[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[.,[.,[[.,.],[.,.]]]]
=> [[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[.,[.,[[.,[.,.]],.]]]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[.,[.,[[[.,.],.],.]]]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[.,[[.,.],[.,[.,.]]]]
=> [[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[.,[[.,.],[[.,.],.]]]
=> [[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 0
[.,[[.,[.,.]],[.,.]]]
=> [[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[.,[[[.,.],.],[.,.]]]
=> [[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[.,[[.,[.,[.,.]]],.]]
=> [[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[.,[[.,[[.,.],.]],.]]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[.,[[[.,.],[.,.]],.]]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[.,[[[.,[.,.]],.],.]]
=> [[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[.,[[[[.,.],.],.],.]]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[[.,.],[.,[.,[.,.]]]]
=> [[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[[.,.],[.,[[.,.],.]]]
=> [[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 0
[[.,.],[[.,.],[.,.]]]
=> [[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 0
[[.,.],[[.,[.,.]],.]]
=> [[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 0
[[.,.],[[[.,.],.],.]]
=> [[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
[[.,[.,.]],[.,[.,.]]]
=> [[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[.,[.,.]],[[.,.],.]]
=> [[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 1
[[[.,.],.],[.,[.,.]]]
=> [[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[[[.,.],.],[[.,.],.]]
=> [[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
[[.,[.,[.,.]]],[.,.]]
=> [[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[.,[[.,.],.]],[.,.]]
=> [[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[[.,.],[.,.]],[.,.]]
=> [[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[[.,[.,.]],.],[.,.]]
=> [[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[[[.,.],.],.],[.,.]]
=> [[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[[.,[.,[.,[.,.]]]],.]
=> [[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[[.,[.,[[.,.],.]]],.]
=> [[[],[],[[]]]]
=> ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[[.,[[.,.],[.,.]]],.]
=> [[[],[[]],[]]]
=> ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[[.,[[.,[.,.]],.]],.]
=> [[[],[[],[]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[[.,[[[.,.],.],.]],.]
=> [[[],[[[]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0
[[[.,.],[.,[.,.]]],.]
=> [[[[]],[],[]]]
=> ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[[[.,.],[[.,.],.]],.]
=> [[[[]],[[]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 0
[[[.,[.,.]],[.,.]],.]
=> [[[[],[]],[]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[[[[.,.],.],[.,.]],.]
=> [[[[[]]],[]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0
[[[.,[.,[.,.]]],.],.]
=> [[[[],[],[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 0
[[[.,[[.,.],.]],.],.]
=> [[[[],[[]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> 0
[[[[.,.],[.,.]],.],.]
=> [[[[[]],[]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> 0
[[[[.,[.,.]],.],.],.]
=> [[[[[],[]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 0
[[[[[.,.],.],.],.],.]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? = 0
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[.,[.,[.,[.,[[.,.],.]]]]]
=> [[],[],[],[],[[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[.,[.,[.,[[.,.],[.,.]]]]]
=> [[],[],[],[[]],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> [[],[],[],[[],[]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[.,[.,[[[.,.],.],.]]]]
=> [[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[.,[.,[[.,.],[.,[.,.]]]]]
=> [[],[],[[]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[.,[.,[[.,.],[[.,.],.]]]]
=> [[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> [[],[],[[],[]],[]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[.,[.,[[[.,.],.],[.,.]]]]
=> [[],[],[[[]]],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> [[],[],[[],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[.,[[.,[[.,.],.]],.]]]
=> [[],[],[[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[.,[[[.,.],[.,.]],.]]]
=> [[],[],[[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[.,[[[.,[.,.]],.],.]]]
=> [[],[],[[[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[.,[[[[.,.],.],.],.]]]
=> [[],[],[[[[]]]]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[.,[[.,.],[[.,[.,.]],.]]]
=> [[],[[]],[[],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0
[.,[[.,[.,.]],[.,[.,.]]]]
=> [[],[[],[]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[.,[[.,[.,.]],[[.,.],.]]]
=> [[],[[],[]],[[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
[.,[[.,[.,[.,.]]],[.,.]]]
=> [[],[[],[],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[.,[[.,[[.,.],.]],[.,.]]]
=> [[],[[],[[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[.,[[[.,.],[.,.]],[.,.]]]
=> [[],[[[]],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[.,[[[.,[.,.]],.],[.,.]]]
