Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 20 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00201: Dyck paths RingelPermutations
Mp00066: Permutations inversePermutations
Mp00241: Permutations invert Laguerre heapPermutations
St000308: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,0,1,0]
=> [3,1,2] => [2,3,1] => [3,1,2] => 2
[1,1,0,0]
=> [2,3,1] => [3,1,2] => [2,3,1] => 2
[1,0,1,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => [4,1,2,3] => 3
[1,0,1,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => [3,4,1,2] => 2
[1,1,0,0,1,0]
=> [2,4,1,3] => [3,1,4,2] => [4,2,3,1] => 2
[1,1,0,1,0,0]
=> [4,3,1,2] => [3,4,2,1] => [4,2,1,3] => 2
[1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => [2,3,4,1] => 3
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => [5,1,2,3,4] => 4
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [2,3,5,1,4] => [4,5,1,2,3] => 3
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [2,4,1,5,3] => [5,3,4,1,2] => 2
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [2,4,5,3,1] => [5,3,1,2,4] => 3
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [2,5,1,3,4] => [3,4,5,1,2] => 3
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [3,1,4,5,2] => [5,2,3,1,4] => 2
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [3,1,5,2,4] => [4,5,2,3,1] => 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,4,2,5,1] => [5,1,4,2,3] => 3
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,4,5,2,1] => [5,2,1,3,4] => 3
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [3,5,2,1,4] => [4,5,2,1,3] => 2
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [4,1,2,5,3] => [2,5,3,4,1] => 3
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,1,5,3,2] => [5,3,2,4,1] => 2
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [4,5,2,3,1] => [3,1,5,2,4] => 3
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => [2,3,4,5,1] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => [6,1,2,3,4,5] => 5
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [2,3,4,6,1,5] => [5,6,1,2,3,4] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [2,3,5,1,6,4] => [6,4,5,1,2,3] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [2,3,5,6,4,1] => [6,4,1,2,3,5] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [2,3,6,1,4,5] => [4,5,6,1,2,3] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [2,4,1,5,6,3] => [6,3,4,1,2,5] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [2,4,1,6,3,5] => [5,6,3,4,1,2] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [2,4,5,3,6,1] => [6,1,2,5,3,4] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [2,4,5,6,3,1] => [6,3,1,2,4,5] => 4
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [2,4,6,3,1,5] => [5,6,3,1,2,4] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [2,5,1,3,6,4] => [3,6,4,5,1,2] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [2,5,1,6,4,3] => [6,4,3,5,1,2] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [2,5,6,3,4,1] => [4,1,2,6,3,5] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [2,6,1,3,4,5] => [3,4,5,6,1,2] => 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [3,1,4,5,6,2] => [6,2,3,1,4,5] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [3,1,4,6,2,5] => [5,6,2,3,1,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [3,1,5,2,6,4] => [6,4,5,2,3,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [3,1,5,6,4,2] => [6,4,2,3,1,5] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [3,1,6,2,4,5] => [4,5,6,2,3,1] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [3,4,2,5,6,1] => [6,1,4,2,3,5] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,4,2,6,1,5] => [5,6,1,4,2,3] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [3,4,5,2,6,1] => [6,1,5,2,3,4] => 4
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,4,5,6,1,2] => [2,6,1,3,4,5] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [3,4,6,2,1,5] => [5,6,2,1,3,4] => 3
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,5,2,1,6,4] => [6,4,5,2,1,3] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,5,2,6,4,1] => [6,4,1,5,2,3] => 3
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,5,6,2,4,1] => [4,1,6,2,3,5] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,6,2,1,4,5] => [4,5,6,2,1,3] => 3
Description
The height of the tree associated to a permutation. A permutation can be mapped to a rooted tree with vertices $\{0,1,2,\ldots,n\}$ and root $0$ in the following way. Entries of the permutations are inserted one after the other, each child is larger than its parent and the children are in strict order from left to right. Details of the construction are found in [1]. The statistic is given by the height of this tree. See also [[St000325]] for the width of this tree.
Mp00201: Dyck paths RingelPermutations
Mp00089: Permutations Inverse Kreweras complementPermutations
Mp00209: Permutations pattern posetPosets
St000717: Posets ⟶ ℤResult quality: 14% values known / values provided: 14%distinct values known / distinct values provided: 83%
Values
[1,0]
=> [2,1] => [1,2] => ([(0,1)],2)
=> 2 = 1 + 1
[1,0,1,0]
=> [3,1,2] => [3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,0,0]
=> [2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 4 = 3 + 1
[1,0,1,1,0,0]
=> [3,1,4,2] => [4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [3,4,5,1,2] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? = 4 + 1
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 3 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [4,5,3,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 3 + 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 3 + 1
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 2 + 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 2 + 1
