Your data matches 62 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000319
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000319: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> 0
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
Description
The spin of an integer partition. The Ferrers shape of an integer partition $\lambda$ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of $\lambda$ with the vertical lines in the Ferrers shape. The following example is taken from Appendix B in [1]: Let $\lambda = (5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions $$(5,5,4,4,2,1), (4,3,3,1), (2,2), (1), ().$$ The first strip $(5,5,4,4,2,1) \setminus (4,3,3,1)$ crosses $4$ times, the second strip $(4,3,3,1) \setminus (2,2)$ crosses $3$ times, the strip $(2,2) \setminus (1)$ crosses $1$ time, and the remaining strip $(1) \setminus ()$ does not cross. This yields the spin of $(5,5,4,4,2,1)$ to be $4+3+1 = 8$.
Matching statistic: St000320
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000320: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> 0
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
Description
The dinv adjustment of an integer partition. The Ferrers shape of an integer partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ can be decomposed into border strips. For $0 \leq j < \lambda_1$ let $n_j$ be the length of the border strip starting at $(\lambda_1-j,0)$. The dinv adjustment is then defined by $$\sum_{j:n_j > 0}(\lambda_1-1-j).$$ The following example is taken from Appendix B in [2]: Let $\lambda=(5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions $$(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),$$ and we obtain $(n_0,\ldots,n_4) = (10,7,0,3,1)$. The dinv adjustment is thus $4+3+1+0 = 8$.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001214: Integer partitions ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [2]
=> []
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [2]
=> []
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [3]
=> []
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [2]
=> []
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [3]
=> []
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [2]
=> []
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [3]
=> []
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [4]
=> []
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [2]
=> []
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [3]
=> []
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [3]
=> []
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [4]
=> []
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [4]
=> []
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [2,2,2]
=> [2,2]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [1,1]
=> [2]
=> []
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [3]
=> []
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [4]
=> []
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> []
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [2]
=> []
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [3]
=> []
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [3]
=> []
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [4]
=> []
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [4]
=> []
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> []
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [4]
=> []
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> []
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> []
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,4),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,3]
=> [2,2,2,1,1,1,1,1,1,1]
=> [2,2,1,1,1,1,1,1,1]
=> ? = 2
([(0,1),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,3),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
Description
The aft of an integer partition. The aft is the size of the partition minus the length of the first row or column, whichever is larger. See also [[St000784]].
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St000017: Standard tableaux ⟶ ℤResult quality: 51% values known / values provided: 51%distinct values known / distinct values provided: 60%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [2]
=> [[1,2]]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [2]
=> [[1,2]]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [2]
=> [[1,2]]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [2]
=> [[1,2]]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [2]
=> [[1,2]]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> 0
([(3,5),(4,5)],6)
=> [1,1]
=> [2]
=> [[1,2]]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [2]
=> [[1,2]]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> [2,1,1,1,1,1,1,1,1]
=> [[1,10],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,3]
=> [2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> ? = 2
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> [2,1,1,1,1,1,1,1,1]
=> [[1,10],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,11],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7,1,1]
=> [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> ? = 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [8,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7,1,1]
=> [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> ? = 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1]
=> [2,1,1,1,1,1,1,1,1]
=> [[1,10],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 0
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [7,1,1]
=> [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> ? = 0
([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3,1]
=> [3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> ? = 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1,1,1]
=> [4,1,1,1,1,1]
=> [[1,7,8,9],[2],[3],[4],[5],[6]]
=> ? = 0
([(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> [8,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7,1,1]
=> [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> ? = 0
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [7,1,1]
=> [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> ? = 0
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1]
=> [2,1,1,1,1,1,1,1,1]
=> [[1,10],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 0
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,3]
=> [2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> ? = 2
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> [7,1,1]
=> [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> ? = 0
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3,1]
=> [3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> ? = 2
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7,3]
=> [2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4],[5],[7],[9]]
=> ? = 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [7,1,1]
=> [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> ? = 0
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [7,1,1]
=> [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> ? = 0
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1,1,1]
=> [4,1,1,1,1,1]
=> [[1,7,8,9],[2],[3],[4],[5],[6]]
=> ? = 0