=> [[],[[[],[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[.,[[.,[.,[.,[.,.]]]],.]]
=> [[],[[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[[.,[.,[[.,.],.]]],.]]
=> [[],[[],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[[.,[[.,.],[.,.]]],.]]
=> [[],[[],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[[.,[[.,[.,.]],.]],.]]
=> [[],[[],[[],[]]]]
=> ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[[.,[[[.,.],.],.]],.]]
=> [[],[[],[[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[[[.,.],[.,[.,.]]],.]]
=> [[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[[[.,.],[[.,.],.]],.]]
=> [[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0
[.,[[[.,[.,.]],[.,.]],.]]
=> [[],[[[],[]],[]]]
=> ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[[[[.,.],.],[.,.]],.]]
=> [[],[[[[]]],[]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[[[.,[.,[.,.]]],.],.]]
=> [[],[[[],[],[]]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(6,4)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[[[.,[[.,.],.]],.],.]]
=> [[],[[[],[[]]]]]
=> ([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[[[[.,.],[.,.]],.],.]]
=> [[],[[[[]],[]]]]
=> ([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[.,[[[[.,[.,.]],.],.],.]]
=> [[],[[[[],[]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(6,3)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[[.,.],[.,[[.,[.,.]],.]]]
=> [[[]],[],[[],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0
[[.,.],[[.,[.,.]],[.,.]]]
=> [[[]],[[],[]],[]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
[[.,.],[[.,[.,[.,.]]],.]]
=> [[[]],[[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(6,5)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00067: Permutations Foata bijectionPermutations
Mp00209: Permutations pattern posetPosets
St000068: Posets ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 33%
Values
[.,[.,.]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 0 + 1
[[.,.],.]
=> [1,2] => [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,.],.]]
=> [2,3,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[[.,.],[.,.]]
=> [3,1,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 1 + 1
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [3,5,4,2,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [4,3,5,2,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [3,4,5,2,1] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1 = 0 + 1
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 + 1
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [3,5,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 1 + 1
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [4,3,2,5,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [3,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 + 1
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [3,2,4,5,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 + 1
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0 + 1
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1 = 0 + 1
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [3,5,2,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1 + 1
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1 + 1
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 1 + 1
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [3,4,2,1,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => [2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0 + 1
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [3,2,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 + 1
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
[[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 0 + 1
[[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1 = 0 + 1
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => [5,6,4,3,2,1] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [6,4,5,3,2,1] => [4,6,5,3,2,1] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 0 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => [5,4,6,3,2,1] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 0 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => [4,5,6,3,2,1] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> [6,5,3,4,2,1] => [3,6,5,4,2,1] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 0 + 1
[.,[.,[[.,.],[[.,.],.]]]]
=> [5,6,3,4,2,1] => [3,5,6,4,2,1] => ([(0,1),(0,2),(0,4),(0,5),(1,9),(1,16),(2,10),(2,16),(3,6),(3,7),(3,15),(4,9),(4,11),(4,16),(5,3),(5,10),(5,11),(5,16),(6,13),(7,13),(7,14),(9,12),(10,6),(10,15),(11,7),(11,12),(11,15),(12,14),(13,8),(14,8),(15,13),(15,14),(16,12),(16,15)],17)
=> ? = 0 + 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> [6,4,3,5,2,1] => [4,6,3,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,6),(1,14),(1,18),(2,13),(2,14),(2,18),(3,12),(3,14),(3,18),(4,11),(4,14),(4,18),(5,8),(5,9),(5,10),(5,16),(6,5),(6,11),(6,12),(6,13),(6,18),(8,15),(8,19),(9,15),(9,19),(10,15),(10,19),(11,8),(11,16),(11,17),(12,9),(12,16),(12,17),(13,10),(13,16),(13,17),(14,17),(15,7),(16,15),(16,19),(17,19),(18,16),(18,17),(19,7)],20)
=> ? = 1 + 1
[.,[.,[[[.,.],.],[.,.]]]]