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 3 + 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [4,5,2,1,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 + 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5,2,1,4,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 2 + 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 3 + 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 2 + 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5,2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 3 + 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,7),(2,9),(2,11),(3,2),(3,10),(4,3),(4,6),(5,1),(5,6),(6,7),(6,10),(7,11),(9,8),(10,9),(10,11),(11,8)],12)
=> ? = 5 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [3,4,6,1,5,2] => ([(0,1),(0,3),(0,4),(0,5),(0,6),(1,16),(1,18),(2,7),(2,17),(2,19),(3,11),(3,12),(3,16),(3,18),(4,10),(4,13),(4,18),(5,9),(5,10),(5,12),(5,18),(6,2),(6,9),(6,11),(6,13),(6,16),(7,20),(9,15),(9,17),(9,19),(9,22),(10,14),(10,19),(11,15),(11,17),(11,19),(11,22),(12,14),(12,15),(12,22),(13,7),(13,19),(13,22),(14,21),(15,20),(15,21),(16,17),(16,22),(17,20),(17,21),(18,14),(18,22),(19,20),(19,21),(20,8),(21,8),(22,20),(22,21)],23)
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [3,5,1,6,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,9),(1,18),(1,22),(2,11),(2,14),(2,16),(2,18),(3,9),(3,14),(3,15),(3,22),(4,12),(4,13),(4,16),(4,22),(5,10),(5,13),(5,15),(5,18),(5,22),(6,8),(6,10),(6,11),(6,12),(6,22),(8,20),(8,25),(9,19),(9,25),(10,20),(10,21),(10,25),(10,26),(11,17),(11,25),(11,26),(12,17),(12,20),(12,26),(13,21),(13,26),(14,19),(14,26),(15,19),(15,21),(15,25),(16,17),(16,26),(17,24),(18,19),(18,25),(18,26),(19,23),(20,23),(20,24),(21,23),(21,24),(22,20),(22,21),(22,25),(22,26),(23,7),(24,7),(25,23),(25,24),(26,23),(26,24)],27)
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [3,5,6,4,1,2] => ([(0,1),(0,3),(0,4),(0,5),(1,11),(1,15),(2,6),(2,8),(2,18),(3,12),(3,13),(3,15),(4,10),(4,13),(4,15),(5,2),(5,10),(5,11),(5,12),(6,16),(6,17),(7,16),(7,17),(8,16),(10,14),(10,18),(11,8),(11,18),(12,6),(12,14),(12,18),(13,7),(13,14),(14,17),(15,7),(15,18),(16,9),(17,9),(18,16),(18,17)],19)
=> ? = 4 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [3,6,1,4,5,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,24),(1,25),(2,9),(2,11),(2,13),(2,15),(3,8),(3,10),(3,13),(3,14),(4,8),(4,11),(4,12),(4,16),(5,9),(5,10),(5,12),(5,17),(6,1),(6,14),(6,15),(6,16),(6,17),(8,20),(8,24),(9,20),(9,25),(10,20),(10,23),(10,25),(11,20),(11,23),(11,24),(12,19),(12,20),(13,18),(13,24),(13,25),(14,18),(14,23),(14,24),(15,18),(15,23),(15,25),(16,19),(16,23),(16,24),(16,25),(17,19),(17,23),(17,24),(17,25),(18,22),(19,21),(19,22),(20,21),(21,7),(22,7),(23,21),(23,22),(24,21),(24,22),(25,21),(25,22)],26)
=> ? = 3 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [4,1,5,6,3,2] => ([(0,3),(0,4),(0,5),(0,6),(1,11),(1,16),(1,18),(2,12),(2,15),(3,9),(3,14),(4,8),(4,10),(4,14),(5,1),(5,8),(5,13),(5,14),(6,2),(6,9),(6,10),(6,13),(8,16),(8,18),(9,15),(9,17),(10,15),(10,17),(10,18),(11,19),(11,20),(12,19),(12,20),(13,11),(13,12),(13,17),(13,18),(14,16),(14,17),(15,19),(16,20),(17,19),(17,20),(18,19),(18,20),(19,7),(20,7)],21)
=> ? = 3 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [4,1,6,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,19),(1,20),(2,15),(2,16),(2,19),(2,20),(3,9),(3,12),(3,13),(3,19),(4,8),(4,11),(4,13),(4,15),(4,20),(5,7),(5,11),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,16),(6,17),(7,21),(7,25),(7,26),(7,27),(8,21),(8,24),(8,26),(9,24),(9,25),(9,26),(11,18),(11,21),(11,25),(12,18),(12,25),(12,27),(13,18),(13,26),(13,27),(14,21),(14,27),(15,24),(15,25),(15,27),(16,24),(16,26),(17,24),(17,26),(17,27),(18,23),(19,24),(19,27),(20,21),(20,25),(20,26),(20,27),(21,22),(21,23),(22,10),(23,10),(24,22),(25,22),(25,23),(26,22),(26,23),(27,22),(27,23)],28)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [4,5,3,6,1,2] => ([(0,1),(0,3),(0,4),(0,5),(1,11),(1,15),(2,6),(2,8),(2,18),(3,12),(3,13),(3,15),(4,10),(4,13),(4,15),(5,2),(5,10),(5,11),(5,12),(6,16),(6,17),(7,16),(7,17),(8,16),(10,14),(10,18),(11,8),(11,18),(12,6),(12,14),(12,18),(13,7),(13,14),(14,17),(15,7),(15,18),(16,9),(17,9),(18,16),(18,17)],19)
=> ? = 4 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [4,5,6,3,1,2] => ([(0,3),(0,4),(0,5),(1,14),(2,6),(2,7),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,13),(7,13),(7,14),(9,1),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(12,14),(13,8),(14,8)],15)
=> ? = 4 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [4,6,3,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,15),(1,16),(2,8),(2,11),(2,16),(2,18),(3,8),(3,10),(3,15),(3,17),(4,9),(4,13),(4,14),(4,17),(4,18),(5,10),(5,12),(5,13),(5,16),(5,18),(6,11),(6,12),(6,14),(6,15),(6,17),(8,21),(8,25),(9,23),(9,24),(10,21),(10,23),(10,25),(11,21),(11,24),(11,25),(12,23),(12,24),(12,25),(13,19),(13,23),(13,25),(14,19),(14,24),(14,25),(15,24),(15,25),(16,23),(16,25),(17,19),(17,21),(17,23),(17,24),(18,19),(18,21),(18,23),(18,24),(19,20),(19,22),(20,7),(21,20),(21,22),(22,7),(23,20),(23,22),(24,20),(24,22),(25,22)],26)
=> ? = 3 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [5,1,3,6,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(1,12),(1,18),(1,20),(2,11),(2,13),(2,17),(2,18),(3,14),(3,15),(3,17),(3,18),(3,20),(4,9),(4,13),(4,15),(4,20),(5,7),(5,9),(5,12),(5,17),(6,7),(6,10),(6,11),(6,14),(6,20),(7,24),(7,25),(7,26),(9,19),(9,26),(10,24),(10,25),(11,21),(11,24),(11,25),(12,24),(12,26),(13,19),(13,21),(14,16),(14,24),(14,25),(15,16),(15,19),(15,21),(16,22),(16,23),(17,19),(17,25),(17,26),(18,21),(18,24),(18,26),(19,23),(20,16),(20,21),(20,25),(20,26),(21,22),(21,23),(22,8),(23,8),(24,22),(25,22),(25,23),(26,22),(26,23)],27)
=> ? = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [5,1,6,4,3,2] => ([(0,2),(0,3),(0,4),(0,6),(1,15),(1,17),(2,12),(2,13),(3,7),(3,12),(4,8),(4,12),(4,13),(5,1),(5,10),(5,11),(5,14),(6,5),(6,7),(6,8),(6,13),(7,10),(7,16),(8,11),(8,14),(8,16),(10,15),(10,17),(11,15),(11,17),(12,16),(13,14),(13,16),(14,15),(14,17),(15,9),(16,17),(17,9)],18)