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8,1,1]
=> [3,1,1,1,1,1,1,1]
=> [[1,9,10],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [8,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7)
=> [8,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1]
=> [2,1,1,1,1,1,1,1,1]
=> [[1,10],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [9,1]
=> [2,1,1,1,1,1,1,1,1]
=> [[1,10],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 0
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [7,1,1]
=> [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> ? = 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [9,1]
=> [2,1,1,1,1,1,1,1,1]
=> [[1,10],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 0
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8,1,1]
=> [3,1,1,1,1,1,1,1]
=> [[1,9,10],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,11],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [7,1,1]
=> [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> ? = 0
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [8,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [8,1,1]
=> [3,1,1,1,1,1,1,1]
=> [[1,9,10],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,6),(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [7,1,1]
=> [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> ? = 0
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [8,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [9,1]
=> [2,1,1,1,1,1,1,1,1]
=> [[1,10],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 0
([(0,1),(0,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4]
=> [2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> ? = 3
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,3,1]
=> [3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> ? = 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,5]
=> [2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> ? = 4
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [8,1]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
([(0,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [7,1,1]
=> [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> ? = 0
Description
The number of inversions of a standard tableau. Let $T$ be a tableau. An inversion is an attacking pair $(c,d)$ of the shape of $T$ (see [[St000016]] for a definition of this) such that the entry of $c$ in $T$ is greater than the entry of $d$.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001596: Skew partitions ⟶ ℤResult quality: 35% values known / values provided: 35%distinct values known / distinct values provided: 40%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [[1,1],[]]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [[1,1],[]]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [[1,1],[]]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[3,1],[]]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [[1,1],[]]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [[1,1],[]]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [[3,1],[]]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [[4,1],[]]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [[5,1],[]]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [[3,1],[]]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [[3,3],[]]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [[5,1],[]]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [[6,1],[]]
=> 0
([(3,5),(4,5)],6)
=> [1,1]
=> [[1,1],[]]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [[1,1],[]]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [[3,1],[]]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [[4,1],[]]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[4,1,1],[]]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [[5,1],[]]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [[5,1,1],[]]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [[4,1,1],[]]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [[6,1],[]]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [[5,1,1],[]]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [[7,1],[]]
=> ? = 0
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [[7,1],[]]
=> ? = 0
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,3]
=> [[5,3],[]]
=> ? = 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [[7,1],[]]
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [[7,1],[]]
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7,1]
=> [[7,1],[]]
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [[8,1],[]]
=> ? = 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [[7,1],[]]
=> ? = 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> [[8,1],[]]
=> ? = 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [[7,1],[]]
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [7,1]
=> [[7,1],[]]
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [[8,1],[]]
=> ? = 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [[8,1],[]]
=> ? = 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> [[9,1],[]]
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,3]
=> [[5,3],[]]
=> ? = 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,3]
=> [[6,3],[]]
=> ? = 2
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [[8,1],[]]
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> [[9,1],[]]
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10,1]
=> [[10,1],[]]
=> ? = 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1,1]
=> [[5,1,1,1],[]]
=> ? = 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7,1]
=> [[7,1],[]]
=> ? = 0
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1,1]
=> [[5,1,1,1],[]]
=> ? = 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7,1,1]
=> [[7,1,1],[]]
=> ? = 0
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [8,1]
=> [[8,1],[]]
=> ? = 0
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7,1,1]
=> [[7,1,1],[]]
=> ? = 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1]
=> [[9,1],[]]
=> ? = 0
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 2
([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 0
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1,1]
=> [[5,1,1,1],[]]
=> ? = 0
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [7,1]
=> [[7,1],[]]
=> ? = 0
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [7,1,1]
=> [[7,1,1],[]]
=> ? = 0
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> [4,3,1]
=> [[4,3,1],[]]
=> ? = 2
([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> [5,1,1,1]
=> [[5,1,1,1],[]]
=> ? = 0
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [[5,3],[]]
=> ? = 2
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 2
([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3,1]
=> [[5,3,1],[]]
=> ? = 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1,1]
=> [[5,1,1,1],[]]
=> ? = 0
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 0
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1,1,1]
=> [[6,1,1,1],[]]
=> ? = 0
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 0
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> [6,1,1]
=> [[6,1,1],[]]
=> ? = 0
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [7,1]
=> [[7,1],[]]
=> ? = 0
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7,1]
=> [[7,1],[]]
=> ? = 0