=> [6,3,4,5,2,1] => [3,4,6,5,2,1] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 0 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> [5,4,3,6,2,1] => [5,4,3,6,2,1] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 0 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> [4,5,3,6,2,1] => [4,5,3,6,2,1] => ([(0,1),(0,2),(0,4),(0,5),(1,9),(1,16),(2,10),(2,16),(3,6),(3,7),(3,15),(4,9),(4,11),(4,16),(5,3),(5,10),(5,11),(5,16),(6,13),(7,13),(7,14),(9,12),(10,6),(10,15),(11,7),(11,12),(11,15),(12,14),(13,8),(14,8),(15,13),(15,14),(16,12),(16,15)],17)
=> ? = 0 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> [5,3,4,6,2,1] => [3,5,4,6,2,1] => ([(0,1),(0,2),(0,3),(0,5),(1,11),(1,14),(2,10),(2,13),(2,14),(3,10),(3,12),(3,14),(4,7),(4,8),(4,9),(5,4),(5,11),(5,12),(5,13),(7,17),(8,17),(8,18),(9,17),(9,18),(10,15),(11,7),(11,16),(12,8),(12,15),(12,16),(13,9),(13,15),(13,16),(14,15),(14,16),(15,18),(16,17),(16,18),(17,6),(18,6)],19)
=> ? = 0 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> [4,3,5,6,2,1] => [4,3,5,6,2,1] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 0 + 1
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => [3,4,5,6,2,1] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> [6,5,4,2,3,1] => [2,6,5,4,3,1] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 0 + 1
[.,[[.,.],[.,[[.,.],.]]]]
=> [5,6,4,2,3,1] => [2,5,6,4,3,1] => ([(0,2),(0,3),(0,4),(0,5),(1,10),(1,17),(2,7),(2,13),(3,9),(3,11),(3,13),(4,1),(4,8),(4,11),(4,13),(5,7),(5,8),(5,9),(7,16),(8,12),(8,16),(8,17),(9,12),(9,16),(10,14),(11,10),(11,12),(11,17),(12,14),(12,15),(13,16),(13,17),(14,6),(15,6),(16,15),(17,14),(17,15)],18)
=> ? = 0 + 1
[.,[[.,.],[[.,.],[.,.]]]]
=> [6,4,5,2,3,1] => [2,4,6,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(1,19),(2,9),(2,12),(2,19),(3,8),(3,12),(3,19),(4,6),(4,8),(4,10),(4,19),(5,6),(5,9),(5,11),(5,19),(6,13),(6,17),(6,18),(8,16),(8,17),(9,16),(9,18),(10,13),(10,17),(11,13),(11,18),(12,16),(13,15),(14,7),(15,7),(16,14),(17,14),(17,15),(18,14),(18,15),(19,16),(19,17),(19,18)],20)
=> ? = 0 + 1
[.,[[.,.],[[.,[.,.]],.]]]
=> [5,4,6,2,3,1] => [2,5,4,6,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,15),(2,10),(2,12),(2,16),(3,11),(3,13),(3,15),(3,16),(4,8),(4,10),(4,11),(4,15),(5,8),(5,9),(5,13),(5,16),(6,18),(6,19),(8,14),(8,17),(8,20),(9,17),(9,21),(10,20),(10,21),(11,14),(11,20),(12,21),(13,6),(13,14),(13,17),(14,19),(15,17),(15,20),(15,21),(16,6),(16,20),(16,21),(17,18),(17,19),(18,7),(19,7),(20,18),(20,19),(21,18)],22)
=> ? = 0 + 1
[.,[[.,.],[[[.,.],.],.]]]
=> [4,5,6,2,3,1] => [2,4,5,6,3,1] => ([(0,1),(0,2),(0,4),(0,5),(1,9),(1,16),(2,10),(2,16),(3,6),(3,7),(3,15),(4,9),(4,11),(4,16),(5,3),(5,10),(5,11),(5,16),(6,13),(7,13),(7,14),(9,12),(10,6),(10,15),(11,7),(11,12),(11,15),(12,14),(13,8),(14,8),(15,13),(15,14),(16,12),(16,15)],17)
=> ? = 0 + 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> [6,5,3,2,4,1] => [3,6,5,2,4,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,19),(1,21),(2,12),(2,16),(2,17),(3,11),(3,16),(3,17),(4,9),(4,10),(4,16),(5,9),(5,12),(5,13),(5,17),(6,1),(6,10),(6,11),(6,13),(6,17),(8,18),(8,20),(9,14),(9,21),(10,14),(10,19),(10,21),(11,19),(11,21),(12,15),(12,21),(13,8),(13,14),(13,15),(13,19),(14,18),(14,20),(15,18),(15,20),(16,21),(17,15),(17,19),(17,21),(18,7),(19,18),(19,20),(20,7),(21,20)],22)
=> ? = 1 + 1
[.,[[.,[.,.]],[[.,.],.]]]