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [5,6,3,4,1,2] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(1,12),(2,6),(2,7),(2,12),(3,5),(3,7),(3,12),(5,9),(5,10),(6,9),(6,11),(7,9),(7,10),(7,11),(8,4),(9,13),(10,8),(10,13),(11,8),(11,13),(12,10),(12,11),(13,4)],14)
=> ? = 4 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,1,3,4,5,2] => ([(0,1),(0,3),(0,4),(0,5),(1,6),(1,15),(2,7),(2,8),(2,13),(3,10),(3,12),(3,15),(4,2),(4,11),(4,12),(4,15),(5,6),(5,10),(5,11),(6,16),(7,17),(8,17),(8,18),(10,14),(10,16),(11,8),(11,14),(11,16),(12,7),(12,13),(12,14),(13,17),(13,18),(14,17),(14,18),(15,13),(15,16),(16,18),(17,9),(18,9)],19)
=> ? = 4 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,4,5,6,2,3] => ([(0,3),(0,4),(0,5),(1,14),(2,6),(2,8),(2,14),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,13),(6,15),(8,13),(8,15),(9,12),(9,14),(10,8),(10,12),(11,6),(11,12),(11,14),(12,13),(12,15),(13,7),(14,15),(15,7)],16)
=> ? = 3 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [1,4,6,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,18),(1,19),(2,10),(2,13),(2,19),(2,20),(3,9),(3,13),(3,18),(3,20),(4,12),(4,14),(4,18),(4,19),(4,20),(5,11),(5,14),(5,18),(5,19),(5,20),(6,8),(6,9),(6,10),(6,11),(6,12),(8,21),(8,22),(9,15),(9,21),(9,25),(10,15),(10,22),(10,25),(11,16),(11,21),(11,22),(11,25),(12,16),(12,21),(12,22),(12,25),(13,15),(13,25),(14,16),(14,17),(14,25),(15,24),(16,23),(16,24),(17,23),(18,17),(18,21),(18,25),(19,17),(19,22),(19,25),(20,17),(20,25),(21,23),(21,24),(22,23),(22,24),(23,7),(24,7),(25,23),(25,24)],26)
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [1,5,2,6,4,3] => ([(0,1),(0,3),(0,4),(0,5),(0,6),(1,17),(1,19),(2,7),(2,18),(2,22),(3,9),(3,11),(3,19),(4,10),(4,12),(4,17),(4,19),(5,11),(5,12),(5,13),(5,19),(6,2),(6,9),(6,10),(6,13),(6,17),(7,20),(7,21),(9,16),(9,18),(9,22),(10,15),(10,18),(10,22),(11,14),(11,16),(12,14),(12,15),(12,22),(13,7),(13,15),(13,16),(13,22),(14,21),(15,20),(15,21),(16,20),(16,21),(17,18),(17,22),(18,20),(19,14),(19,22),(20,8),(21,8),(22,20),(22,21)],23)
=> ? = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [1,5,6,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(1,9),(2,9),(2,10),(2,12),(3,8),(3,10),(3,11),(4,7),(4,11),(4,12),(5,17),(7,14),(7,15),(8,13),(8,14),(9,13),(9,15),(10,13),(10,16),(11,5),(11,14),(11,16),(12,5),(12,15),(12,16),(13,18),(14,17),(14,18),(15,17),(15,18),(16,17),(16,18),(17,6),(18,6)],19)
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,6,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,15),(2,10),(2,12),(2,16),(3,11),(3,13),(3,15),(3,16),(4,8),(4,10),(4,11),(4,15),(5,8),(5,9),(5,13),(5,16),(6,18),(6,19),(8,14),(8,17),(8,20),(9,17),(9,21),(10,20),(10,21),(11,14),(11,20),(12,21),(13,6),(13,14),(13,17),(14,19),(15,17),(15,20),(15,21),(16,6),(16,20),(16,21),(17,18),(17,19),(18,7),(19,7),(20,18),(20,19),(21,18)],22)
=> ? = 3 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [4,2,5,6,1,3] => ([(0,1),(0,3),(0,4),(0,5),(0,6),(1,16),(1,18),(2,7),(2,17),(2,19),(3,11),(3,12),(3,16),(3,18),(4,10),(4,13),(4,18),(5,9),(5,10),(5,12),(5,18),(6,2),(6,9),(6,11),(6,13),(6,16),(7,20),(9,15),(9,17),(9,19),(9,22),(10,14),(10,19),(11,15),(11,17),(11,19),(11,22),(12,14),(12,15),(12,22),(13,7),(13,19),(13,22),(14,21),(15,20),(15,21),(16,17),(16,22),(17,20),(17,21),(18,14),(18,22),(19,20),(19,21),(20,8),(21,8),(22,20),(22,21)],23)
=> ? = 4 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [4,2,6,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(1,13),(1,16),(1,17),(2,9),(2,13),(2,15),(2,17),(3,12),(3,14),(3,15),(3,17),(4,11),(4,14),(4,16),(4,17),(5,8),(5,11),(5,12),(5,15),(5,16),(6,8),(6,9),(6,10),(6,15),(6,16),(8,19),(8,20),(9,19),(9,22),(9,23),(10,20),(10,22),(10,23),(11,19),(11,22),(11,24),(12,20),(12,22),(12,24),(13,22),(13,23),(14,22),(14,24),(15,19),(15,20),(15,23),(15,24),(16,19),(16,20),(16,23),(16,24),(17,23),(17,24),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,21),(23,18),(23,21),(24,18),(24,21)],25)
=> ? = 3 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,5,2,6,1,3] => ([(0,1),(0,3),(0,4),(0,5),(0,6),(1,16),(1,18),(2,8),(2,17),(2,19),(2,22),(3,11),(3,12),(3,18),(4,13),(4,14),(4,16),(4,18),(5,10),(5,11),(5,13),(5,16),(6,2),(6,10),(6,12),(6,14),(6,18),(7,20),(8,20),(8,21),(10,15),(10,19),(10,22),(11,15),(11,22),(12,15),(12,17),(12,19),(13,7),(13,19),(13,22),(14,8),(14,17),(14,19),(14,22),(15,21),(16,7),(16,22),(17,20),(17,21),(18,17),(18,22),(19,20),(19,21),(20,9),(21,9),(22,20),(22,21)],23)
=> ? = 4 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [4,5,6,1,2,3] => ([(0,1),(0,2),(1,4),(1,10),(2,3),(2,10),(3,5),(3,8),(4,5),(4,9),(5,11),(7,6),(8,7),(8,11),(9,7),(9,11),(10,8),(10,9),(11,6)],12)
=> ? = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,6,2,1,5,3] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,21),(2,11),(2,13),(2,15),(3,12),(3,14),(3,15),(4,8),(4,10),(4,12),(4,15),(5,9),(5,10),(5,13),(5,15),(6,1),(6,8),(6,9),(6,11),(6,14),(8,17),(8,18),(8,19),(8,20),(9,17),(9,18),(9,19),(9,20),(10,20),(10,21),(11,17),(11,19),(12,18),(12,20),(13,17),(13,21),(14,18),(14,19),(14,21),(15,19),(15,20),(15,21),(16,7),(17,16),(17,22),(18,16),(18,22),(19,16),(19,22),(20,16),(20,22),(21,22),(22,7)],23)
=> ? = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [5,2,1,6,4,3] => ([(0,3),(0,4),(0,5),(0,6),(1,12),(1,19),(2,16),(2,19),(3,8),(3,13),(4,7),(4,9),(4,13),(5,2),(5,9),(5,10),(5,13),(6,1),(6,7),(6,8),(6,10),(7,14),(7,17),(7,19),(8,17),(8,19),(9,14),(9,16),(9,19),(10,12),(10,14),(10,16),(10,17),(12,15),(12,18),(13,16),(13,17),(14,15),(14,18),(15,11),(16,15),(16,18),(17,15),(17,18),(18,11),(19,18)],20)
=> ? = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [5,2,6,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,15),(1,16),(2,8),(2,11),(2,16),(2,18),(3,8),(3,10),(3,15),(3,17),(4,9),(4,13),(4,14),(4,17),(4,18),(5,10),(5,12),(5,13),(5,16),(5,18),(6,11),(6,12),(6,14),(6,15),(6,17),(8,21),(8,25),(9,23),(9,24),(10,21),(10,23),(10,25),(11,21),(11,24),(11,25),(12,23),(12,24),(12,25),(13,19),(13,23),(13,25),(14,19),(14,24),(14,25),(15,24),(15,25),(16,23),(16,25),(17,19),(17,21),(17,23),(17,24),(18,19),(18,21),(18,23),(18,24),(19,20),(19,22),(20,7),(21,20),(21,22),(22,7),(23,20),(23,22),(24,20),(24,22),(25,22)],26)
=> ? = 3 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [5,6,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,6),(1,10),(1,15),(1,16),(2,11),(2,15),(2,16),(3,13),(3,15),(3,16),(4,12),(4,15),(4,16),(5,8),(5,9),(5,14),(5,20),(6,5),(6,10),(6,11),(6,12),(6,13),(8,17),(8,19),(9,17),(9,19),(10,18),(10,20),(11,14),(11,18),(11,20),(12,8),(12,18),(12,20),(13,9),(13,18),(13,20),(14,17),(14,19),(15,14),(15,20),(16,14),(16,18),(17,7),(18,19),(19,7),(20,17),(20,19)],21)
=> ? = 4 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6,2,1,4,5,3] => ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,15),(1,18),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,9),(4,10),(4,13),(5,1),(5,8),(5,11),(5,13),(6,19),(6,20),(8,14),(8,18),(9,14),(9,16),(10,16),(10,17),(11,15),(11,17),(11,18),(12,15),(12,16),(12,18),(13,6),(13,14),(13,17),(14,19),(15,20),(16,19),(16,20),(17,19),(17,20),(18,19),(18,20),(19,7),(20,7)],21)
=> ? = 3 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [1,2,5,6,3,4] => ([(0,2),(0,3),(0,4),(1,8),(1,9),(2,1),(2,10),(2,11),(3,6),(3,7),(3,11),(4,6),(4,7),(4,10),(6,14),(7,12),(7,14),(8,13),(8,15),(9,13),(9,15),(10,8),(10,12),(10,14),(11,9),(11,12),(11,14),(12,13),(12,15),(13,5),(14,15),(15,5)],16)
=> ? = 3 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [1,2,6,3,5,4] => ([(0,1),(0,2),(0,4),(0,5),(1,9),(1,16),(2,10),(2,16),(3,6),(3,7),(3,15),(4,9),(4,11),(4,16),(5,3),(5,10),(5,11),(5,16),(6,13),(7,13),(7,14),(9,12),(10,6),(10,15),(11,7),(11,12),(11,15),(12,14),(13,8),(14,8),(15,13),(15,14),(16,12),(16,15)],17)
=> ? = 3 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [1,5,3,6,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,17),(1,18),(2,12),(2,14),(2,18),(2,19),(3,11),(3,14),(3,17),(3,19),(4,10),(4,13),(4,17),(4,18),(4,19),(5,9),(5,13),(5,17),(5,18),(5,19),(6,8),(6,9),(6,10),(6,11),(6,12),(8,21),(8,22),(9,20),(9,21),(9,22),(9,25),(10,20),(10,21),(10,22),(10,25),(11,15),(11,20),(11,21),(12,15),(12,20),(12,22),(13,16),(13,25),(14,15),(14,25),(15,24),(16,23),(17,16),(17,21),(17,25),(18,16),(18,22),(18,25),(19,16),(19,20),(19,25),(20,23),(20,24),(21,23),(21,24),(22,23),(22,24),(23,7),(24,7),(25,23),(25,24)],26)
=> ? = 3 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [1,5,6,3,2,4] => ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,15),(1,18),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,9),(4,10),(4,13),(5,1),(5,8),(5,11),(5,13),(6,19),(6,20),(8,14),(8,18),(9,14),(9,16),(10,16),(10,17),(11,15),(11,17),(11,18),(12,15),(12,16),(12,18),(13,6),(13,14),(13,17),(14,19),(15,20),(16,19),(16,20),(17,19),(17,20),(18,19),(18,20),(19,7),(20,7)],21)
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,6,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(1,11),(1,12),(2,8),(2,9),(2,12),(3,6),(3,7),(3,9),(3,11),(4,6),(4,7),(4,8),(4,10),(6,14),(6,19),(7,13),(7,15),(7,19),(8,13),(8,19),(9,13),(9,16),(9,19),(10,14),(10,15),(10,19),(11,14),(11,15),(11,16),(12,16),(12,19),(13,17),(14,18),(15,17),(15,18),(16,17),(16,18),(17,5),(18,5),(19,17),(19,18)],20)
=> ? = 2 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [5,2,3,6,1,4] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,24),(1,25),(2,9),(2,11),(2,13),(2,15),(3,8),(3,10),(3,13),(3,14),(4,8),(4,11),(4,12),(4,16),(5,9),(5,10),(5,12),(5,17),(6,1),(6,14),(6,15),(6,16),(6,17),(8,20),(8,24),(9,20),(9,25),(10,20),(10,23),(10,25),(11,20),(11,23),(11,24),(12,19),(12,20),(13,18),(13,24),(13,25),(14,18),(14,23),(14,24),(15,18),(15,23),(15,25),(16,19),(16,23),(16,24),(16,25),(17,19),(17,23),(17,24),(17,25),(18,22),(19,21),(19,22),(20,21),(21,7),(22,7),(23,21),(23,22),(24,21),(24,22),(25,21),(25,22)],26)
=> ? = 3 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [5,2,6,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,17),(1,20),(2,13),(2,15),(2,17),(2,18),(2,20),(3,12),(3,14),(3,17),(3,18),(4,8),(4,10),(4,12),(4,20),(5,8),(5,11),(5,14),(5,15),(5,20),(6,9),(6,10),(6,11),(6,13),(6,18),(8,16),(8,22),(8,26),(9,21),(9,26),(10,21),(10,25),(10,26),(11,19),(11,21),(11,26),(12,16),(12,25),(13,21),(13,22),(13,26),(14,16),(14,19),(14,25),(15,19),(15,22),(15,25),(15,26),(16,23),(17,25),(17,26),(18,19),(18,22),(18,25),(18,26),(19,23),(19,24),(20,21),(20,22),(20,25),(21,24),(22,23),(22,24),(23,7),(24,7),(25,23),(25,24),(26,23),(26,24)],27)
=> ? = 3 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [5,6,3,2,1,4] => ([(0,3),(0,4),(0,5),(1,8),(1,14),(2,6),(2,7),(3,10),(3,11),(4,2),(4,11),(4,12),(5,1),(5,10),(5,12),(6,13),(6,15),(7,13),(7,15),(8,13),(8,15),(10,14),(11,7),(11,14),(12,6),(12,8),(12,14),(13,9),(14,15),(15,9)],16)
=> ? = 3 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [6,2,3,1,5,4] => ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,15),(1,18),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,9),(4,10),(4,13),(5,1),(5,8),(5,11),(5,13),(6,19),(6,20),(8,14),(8,18),(9,14),(9,16),(10,16),(10,17),(11,15),(11,17),(11,18),(12,15),(12,16),(12,18),(13,6),(13,14),(13,17),(14,19),(15,20),(16,19),(16,20),(17,19),(17,20),(18,19),(18,20),(19,7),(20,7)],21)
=> ? = 3 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
Description
The number of ordinal summands of a poset. The ordinal sum of two posets $P$ and $Q$ is the poset having elements $(p,0)$ and $(q,1)$ for $p\in P$ and $q\in Q$, and relations $(a,0) < (b,0)$ if $a < b$ in $P$, $(a,1) < (b,1)$ if $a < b$ in $Q$, and $(a,0) < (b,1)$. This statistic is the length of the longest ordinal decomposition of a poset.