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1,1]
=> [[5,1,1,1],[]]
=> ? = 0
([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [7,1]
=> [[7,1],[]]
=> ? = 0
Description
The number of two-by-two squares inside a skew partition. This is, the number of cells $(i,j)$ in a skew partition for which the box $(i+1,j+1)$ is also a cell inside the skew partition.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St001229: Dyck paths ⟶ ℤResult quality: 29% values known / values provided: 29%distinct values known / distinct values provided: 80%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
([(3,5),(4,5)],6)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 2
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 0
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [8,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 0
Description
The vector space dimension of the first extension group between the Jacobson radical J and J^2. The vector space dimension of $Ext_A^1(J,J^2)$.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00041: Integer compositions conjugateInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000455: Graphs ⟶ ℤResult quality: 14% values known / values provided: 14%distinct values known / distinct values provided: 20%
Values
([(0,2),(1,2)],3)
=> [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 0
([(1,3),(2,3)],4)
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
([(2,4),(3,4)],5)
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,4),(2,3)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(3,5),(4,5)],6)
=> [5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(2,5),(3,5),(4,5)],6)
=> [5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(2,5),(3,4)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(4,6),(5,6)],7)
=> [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(3,6),(4,6),(5,6)],7)
=> [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 0 + 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(1,4),(2,3)],5)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 0 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(2,5),(3,4)],6)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 0 + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 2 + 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3 = 2 + 1
([(4,6),(5,6)],7)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
([(3,6),(4,5)],7)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000315
Mp00156: Graphs line graphGraphs
Mp00203: Graphs coneGraphs
St000315: Graphs ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 20%
Values
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,4),(2,3)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(2,5),(3,4)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,6),(0,7),(0,8),(1,2),(1,5),(1,7),(1,8),(2,4),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(0,7),(1,3),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,5),(0,7),(1,2),(1,4),(1,6),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,2),(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,6),(1,4),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,7),(1,2),(1,6),(1,7),(2,5),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,7),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,7),(1,2),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,4),(1,7),(2,3),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,6),(0,8),(1,2),(1,4),(1,7),(1,8),(2,3),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,6),(0,7),(0,8),(1,2),(1,5),(1,7),(1,8),(2,5),(2,6),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,6),(0,8),(1,2),(1,4),(1,6),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,6),(0,7),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,8),(2,3),(2,4),(2,5),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,8),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(2,8),(3,4),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,3),(0,6),(0,7),(0,8),(0,9),(1,4),(1,5),(1,6),(1,7),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,6),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,5),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,2),(0,3),(0,7),(0,8),(0,9),(1,2),(1,3),(1,5),(1,6),(1,9),(2,6),(2,8),(2,9),(3,5),(3,7),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,7),(2,4),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(0,7),(1,2),(1,3),(1,5),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,7),(1,2),(1,3),(1,6),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,4),(0,7),(0,8),(1,2),(1,3),(1,6),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ([(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,6),(2,9),(3,4),(3,5),(3,6),(3,8),(3,9),(4,5),(4,7),(4,8),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,3),(2,6),(2,7),(2,9),(3,4),(3,5),(3,6),(3,7),(3,9),(4,5),(4,6),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 0
([(4,6),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
Description
The number of isolated vertices of a graph.
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001435: Skew partitions ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 20%
Values
([(0,2),(1,2)],3)
=> [2]
=> [[2],[]]
=> 0
([(1,3),(2,3)],4)
=> [2]
=> [[2],[]]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [3]
=> [[3],[]]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [[1,1],[]]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [3]
=> [[3],[]]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[4],[]]
=> 0
([(2,4),(3,4)],5)
=> [2]
=> [[2],[]]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [3]
=> [[3],[]]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> [[4],[]]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [[1,1],[]]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [3]
=> [[3],[]]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [[2,1],[]]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> [[4],[]]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> [[4],[]]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[5],[]]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [[5],[]]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[5],[]]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [[6],[]]
=> ? = 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> [[4],[]]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [[3,1],[]]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[5],[]]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> [[6],[]]
=> ? = 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [[6],[]]
=> ? = 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [[7],[]]
=> ? = 0
([(3,5),(4,5)],6)
=> [2]
=> [[2],[]]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [3]
=> [[3],[]]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [4]
=> [[4],[]]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5]
=> [[5],[]]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [[1,1],[]]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [3]
=> [[3],[]]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [2,1]
=> [[2,1],[]]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4]
=> [[4],[]]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [3,1]
=> [[3,1],[]]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4]