=> [5,6,3,2,4,1] => [3,5,6,2,4,1] => ([(0,1),(0,3),(0,4),(0,5),(0,6),(1,17),(1,19),(2,8),(2,18),(2,22),(3,10),(3,11),(3,19),(4,12),(4,14),(4,17),(4,19),(5,10),(5,13),(5,14),(5,17),(6,2),(6,11),(6,12),(6,13),(6,19),(7,20),(8,20),(8,21),(10,15),(10,22),(11,15),(11,18),(11,22),(12,16),(12,18),(12,22),(13,8),(13,15),(13,16),(13,22),(14,7),(14,16),(14,22),(15,20),(15,21),(16,20),(16,21),(17,7),(17,22),(18,21),(19,18),(19,22),(20,9),(21,9),(22,20),(22,21)],23)
=> ? = 1 + 1
[.,[[[.,.],.],[.,[.,.]]]]
=> [6,5,2,3,4,1] => [2,3,6,5,4,1] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 0 + 1
[.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[[.,.],[.,[.,[.,[.,.]]]]]
=> [6,5,4,3,1,2] => [1,6,5,4,3,2] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[[[.,.],.],[.,[.,[.,.]]]]
=> [6,5,4,1,2,3] => [1,2,6,5,4,3] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[[[[.,.],.],.],[.,[.,.]]]
=> [6,5,1,2,3,4] => [1,2,3,6,5,4] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[[[[[.,.],.],.],.],[.,.]]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[[[.,[.,[.,[.,.]]]],.],.]
=> [4,3,2,1,5,6] => [4,3,2,1,5,6] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[[[[.,[.,[.,.]]],.],.],.]
=> [3,2,1,4,5,6] => [3,2,1,4,5,6] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[[[[[.,[.,.]],.],.],.],.]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 1 = 0 + 1
Description
The number of minimal elements in a poset.
Mp00141: Binary trees pruning number to logarithmic heightDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St000181: Posets ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 33%
Values
[.,[.,.]]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1 = 0 + 1
[[.,.],.]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 1 = 0 + 1
[.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[.,.]]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[.,.],.],.]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[[.,.],[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 0 + 1
[[.,.],[[.,.],.]]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 0 + 1
[[.,[.,.]],[.,.]]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 1 + 1
[[[.,.],.],[.,.]]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0 + 1
[[.,[.,[.,.]]],.]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,[[.,.],.]],.]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[.,.],[.,.]],.]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[[.,.],.],.],.]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 0 + 1
[.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 0 + 1
[.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1 + 1
[.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 0 + 1
[.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[[[.,.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,.],[.,[.,[.,.]]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[[.,.],[.,[[.,.],.]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[[.,.],[[.,.],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? = 0 + 1
[[.,.],[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[[.,.],[[[.,.],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[[.,[.,.]],[.,[.,.]]]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0 + 1
[[[.,.],.],[[.,.],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0 + 1
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[[.,[[.,.],.]],[.,.]]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 1 + 1
[[[.,.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[[[.,[.,.]],.],[.,.]]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 1 + 1
[[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[[.,[.,[.,[.,.]]]],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[.,[[.,.],.]]],.]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[[.,.],[.,.]]],.]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[[.,[[.,[.,.]],.]],.]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[[[.,.],.],.]],.]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[.,.],[.,[.,.]]],.]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 0 + 1
[[[.,.],[[.,.],.]],.]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 0 + 1
[[[.,[.,.]],[.,.]],.]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 0 + 1
[[[[.,.],.],[.,.]],.]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 0 + 1
[[[.,[.,[.,.]]],.],.]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[.,[[.,.],.]],.],.]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[[.,.],[.,.]],.],.]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[[[[.,[.,.]],.],.],.]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[[[.,.],.],.],.],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 0 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 0 + 1
[.,[.,[[.,.],[[.,.],.]]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 0 + 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 1 + 1
[.,[.,[[[.,.],.],[.,.]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 0 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 0 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[.,[[[[.,.],.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 0 + 1
[.,[[.,.],[.,[[.,.],.]]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 0 + 1
[.,[[.,.],[[.,.],[.,.]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 0 + 1
[.,[[.,.],[[.,[.,.]],.]]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 0 + 1
[.,[[.,.],[[[.,.],.],.]]]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 0 + 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 1 + 1
[.,[[.,[.,.]],[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 1 + 1
[.,[[[.,.],.],[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 0 + 1
Description
The number of connected components of the Hasse diagram for the poset.