Mp00201: Dyck paths RingelPermutations
Mp00067: Permutations Foata bijectionPermutations
Mp00305: Permutations parking functionParking functions
St000942: Parking functions ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,0,1,0]
=> [3,1,2] => [1,3,2] => [1,3,2] => 2
[1,1,0,0]
=> [2,3,1] => [2,3,1] => [2,3,1] => 2
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => [1,2,4,3] => 3
[1,0,1,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => [3,4,1,2] => 2
[1,1,0,0,1,0]
=> [2,4,1,3] => [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,4,3,2] => [1,4,3,2] => 2
[1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => [2,3,4,1] => 3
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => ? = 4
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [4,1,5,2,3] => [4,1,5,2,3] => ? = 3
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [3,1,5,2,4] => [3,1,5,2,4] => ? = 2
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,5,2,4,3] => [1,5,2,4,3] => ? = 3
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [3,4,1,5,2] => [3,4,1,5,2] => ? = 3
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [2,1,3,5,4] => [2,1,3,5,4] => ? = 2
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [4,2,5,1,3] => ? = 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,3,5,2,4] => [1,3,5,2,4] => ? = 3
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => [1,2,5,4,3] => ? = 3
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [4,3,5,1,2] => [4,3,5,1,2] => ? = 2
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [2,3,1,5,4] => [2,3,1,5,4] => ? = 3
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [2,5,1,4,3] => [2,5,1,4,3] => ? = 2
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,3,5,4,2] => [1,3,5,4,2] => ? = 3
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => [2,3,4,5,1] => ? = 4
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => [1,2,3,4,6,5] => ? = 5
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [5,1,2,6,3,4] => [5,1,2,6,3,4] => ? = 4
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [4,1,2,6,3,5] => [4,1,2,6,3,5] => ? = 3
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,6,2,3,5,4] => [1,6,2,3,5,4] => ? = 4
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [4,1,5,2,6,3] => [4,1,5,2,6,3] => ? = 3
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [3,1,2,6,4,5] => [3,1,2,6,4,5] => ? = 3
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [5,3,6,1,2,4] => [5,3,6,1,2,4] => ? = 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,2,6,4,3,5] => [1,2,6,4,3,5] => ? = 4
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,2,6,3,5,4] => [1,2,6,3,5,4] => ? = 4
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [5,4,1,6,2,3] => [5,4,1,6,2,3] => ? = 3
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [3,4,1,2,6,5] => [3,4,1,2,6,5] => ? = 3
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [3,6,1,5,2,4] => [3,6,1,5,2,4] => ? = 2
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,4,2,6,5,3] => [1,4,2,6,5,3] => ? = 4
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [3,4,1,5,6,2] => [3,4,1,5,6,2] => ? = 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [2,1,3,4,6,5] => [2,1,3,4,6,5] => ? = 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [5,2,1,6,3,4] => [5,2,1,6,3,4] => ? = 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [4,2,1,6,3,5] => [4,2,1,6,3,5] => ? = 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [2,6,1,3,5,4] => [2,6,1,3,5,4] => ? = 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [4,2,5,1,6,3] => [4,2,5,1,6,3] => ? = 3
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,3,2,6,4,5] => [1,3,2,6,4,5] => ? = 4
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [5,1,6,3,2,4] => [5,1,6,3,2,4] => ? = 3
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,2,4,6,3,5] => [1,2,4,6,3,5] => ? = 4
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,2,3,5,6,4] => [1,2,3,5,6,4] => ? = 4
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [5,1,4,6,2,3] => [5,1,4,6,2,3] => ? = 3
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [4,3,1,6,2,5] => [4,3,1,6,2,5] => ? = 2
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,1,6,5,2,4] => [3,1,6,5,2,4] => ? = 3
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,4,6,5,2,3] => [1,4,6,5,2,3] => ? = 4
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [4,3,5,1,6,2] => [4,3,5,1,6,2] => ? = 3
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [2,3,1,4,6,5] => [2,3,1,4,6,5] => ? = 3
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [5,2,3,6,1,4] => [5,2,3,6,1,4] => ? = 3
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [2,1,6,4,3,5] => [2,1,6,4,3,5] => ? = 3
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [2,1,6,3,5,4] => [2,1,6,3,5,4] => ? = 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,4,2,6,1,3] => [5,4,2,6,1,3] => ? = 2
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,3,4,6,2,5] => [1,3,4,6,2,5] => ? = 3
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,3,2,6,5,4] => [1,3,2,6,5,4] => ? = 3
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [1,2,6,5,4,3] => [1,2,6,5,4,3] => ? = 3
[]
=> [1] => [1] => [1] => 1
Description
The number of critical left to right maxima of the parking functions. An entry $p$ in a parking function is critical, if there are exactly $p-1$ entries smaller than $p$ and $n-p$ entries larger than $p$. It is a left to right maximum, if there are no larger entries before it. This statistic allows the computation of the Tutte polynomial of the complete graph $K_{n+1}$, via $$ \sum_{P} x^{st(P)}y^{\binom{n+1}{2}-\sum P}, $$ where the sum is over all parking functions of length $n$, see [1, thm.13.5.16].
Matching statistic: St001420
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00093: Dyck paths to binary wordBinary words
Mp00096: Binary words Foata bijectionBinary words
St001420: Binary words ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1,1,0,0]
=> 1100 => 0110 => 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> 110100 => 011100 => 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> 111000 => 001110 => 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => 01111000 => 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 11011000 => 00111010 => 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => 01011100 => 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 11101000 => 00111100 => 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 11110000 => 00011110 => 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 0111110000 => ? = 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1101011000 => 0011110010 => ? = 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1101100100 => 0101110100 => ? = 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1101101000 => 0011110100 => ? = 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1101110000 => 0001110110 => ? = 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => 0110111000 => ? = 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1110011000 => 0010111010 => ? = 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => 0101111000 => ? = 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1110101000 => 0011111000 => ? = 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1110110000 => 0001111010 => ? = 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1111000100 => 0100111100 => ? = 3
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1111001000 => 0010111100 => ? = 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1111010000 => 0001111100 => ? = 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1111100000 => 0000111110 => ? = 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 110101010100 => 011111100000 => ? = 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 110101011000 => 001111100010 => ? = 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 110101100100 => 010111100100 => ? = 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 110101101000 => 001111100100 => ? = 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 110101110000 => 000111100110 => ? = 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 110110010100 => 011011101000 => ? = 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 110110011000 => 001011101010 => ? = 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 110110100100 => 010111101000 => ? = 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 110110101000 => 001111101000 => ? = 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 110110110000 => 000111101010 => ? = 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 110111000100 => 010011101100 => ? = 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 110111001000 => 001011101100 => ? = 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 110111010000 => 000111101100 => ? = 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 110111100000 => 000011101110 => ? = 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 111001010100 => 011101110000 => ? = 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 111001011000 => 001101110010 => ? = 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 111001100100 => 010101110100 => ? = 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 111001101000 => 001101110100 => ? = 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 111001110000 => 000101110110 => ? = 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 111010010100 => 011011110000 => ? = 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 111010011000 => 001011110010 => ? = 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 111010100100 => 010111110000 => ? = 4
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 111010101000 => 001111110000 => ? = 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 111010110000 => 000111110010 => ? = 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 111011000100 => 010011110100 => ? = 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 111011001000 => 001011110100 => ? = 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 111011010000 => 000111110100 => ? = 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 111011100000 => 000011110110 => ? = 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 111100010100 => 011001111000 => ? = 3
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 111100011000 => 001001111010 => ? = 3
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 111100100100 => 010101111000 => ? = 3
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 111100101000 => 001101111000 => ? = 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 111100110000 => 000101111010 => ? = 2
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 111101000100 => 010011111000 => ? = 3
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 111101001000 => 001011111000 => ? = 3
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 111101010000 => 000111111000 => ? = 3
[]
=> [1,0]
=> 10 => 10 => 1
Description
Half the length of a longest factor which is its own reverse-complement of a binary word.