=> [[4],[]]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [5]
=> [[5],[]]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> [[5],[]]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [[6],[]]
=> ? = 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [[2,2],[]]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5]
=> [[5],[]]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [5]
=> [[5],[]]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5]
=> [[5],[]]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [5]
=> [[5],[]]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> [[6],[]]
=> ? = 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [[6],[]]
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [[6],[]]
=> ? = 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [[7],[]]
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> [[6],[]]
=> ? = 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [[7],[]]
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [[7],[]]
=> ? = 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [[8],[]]
=> ? = 0
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4]
=> [[4],[]]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,1]
=> [[3,1],[]]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [[3,1],[]]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [5]
=> [[5],[]]
=> 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5]
=> [[5],[]]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1]
=> [[4,1],[]]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> [[6],[]]
=> ? = 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> [[6],[]]
=> ? = 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [7]
=> [[7],[]]
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> [[6],[]]
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> [[6],[]]
=> ? = 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [[6],[]]
=> ? = 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [6]
=> [[6],[]]
=> ? = 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [7]
=> [[7],[]]
=> ? = 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [[7],[]]
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [[8],[]]
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [5]
=> [[5],[]]
=> 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1]
=> [[4,1],[]]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [[3,2],[]]
=> 0
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> [[6],[]]
=> ? = 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [6]
=> [[6],[]]
=> ? = 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [[6],[]]
=> ? = 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [[5,1],[]]
=> ? = 0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> [[6],[]]
=> ? = 0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [7]
=> [[7],[]]
=> ? = 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [7]
=> [[7],[]]
=> ? = 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [[7],[]]
=> ? = 2
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [[8],[]]
=> ? = 2
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7]
=> [[7],[]]
=> ? = 0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [[7],[]]
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [[8],[]]
=> ? = 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [[8],[]]
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [8]
=> [[8],[]]
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [[8],[]]
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [[8],[]]
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [[9],[]]
=> ? = 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [7]
=> [[7],[]]
=> ? = 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> [[8],[]]
=> ? = 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [9]
=> [[9],[]]
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [7]
=> [[7],[]]
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [[7],[]]
=> ? = 0
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> [[7],[]]
=> ? = 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> [[8],[]]
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [8]
=> [[8],[]]
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [[9],[]]
=> ? = 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [[9],[]]
=> ? = 0
([(4,6),(5,6)],7)
=> [2]
=> [[2],[]]
=> 0
([(3,6),(4,6),(5,6)],7)
=> [3]
=> [[3],[]]
=> 0
([(2,6),(3,6),(4,6),(5,6)],7)
=> [4]
=> [[4],[]]
=> 0
Description
The number of missing boxes in the first row.
The following 52 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001438The number of missing boxes of a skew partition. St000287The number of connected components of a graph. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001518The number of graphs with the same ordinary spectrum as the given graph. St000264The girth of a graph, which is not a tree. St001651The Frankl number of a lattice. St000068The number of minimal elements in a poset. St001845The number of join irreducibles minus the rank of a lattice. St001846The number of elements which do not have a complement in the lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001820The size of the image of the pop stack sorting operator. St001720The minimal length of a chain of small intervals in a lattice. St001570The minimal number of edges to add to make a graph Hamiltonian. St001330The hat guessing number of a graph. St001618The cardinality of the Frattini sublattice of a lattice. St000143The largest repeated part of a partition. St000185The weighted size of a partition. St000225Difference between largest and smallest parts in a partition. St000312The number of leaves in a graph. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St000049The number of set partitions whose sorted block sizes correspond to the partition. St000146The Andrews-Garvan crank of a partition. St000256The number of parts from which one can substract 2 and still get an integer partition. St000275Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition. St000781The number of proper colouring schemes of a Ferrers diagram. St000783The side length of the largest staircase partition fitting into a partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001568The smallest positive integer that does not appear twice in the partition. St000318The number of addable cells of the Ferrers diagram of an integer partition. St001626The number of maximal proper sublattices of a lattice. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001890The maximum magnitude of the Möbius function of a poset. St000699The toughness times the least common multiple of 1,. St001103The number of words with multiplicities of the letters given by the partition, avoiding the consecutive pattern 123. St001335The cardinality of a minimal cycle-isolating set of a graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001479The number of bridges of a graph. St001322The size of a minimal independent dominating set in a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001339The irredundance number of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001363The Euler characteristic of a graph according to Knill. St001496The number of graphs with the same Laplacian spectrum as the given graph. St001060The distinguishing index of a graph.