Mp00141: Binary trees pruning number to logarithmic heightDyck paths
Mp00233: Dyck paths skew partitionSkew partitions
St001490: Skew partitions ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 33%
Values
[.,[.,.]]
=> [1,0,1,0]
=> [[1,1],[]]
=> 1 = 0 + 1
[[.,.],.]
=> [1,1,0,0]
=> [[2],[]]
=> 1 = 0 + 1
[.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> 1 = 0 + 1
[.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> 1 = 0 + 1
[[.,.],[.,.]]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> 1 = 0 + 1
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> 1 = 0 + 1
[[[.,.],.],.]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> 1 = 0 + 1
[.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> 1 = 0 + 1
[.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> 1 = 0 + 1
[.,[[.,.],[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> 1 = 0 + 1
[.,[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> 1 = 0 + 1
[[.,.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> 1 = 0 + 1
[[.,.],[[.,.],.]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> 1 = 0 + 1
[[.,[.,.]],[.,.]]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> ? = 1 + 1
[[[.,.],.],[.,.]]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> ? = 0 + 1
[[.,[.,[.,.]]],.]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> 1 = 0 + 1
[[.,[[.,.],.]],.]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> 1 = 0 + 1
[[[.,.],[.,.]],.]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> 1 = 0 + 1
[[[[.,.],.],.],.]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> 1 = 0 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> 1 = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> 1 = 0 + 1
[.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> ? = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> 1 = 0 + 1
[.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> 1 = 0 + 1
[.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> ? = 0 + 1
[.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> ? = 0 + 1
[.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> ? = 1 + 1
[.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> ? = 0 + 1
[.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> 1 = 0 + 1
[.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> 1 = 0 + 1
[.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> ? = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> 1 = 0 + 1
[.,[[[[.,.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> 1 = 0 + 1
[[.,.],[.,[.,[.,.]]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> ? = 0 + 1
[[.,.],[.,[[.,.],.]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> ? = 0 + 1
[[.,.],[[.,.],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> ? = 0 + 1
[[.,.],[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ? = 0 + 1
[[.,.],[[[.,.],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> ? = 0 + 1
[[.,[.,.]],[.,[.,.]]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ? = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> ? = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ? = 0 + 1
[[[.,.],.],[[.,.],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> ? = 0 + 1
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> ? = 1 + 1
[[.,[[.,.],.]],[.,.]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ? = 1 + 1
[[[.,.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 1 + 1
[[[.,[.,.]],.],[.,.]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ? = 1 + 1
[[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? = 0 + 1
[[.,[.,[.,[.,.]]]],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> 1 = 0 + 1
[[.,[.,[[.,.],.]]],.]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> 1 = 0 + 1
[[.,[[.,.],[.,.]]],.]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> ? = 0 + 1
[[.,[[.,[.,.]],.]],.]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> 1 = 0 + 1
[[.,[[[.,.],.],.]],.]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> 1 = 0 + 1
[[[.,.],[.,[.,.]]],.]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> ? = 0 + 1
[[[.,.],[[.,.],.]],.]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> ? = 0 + 1
[[[.,[.,.]],[.,.]],.]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ? = 0 + 1
[[[[.,.],.],[.,.]],.]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> ? = 0 + 1
[[[.,[.,[.,.]]],.],.]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> 1 = 0 + 1
[[[.,[[.,.],.]],.],.]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> 1 = 0 + 1
[[[[.,.],[.,.]],.],.]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> ? = 0 + 1
[[[[.,[.,.]],.],.],.]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> 1 = 0 + 1
[[[[[.,.],.],.],.],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 1 = 0 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1,1],[]]
=> ? = 0 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1,1],[]]
=> ? = 0 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1,1],[]]
=> ? = 0 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> ? = 0 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1,1],[]]
=> ? = 0 + 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> ? = 0 + 1
[.,[.,[[.,.],[[.,.],.]]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1,1],[]]
=> ? = 0 + 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1,1],[]]
=> ? = 1 + 1
[.,[.,[[[.,.],.],[.,.]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> ? = 0 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> ? = 0 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> ? = 0 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> ? = 0 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> ? = 0 + 1
[.,[.,[[[[.,.],.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [[4,1,1],[]]
=> ? = 0 + 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> ? = 0 + 1
[.,[[.,.],[.,[[.,.],.]]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2,1],[1]]
=> ? = 0 + 1
[.,[[.,.],[[.,.],[.,.]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2,1],[1]]
=> ? = 0 + 1
[.,[[.,.],[[.,[.,.]],.]]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> ? = 0 + 1
[.,[[.,.],[[[.,.],.],.]]]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [[4,2,1],[]]
=> ? = 0 + 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2,1],[1]]
=> ? = 1 + 1
[.,[[.,[.,.]],[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2,1],[]]
=> ? = 1 + 1
[.,[[[.,.],.],[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> ? = 0 + 1
Description
The number of connected components of a skew partition.