Matching statistic: St001937
Mp00201: Dyck paths RingelPermutations
Mp00073: Permutations major-index to inversion-number bijectionPermutations
Mp00305: Permutations parking functionParking functions
St001937: Parking functions ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,0,1,0]
=> [3,1,2] => [1,3,2] => [1,3,2] => 2
[1,1,0,0]
=> [2,3,1] => [3,1,2] => [3,1,2] => 2
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => [1,2,4,3] => 3
[1,0,1,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => [3,4,1,2] => 2
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,3,4,2] => [1,3,4,2] => 2
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,4,3,2] => [1,4,3,2] => 2
[1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => [4,1,2,3] => 3
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => ? = 4
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [2,4,5,1,3] => [2,4,5,1,3] => ? = 3
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [3,1,4,5,2] => [3,1,4,5,2] => ? = 2
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [2,1,5,4,3] => [2,1,5,4,3] => ? = 3
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [3,5,1,2,4] => [3,5,1,2,4] => ? = 3
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,3,2,5,4] => [1,3,2,5,4] => ? = 2
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [4,2,5,1,3] => ? = 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,4,2,5,3] => [1,4,2,5,3] => ? = 3
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => [1,2,5,4,3] => ? = 3
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [4,5,2,1,3] => [4,5,2,1,3] => ? = 2
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,3,4,5,2] => [1,3,4,5,2] => ? = 3
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,4,5,3,2] => [1,4,5,3,2] => ? = 2
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,5,2,4,3] => [1,5,2,4,3] => ? = 3
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => [5,1,2,3,4] => ? = 4
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => [1,2,3,4,6,5] => ? = 5
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [2,3,5,6,1,4] => [2,3,5,6,1,4] => ? = 4
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [2,4,1,5,6,3] => [2,4,1,5,6,3] => ? = 3
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [2,3,1,6,5,4] => [2,3,1,6,5,4] => ? = 4
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [2,4,6,1,3,5] => [2,4,6,1,3,5] => ? = 3
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [3,1,4,2,6,5] => [3,1,4,2,6,5] => ? = 3
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [4,5,2,6,1,3] => [4,5,2,6,1,3] => ? = 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [2,1,5,3,6,4] => [2,1,5,3,6,4] => ? = 4
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [2,1,3,6,5,4] => [2,1,3,6,5,4] => ? = 4
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [3,5,6,2,1,4] => [3,5,6,2,1,4] => ? = 3
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [3,1,4,5,6,2] => [3,1,4,5,6,2] => ? = 3
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [4,1,5,6,3,2] => [4,1,5,6,3,2] => ? = 2
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [2,1,6,3,5,4] => [2,1,6,3,5,4] => ? = 4
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [3,6,1,2,4,5] => [3,6,1,2,4,5] => ? = 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,3,2,4,6,5] => [1,3,2,4,6,5] => ? = 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [2,4,5,6,1,3] => [2,4,5,6,1,3] => ? = 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [4,2,1,5,6,3] => [4,2,1,5,6,3] => ? = 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [2,4,1,6,5,3] => [2,4,1,6,5,3] => ? = 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [4,2,6,1,3,5] => [4,2,6,1,3,5] => ? = 3
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,4,2,3,6,5] => [1,4,2,3,6,5] => ? = 4
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [2,5,4,6,1,3] => [2,5,4,6,1,3] => ? = 3
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,2,5,3,6,4] => [1,2,5,3,6,4] => ? = 4
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,2,3,6,4,5] => [1,2,3,6,4,5] => ? = 4
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [2,5,6,3,1,4] => [2,5,6,3,1,4] => ? = 3
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [4,1,5,3,6,2] => [4,1,5,3,6,2] => ? = 2
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [4,1,3,6,5,2] => [4,1,3,6,5,2] => ? = 3
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [4,1,6,2,5,3] => [4,1,6,2,5,3] => ? = 4
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [4,6,2,1,3,5] => [4,6,2,1,3,5] => ? = 3
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [1,3,4,2,6,5] => [1,3,4,2,6,5] => ? = 3
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [5,2,3,6,1,4] => [5,2,3,6,1,4] => ? = 3
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [1,4,5,2,6,3] => [1,4,5,2,6,3] => ? = 3
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [1,4,2,6,5,3] => [1,4,2,6,5,3] => ? = 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,3,6,2,1,4] => [5,3,6,2,1,4] => ? = 2
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,5,2,3,6,4] => [1,5,2,3,6,4] => ? = 3
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,2,4,6,5,3] => [1,2,4,6,5,3] => ? = 3
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [1,2,6,5,4,3] => [1,2,6,5,4,3] => ? = 3
[]
=> [1] => [1] => [1] => 1
Description
The size of the center of a parking function. The center of a parking function $p_1,\dots,p_n$ is the longest subsequence $a_1,\dots,a_k$ such that $a_i\leq i$.