Mp00141: Binary trees pruning number to logarithmic heightDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St001890: Posets ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 33%
Values
[.,[.,.]]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1 = 0 + 1
[[.,.],.]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 1 = 0 + 1
[.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[.,.]]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[.,.],.],.]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[[.,.],[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 0 + 1
[[.,.],[[.,.],.]]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 0 + 1
[[.,[.,.]],[.,.]]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 1 + 1
[[[.,.],.],[.,.]]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0 + 1
[[.,[.,[.,.]]],.]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,[[.,.],.]],.]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[.,.],[.,.]],.]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[[.,.],.],.],.]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 0 + 1
[.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 0 + 1
[.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1 + 1
[.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 0 + 1
[.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[[[.,.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,.],[.,[.,[.,.]]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[[.,.],[.,[[.,.],.]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[[.,.],[[.,.],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? = 0 + 1
[[.,.],[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[[.,.],[[[.,.],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[[.,[.,.]],[.,[.,.]]]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0 + 1
[[[.,.],.],[[.,.],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0 + 1
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[[.,[[.,.],.]],[.,.]]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 1 + 1
[[[.,.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[[[.,[.,.]],.],[.,.]]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 1 + 1
[[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[[.,[.,[.,[.,.]]]],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[.,[[.,.],.]]],.]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[[.,.],[.,.]]],.]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[[.,[[.,[.,.]],.]],.]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[[[.,.],.],.]],.]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[.,.],[.,[.,.]]],.]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 0 + 1
[[[.,.],[[.,.],.]],.]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 0 + 1
[[[.,[.,.]],[.,.]],.]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 0 + 1
[[[[.,.],.],[.,.]],.]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 0 + 1
[[[.,[.,[.,.]]],.],.]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[.,[[.,.],.]],.],.]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[[.,.],[.,.]],.],.]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[[[[.,[.,.]],.],.],.]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[[[.,.],.],.],.],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 0 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 0 + 1
[.,[.,[[.,.],[[.,.],.]]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 0 + 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 1 + 1
[.,[.,[[[.,.],.],[.,.]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 0 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 0 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[.,[[[[.,.],.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 0 + 1
[.,[[.,.],[.,[[.,.],.]]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 0 + 1
[.,[[.,.],[[.,.],[.,.]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 0 + 1
[.,[[.,.],[[.,[.,.]],.]]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 0 + 1
[.,[[.,.],[[[.,.],.],.]]]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 0 + 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 1 + 1
[.,[[.,[.,.]],[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 1 + 1
[.,[[[.,.],.],[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 0 + 1
Description
The maximum magnitude of the Möbius function of a poset. The '''Möbius function''' of a poset is the multiplicative inverse of the zeta function in the incidence algebra. The Möbius value μ(x,y) is equal to the signed sum of chains from x to y, where odd-length chains are counted with a minus sign, so this statistic is bounded above by the total number of chains in the poset.
Matching statistic: St001882
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00073: Permutations major-index to inversion-number bijectionPermutations
Mp00170: Permutations to signed permutationSigned permutations
St001882: Signed permutations ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 67%
Values
[.,[.,.]]
=> [2,1] => [2,1] => [2,1] => 0
[[.,.],.]
=> [1,2] => [1,2] => [1,2] => 0
[.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => [3,2,1] => 0
[.,[[.,.],.]]