Matching statistic: St001423
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00093: Dyck paths to binary wordBinary words
Mp00096: Binary words Foata bijectionBinary words
St001423: Binary words ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1,1,0,0]
=> 1100 => 0110 => 0 = 1 - 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> 110100 => 011100 => 1 = 2 - 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> 111000 => 001110 => 1 = 2 - 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => 01111000 => 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 11011000 => 00111010 => 1 = 2 - 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => 01011100 => 1 = 2 - 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 11101000 => 00111100 => 1 = 2 - 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 11110000 => 00011110 => 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 0111110000 => ? = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1101011000 => 0011110010 => ? = 3 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1101100100 => 0101110100 => ? = 2 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1101101000 => 0011110100 => ? = 3 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1101110000 => 0001110110 => ? = 3 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => 0110111000 => ? = 2 - 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1110011000 => 0010111010 => ? = 2 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => 0101111000 => ? = 3 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1110101000 => 0011111000 => ? = 3 - 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1110110000 => 0001111010 => ? = 2 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1111000100 => 0100111100 => ? = 3 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1111001000 => 0010111100 => ? = 2 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1111010000 => 0001111100 => ? = 3 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1111100000 => 0000111110 => ? = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 110101010100 => 011111100000 => ? = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 110101011000 => 001111100010 => ? = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 110101100100 => 010111100100 => ? = 3 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 110101101000 => 001111100100 => ? = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 110101110000 => 000111100110 => ? = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 110110010100 => 011011101000 => ? = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 110110011000 => 001011101010 => ? = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 110110100100 => 010111101000 => ? = 4 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 110110101000 => 001111101000 => ? = 4 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 110110110000 => 000111101010 => ? = 3 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 110111000100 => 010011101100 => ? = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 110111001000 => 001011101100 => ? = 2 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 110111010000 => 000111101100 => ? = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 110111100000 => 000011101110 => ? = 4 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 111001010100 => 011101110000 => ? = 3 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 111001011000 => 001101110010 => ? = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 111001100100 => 010101110100 => ? = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 111001101000 => 001101110100 => ? = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 111001110000 => 000101110110 => ? = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 111010010100 => 011011110000 => ? = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 111010011000 => 001011110010 => ? = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 111010100100 => 010111110000 => ? = 4 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 111010101000 => 001111110000 => ? = 4 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 111010110000 => 000111110010 => ? = 3 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 111011000100 => 010011110100 => ? = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 111011001000 => 001011110100 => ? = 3 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 111011010000 => 000111110100 => ? = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 111011100000 => 000011110110 => ? = 3 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 111100010100 => 011001111000 => ? = 3 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 111100011000 => 001001111010 => ? = 3 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 111100100100 => 010101111000 => ? = 3 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 111100101000 => 001101111000 => ? = 2 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 111100110000 => 000101111010 => ? = 2 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 111101000100 => 010011111000 => ? = 3 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 111101001000 => 001011111000 => ? = 3 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 111101010000 => 000111111000 => ? = 3 - 1
[]
=> [1,0]
=> 10 => 10 => 0 = 1 - 1
Description
The number of distinct cubes in a binary word. A factor of a word is a sequence of consecutive letters. This statistic records the number of distinct non-empty words $u$ such that $uuu$ is a factor of the word.
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
St000887: Permutations ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [(1,2)]
=> [2,1] => 1
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 2
[1,1,0,0]
=> [(1,4),(2,3)]
=> [3,4,2,1] => 2
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 3
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => 2
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => 2
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => 2
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [4,5,6,3,2,1] => 3
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => ? = 4
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? = 3
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => ? = 2
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => ? = 3
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 3
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => ? = 2
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => ? = 2
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => ? = 3
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? = 3
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => ? = 2
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => ? = 3
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [4,5,7,3,2,8,6,1] => ? = 2
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => ? = 3
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [5,6,7,8,4,3,2,1] => ? = 4
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => ? = 5
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,9,10,8,7] => ? = 4
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = 3
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => ? = 4
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => ? = 3
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,5,6,4,3,8,7,10,9] => ? = 3
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,5,6,4,3,9,10,8,7] => ? = 2
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => ? = 4
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => ? = 4
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,5,8,4,9,10,7,6,3] => ? = 3
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => ? = 3
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => ? = 2
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => ? = 4
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => ? = 4
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [3,4,2,1,6,5,8,7,10,9] => ? = 3
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [3,4,2,1,6,5,9,10,8,7] => ? = 2
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => ? = 2
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => ? = 2
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [3,4,2,1,8,9,10,7,6,5] => ? = 3
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [3,5,2,6,4,1,8,7,10,9] => ? = 4
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [3,5,2,6,4,1,9,10,8,7] => ? = 3
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => ? = 4
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 4
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [3,5,2,8,4,9,10,7,6,1] => ? = 3
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [3,6,2,7,8,5,4,1,10,9] => ? = 2
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [3,6,2,7,9,5,4,10,8,1] => ? = 3
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [3,6,2,8,9,5,10,7,4,1] => ? = 4
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [3,7,2,8,9,10,6,5,4,1] => ? = 3
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [4,5,6,3,2,1,8,7,10,9] => ? = 3
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [4,5,6,3,2,1,9,10,8,7] => ? = 3
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [4,5,7,3,2,8,6,1,10,9] => ? = 3
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => ? = 2
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [4,5,8,3,2,9,10,7,6,1] => ? = 2
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [4,6,7,3,8,5,2,1,10,9] => ? = 3
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [4,6,7,3,9,5,2,10,8,1] => ? = 3
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => ? = 3
Description
The maximal number of nonzero entries on a diagonal of a permutation matrix. For example, the permutation matrix of $\pi=[3,1,2,5,4]$ is $$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix},$$ and the entries corresponding to $\pi_2=1$, $\pi_3=2$ and $\pi_5=4$ are all on the fourth diagonal from the right. In other words, this is $\max_k \lvert\{i: \pi_i-i = k\}\rvert$
Mp00099: Dyck paths bounce pathDyck paths
Mp00201: Dyck paths RingelPermutations
St001207: Permutations ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1,0]
=> [2,1] => 1
[1,0,1,0]
=> [1,0,1,0]
=> [3,1,2] => 2
[1,1,0,0]
=> [1,1,0,0]
=> [2,3,1] => 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? = 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? = 3
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => ? = 2
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? = 3
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ? = 3
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => ? = 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ? = 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => ? = 3
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ? = 3
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ? = 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ? = 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ? = 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ? = 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ? = 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ? = 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ? = 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ? = 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ? = 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => ? = 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ? = 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ? = 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ? = 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ? = 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ? = 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ? = 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ? = 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => ? = 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => ? = 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => ? = 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => ? = 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ? = 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => ? = 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ? = 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => ? = 4
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ? = 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ? = 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ? = 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ? = 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ? = 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ? = 3
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 3
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => ? = 3
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ? = 2
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ? = 3
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 3
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ? = 3
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Matching statistic: St000075
Mp00099: Dyck paths bounce pathDyck paths
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
St000075: Standard tableaux ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [[1],[2]]
=> 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [[1,2],[3,4]]
=> 2
[1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [[1,3],[2,4]]
=> 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> 3
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> 2
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> ? = 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> ? = 3
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> ? = 2
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> ? = 3
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> ? = 3
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> ? = 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> ? = 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> ? = 3
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> ? = 3
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> ? = 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> ? = 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> ? = 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> ? = 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> ? = 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[1,2,3,4,6],[5,7,8,9,10]]
=> ? = 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[1,2,3,5,7],[4,6,8,9,10]]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[1,2,3,4,6],[5,7,8,9,10]]
=> ? = 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[1,2,3,4,7],[5,6,8,9,10]]
=> ? = 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[1,2,4,5,8],[3,6,7,9,10]]
=> ? = 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> ? = 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[1,2,3,5,7],[4,6,8,9,10]]
=> ? = 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> ? = 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[1,2,3,4,7],[5,6,8,9,10]]
=> ? = 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[1,2,3,5,8],[4,6,7,9,10]]
=> ? = 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> ? = 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[1,2,3,4,7],[5,6,8,9,10]]
=> ? = 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[1,2,3,4,8],[5,6,7,9,10]]
=> ? = 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> ? = 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,3,4,6,9],[2,5,7,8,10]]
=> ? = 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> ? = 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,3,4,6,9],[2,5,7,8,10]]
=> ? = 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> ? = 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[1,2,4,5,8],[3,6,7,9,10]]
=> ? = 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> ? = 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> ? = 4
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> ? = 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> ? = 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[1,2,3,5,8],[4,6,7,9,10]]
=> ? = 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> ? = 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> ? = 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[1,2,3,4,8],[5,6,7,9,10]]
=> ? = 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[1,2,4,5,9],[3,6,7,8,10]]
=> ? = 3
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> ? = 3
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> ? = 3
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> ? = 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> ? = 2
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[1,2,3,5,8],[4,6,7,9,10]]
=> ? = 3
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> ? = 3
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> ? = 3
Description
The orbit size of a standard tableau under promotion.