=> [2,3,1] => [3,1,2] => [3,1,2] => 0
[[.,.],[.,.]]
=> [3,1,2] => [1,3,2] => [1,3,2] => 0
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => [2,1,3] => 0
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,3,1,2] => [4,3,1,2] => 0
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [4,1,3,2] => [4,1,3,2] => 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,2,1,3] => [4,2,1,3] => 0
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [4,1,2,3] => [4,1,2,3] => 0
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [1,4,3,2] => [1,4,3,2] => 0
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [1,4,2,3] => [1,4,2,3] => 0
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [3,1,4,2] => [3,1,4,2] => 1
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [1,2,4,3] => [1,2,4,3] => 0
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 0
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,1,2,4] => [3,1,2,4] => 0
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [1,3,2,4] => [1,3,2,4] => 0
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 0
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ? = 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [5,4,3,1,2] => [5,4,3,1,2] => ? = 0
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [5,4,1,3,2] => [5,4,1,3,2] => ? = 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5,4,2,1,3] => [5,4,2,1,3] => ? = 0
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [5,4,1,2,3] => [5,4,1,2,3] => ? = 0
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [5,1,4,3,2] => [5,1,4,3,2] => ? = 0
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [5,1,4,2,3] => [5,1,4,2,3] => ? = 0
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [5,3,1,4,2] => [5,3,1,4,2] => ? = 1
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [5,1,2,4,3] => [5,1,2,4,3] => ? = 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,3,2,1,4] => [5,3,2,1,4] => ? = 0
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [5,3,1,2,4] => [5,3,1,2,4] => ? = 0
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [5,1,3,2,4] => [5,1,3,2,4] => ? = 0
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [5,2,1,3,4] => [5,2,1,3,4] => ? = 0
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [5,1,2,3,4] => [5,1,2,3,4] => ? = 0
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [1,5,4,3,2] => [1,5,4,3,2] => 0
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [1,5,4,2,3] => [1,5,4,2,3] => 0
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [1,5,2,4,3] => [1,5,2,4,3] => 0
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [1,5,3,2,4] => [1,5,3,2,4] => 0
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [1,5,2,3,4] => [1,5,2,3,4] => 0
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [4,1,5,3,2] => [4,1,5,3,2] => ? = 1
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [4,1,5,2,3] => [4,1,5,2,3] => ? = 1
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [1,2,5,4,3] => [1,2,5,4,3] => 0
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [1,2,5,3,4] => [1,2,5,3,4] => 0
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [4,3,1,5,2] => [4,3,1,5,2] => ? = 1
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [4,1,2,5,3] => [4,1,2,5,3] => ? = 1
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [1,4,2,5,3] => [1,4,2,5,3] => 1
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [3,1,2,5,4] => [3,1,2,5,4] => ? = 1
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => 0
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,3,2,1,5] => [4,3,2,1,5] => ? = 0
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [4,3,1,2,5] => [4,3,1,2,5] => ? = 0
[[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => [4,1,3,2,5] => [4,1,3,2,5] => ? = 0
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [4,2,1,3,5] => [4,2,1,3,5] => ? = 0
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [4,1,2,3,5] => [4,1,2,3,5] => ? = 0
[[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 0
[[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => [1,4,2,3,5] => [1,4,2,3,5] => 0
[[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => [3,1,4,2,5] => [3,1,4,2,5] => ? = 0
[[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 0
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => ? = 0
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => ? = 0
[[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 0
[[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ? = 0
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => ? = 0
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => [6,5,4,3,1,2] => [6,5,4,3,1,2] => ? = 0
[.,[.,[.,[[.,.],[.,.]]]]]
=> [6,4,5,3,2,1] => [6,5,4,1,3,2] => [6,5,4,1,3,2] => ? = 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => [6,5,4,2,1,3] => [6,5,4,2,1,3] => ? = 0
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => [6,5,4,1,2,3] => [6,5,4,1,2,3] => ? = 0
[.,[.,[[.,.],[.,[.,.]]]]]
=> [6,5,3,4,2,1] => [6,5,1,4,3,2] => [6,5,1,4,3,2] => ? = 0
[.,[.,[[.,.],[[.,.],.]]]]
=> [5,6,3,4,2,1] => [6,5,1,4,2,3] => [6,5,1,4,2,3] => ? = 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> [6,4,3,5,2,1] => [6,5,3,1,4,2] => [6,5,3,1,4,2] => ? = 1
[.,[.,[[[.,.],.],[.,.]]]]
=> [6,3,4,5,2,1] => [6,5,1,2,4,3] => [6,5,1,2,4,3] => ? = 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> [5,4,3,6,2,1] => [6,5,3,2,1,4] => [6,5,3,2,1,4] => ? = 0
[.,[.,[[.,[[.,.],.]],.]]]
=> [4,5,3,6,2,1] => [6,5,3,1,2,4] => [6,5,3,1,2,4] => ? = 0
[.,[.,[[[.,.],[.,.]],.]]]
=> [5,3,4,6,2,1] => [6,5,1,3,2,4] => [6,5,1,3,2,4] => ? = 0
[.,[.,[[[.,[.,.]],.],.]]]
=> [4,3,5,6,2,1] => [6,5,2,1,3,4] => [6,5,2,1,3,4] => ? = 0
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => [6,5,1,2,3,4] => [6,5,1,2,3,4] => ? = 0
[.,[[.,.],[.,[.,[.,.]]]]]
=> [6,5,4,2,3,1] => [6,1,5,4,3,2] => [6,1,5,4,3,2] => ? = 0
[.,[[.,.],[.,[[.,.],.]]]]
=> [5,6,4,2,3,1] => [6,1,5,4,2,3] => [6,1,5,4,2,3] => ? = 0
[.,[[.,.],[[.,.],[.,.]]]]
=> [6,4,5,2,3,1] => [6,1,5,2,4,3] => [6,1,5,2,4,3] => ? = 0
[.,[[.,.],[[.,[.,.]],.]]]
=> [5,4,6,2,3,1] => [6,1,5,3,2,4] => [6,1,5,3,2,4] => ? = 0
[.,[[.,.],[[[.,.],.],.]]]
=> [4,5,6,2,3,1] => [6,1,5,2,3,4] => [6,1,5,2,3,4] => ? = 0
[.,[[.,[.,.]],[.,[.,.]]]]
=> [6,5,3,2,4,1] => [6,4,1,5,3,2] => [6,4,1,5,3,2] => ? = 1
[.,[[.,[.,.]],[[.,.],.]]]
=> [5,6,3,2,4,1] => [6,4,1,5,2,3] => [6,4,1,5,2,3] => ? = 1
[.,[[[.,.],.],[.,[.,.]]]]
=> [6,5,2,3,4,1] => [6,1,2,5,4,3] => [6,1,2,5,4,3] => ? = 0
Description
The number of occurrences of a type-B 231 pattern in a signed permutation. For a signed permutation πHn, a triple ni<j<kn is an occurrence of the type-B 231 pattern, if 1j<k, π(i)<π(j) and π(i) is one larger than π(k), i.e., π(i)=π(k)+1 if π(k)1 and π(i)=1 otherwise.
Matching statistic: St001095
Mp00013: Binary trees to posetPosets
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
St001095: Posets ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 33%
Values
[.,[.,.]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[.,.],.]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 0
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 0
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 0
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 0
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 0
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 0
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 0
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 0
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 0
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 0
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 0
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 0
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 0
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 0
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 0
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 0
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 1
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 0
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 0
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 0
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 0
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 0
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 0
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 1
Description
The number of non-isomorphic posets with precisely one further covering relation.
Mp00013: Binary trees to posetPosets
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
St001301: Posets ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 33%
Values
[.,[.,.]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[.,.],.]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 0
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 0
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 0
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 0
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 0
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 0
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 0
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 0
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 0
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 0
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 0
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 0
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 0
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 0
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 0
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 0
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 1
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 0
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 0
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 0
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 0
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 0
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 0
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 1
Description
The first Betti number of the order complex associated with the poset. The order complex of a poset is the simplicial complex whose faces are the chains of the poset. This statistic is the rank of the first homology group of the order complex.
The following 16 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001396Number of triples of incomparable elements in a finite poset. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001845The number of join irreducibles minus the rank of a lattice. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St001867The number of alignments of type EN of a signed permutation. St000805The number of peaks of the associated bargraph. St001208The number of connected components of the quiver of A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra A of K[x]/(xn). St000445The number of rises of length 1 of a Dyck path.