Matching statistic: St000092
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
Mp00310: Permutations toric promotionPermutations
St000092: Permutations ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [(1,2)]
=> [2,1] => [2,1] => 1
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [4,1,3,2] => 2
[1,1,0,0]
=> [(1,4),(2,3)]
=> [3,4,2,1] => [2,1,3,4] => 2
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [6,1,3,2,5,4] => 3
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => [6,1,4,5,3,2] => 2
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => [2,1,3,6,5,4] => 2
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => [2,4,1,6,5,3] => 2
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [4,5,6,3,2,1] => [3,4,1,5,2,6] => 3
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [8,1,3,2,5,4,7,6] => ? = 4
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => [8,1,3,2,6,7,5,4] => ? = 3
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => [8,1,4,5,3,2,7,6] => ? = 2
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => [8,1,4,6,3,7,5,2] => ? = 3
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => [8,1,5,6,7,4,3,2] => ? = 3
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => [2,1,3,8,5,4,7,6] => ? = 2
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => [2,1,3,8,6,7,5,4] => ? = 2
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => [2,4,1,8,5,3,7,6] => ? = 3
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => [2,4,8,6,3,1,7,5] => ? = 3
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => [2,5,8,6,1,7,4,3] => ? = 2
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => [3,4,1,5,2,8,7,6] => ? = 3
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [4,5,7,3,2,8,6,1] => [3,4,6,2,1,8,7,5] => ? = 2
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => [3,5,6,2,1,7,4,8] => ? = 3
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [5,6,7,8,4,3,2,1] => [4,5,6,1,7,3,2,8] => ? = 4
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => [10,1,3,2,5,4,7,6,9,8] => ? = 5
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,9,10,8,7] => [10,1,3,2,5,4,8,9,7,6] => ? = 4
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => [10,1,3,2,6,7,5,4,9,8] => ? = 3
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => [10,1,3,2,6,8,5,9,7,4] => ? = 4
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => [10,1,3,2,7,8,9,6,5,4] => ? = 3
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,5,6,4,3,8,7,10,9] => [10,1,4,5,3,2,7,6,9,8] => ? = 3
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,5,6,4,3,9,10,8,7] => [10,1,4,5,3,2,8,9,7,6] => ? = 2
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => [10,1,4,6,3,7,5,2,9,8] => ? = 4
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => [10,1,4,6,3,8,5,9,7,2] => ? = 4
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,5,8,4,9,10,7,6,3] => [10,1,4,7,3,8,9,6,5,2] => ? = 3
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => [10,1,5,6,7,4,3,2,9,8] => ? = 3
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => [10,1,5,6,8,4,3,9,7,2] => ? = 2
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => [10,1,5,7,8,4,9,6,3,2] => ? = 4
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => [10,1,6,7,8,9,5,4,3,2] => ? = 4
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [3,4,2,1,6,5,8,7,10,9] => [2,1,3,10,5,4,7,6,9,8] => ? = 3
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [3,4,2,1,6,5,9,10,8,7] => [2,1,3,10,5,4,8,9,7,6] => ? = 2
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => [2,1,3,10,6,7,5,4,9,8] => ? = 2
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => [2,1,3,10,6,8,5,9,7,4] => ? = 2
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [3,4,2,1,8,9,10,7,6,5] => [2,1,3,10,7,8,9,6,5,4] => ? = 3
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [3,5,2,6,4,1,8,7,10,9] => [2,4,1,10,5,3,7,6,9,8] => ? = 4
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [3,5,2,6,4,1,9,10,8,7] => [2,4,1,10,5,3,8,9,7,6] => ? = 3
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => [2,4,10,6,3,1,7,5,9,8] => ? = 4
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => [2,4,10,6,3,8,5,1,9,7] => ? = 4
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [3,5,2,8,4,9,10,7,6,1] => [2,4,10,7,3,8,1,9,6,5] => ? = 3
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [3,6,2,7,8,5,4,1,10,9] => [2,5,10,6,1,7,4,3,9,8] => ? = 2
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [3,6,2,7,9,5,4,10,8,1] => [2,5,10,6,8,4,3,1,9,7] => ? = 3
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [3,6,2,8,9,5,10,7,4,1] => [2,5,10,7,8,4,1,9,6,3] => ? = 4
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [3,7,2,8,9,10,6,5,4,1] => [2,6,10,7,8,1,9,5,4,3] => ? = 3
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [4,5,6,3,2,1,8,7,10,9] => [3,4,1,5,2,10,7,6,9,8] => ? = 3
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [4,5,6,3,2,1,9,10,8,7] => [3,4,1,5,2,10,8,9,7,6] => ? = 3
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [4,5,7,3,2,8,6,1,10,9] => [3,4,6,2,1,10,7,5,9,8] => ? = 3
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => [3,4,6,2,10,8,5,1,9,7] => ? = 2
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [4,5,8,3,2,9,10,7,6,1] => [3,4,7,2,10,8,1,9,6,5] => ? = 2
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [4,6,7,3,8,5,2,1,10,9] => [3,5,6,2,1,7,4,10,9,8] => ? = 3
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [4,6,7,3,9,5,2,10,8,1] => [3,5,6,2,8,4,1,10,9,7] => ? = 3
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => [3,5,7,2,8,4,1,9,6,10] => ? = 3
Description
The number of outer peaks of a permutation. An outer peak in a permutation $w = [w_1,..., w_n]$ is either a position $i$ such that $w_{i-1} < w_i > w_{i+1}$ or $1$ if $w_1 > w_2$ or $n$ if $w_{n} > w_{n-1}$. In other words, it is a peak in the word $[0,w_1,..., w_n,0]$.
The following 10 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000353The number of inner valleys of a permutation. St000850The number of 1/2-balanced pairs in a poset. St000906The length of the shortest maximal chain in a poset. St000923The minimal number with no two order isomorphic substrings of this length in a permutation. St001566The length of the longest arithmetic progression in a permutation. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001720The minimal length of a chain of small intervals in a lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.