Your data matches 16 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000328: Ordered trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> 1
[[],[]]
=> 2
[[[]]]
=> 1
[[],[],[]]
=> 3
[[],[[]]]
=> 2
[[[]],[]]
=> 2
[[[],[]]]
=> 2
[[[[]]]]
=> 1
[[],[],[],[]]
=> 4
[[],[],[[]]]
=> 3
[[],[[]],[]]
=> 3
[[],[[],[]]]
=> 2
[[],[[[]]]]
=> 2
[[[]],[],[]]
=> 3
[[[]],[[]]]
=> 2
[[[],[]],[]]
=> 2
[[[[]]],[]]
=> 2
[[[],[],[]]]
=> 3
[[[],[[]]]]
=> 2
[[[[]],[]]]
=> 2
[[[[],[]]]]
=> 2
[[[[[]]]]]
=> 1
[[],[],[],[],[]]
=> 5
[[],[],[],[[]]]
=> 4
[[],[],[[]],[]]
=> 4
[[],[],[[],[]]]
=> 3
[[],[],[[[]]]]
=> 3
[[],[[]],[],[]]
=> 4
[[],[[]],[[]]]
=> 3
[[],[[],[]],[]]
=> 3
[[],[[[]]],[]]
=> 3
[[],[[],[],[]]]
=> 3
[[],[[],[[]]]]
=> 2
[[],[[[]],[]]]
=> 2
[[],[[[],[]]]]
=> 2
[[],[[[[]]]]]
=> 2
[[[]],[],[],[]]
=> 4
[[[]],[],[[]]]
=> 3
[[[]],[[]],[]]
=> 3
[[[]],[[],[]]]
=> 2
[[[]],[[[]]]]
=> 2
[[[],[]],[],[]]
=> 3
[[[[]]],[],[]]
=> 3
[[[],[]],[[]]]
=> 2
[[[[]]],[[]]]
=> 2
[[[],[],[]],[]]
=> 3
[[[],[[]]],[]]
=> 2
[[[[]],[]],[]]
=> 2
[[[[],[]]],[]]
=> 2
[[[[[]]]],[]]
=> 2
Description
The maximum number of child nodes in a tree.
Mp00047: Ordered trees to posetPosets
St000846: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> ([(0,1)],2)
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 2
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 5
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 4
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 4
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 3
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 4
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 3
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 2
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 2
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 2
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 4
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 2
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 3
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 2
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 2
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 2
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 2
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2
Description
The maximal number of elements covering an element of a poset.
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
St000308: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [.,.]
=> [1] => 1
[[],[]]
=> [[.,.],.]
=> [1,2] => 2
[[[]]]
=> [.,[.,.]]
=> [2,1] => 1
[[],[],[]]
=> [[[.,.],.],.]
=> [1,2,3] => 3
[[],[[]]]
=> [[.,.],[.,.]]
=> [3,1,2] => 2
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => 2
[[[],[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => 2
[[[[]]]]
=> [.,[.,[.,.]]]
=> [3,2,1] => 1
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => 4
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => 3
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => 3
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => 2
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => 2
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => 3
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => 2
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => 2
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => 2
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => 3
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 2
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => 2
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => 2
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 1
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => 5
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => 4
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => 4
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => 3
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => 3
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => 4
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => 3
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => 3
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => 3
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => 3
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => 2
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => 2
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => 2
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => 2
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => 4
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => 3
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => 3
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => 2
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => 2
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => 3
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => 3
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => 2
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => 2
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => 3
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => 2
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => 2
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => 2
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => 2
Description
The height of the tree associated to a permutation. A permutation can be mapped to a rooted tree with vertices $\{0,1,2,\ldots,n\}$ and root $0$ in the following way. Entries of the permutations are inserted one after the other, each child is larger than its parent and the children are in strict order from left to right. Details of the construction are found in [1]. The statistic is given by the height of this tree. See also [[St000325]] for the width of this tree.
Mp00047: Ordered trees to posetPosets
Mp00125: Posets dual posetPosets
St000845: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3)],4)
=> 3
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> 2
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> 4
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> 2
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 2
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> 2
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> 5
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 4
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 4
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> 3
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 4
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> 3
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 2
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 2
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> 2
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 2
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 4
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> 2
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 2
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> 3
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> 2
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 2
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 2
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 2
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> 2
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 2
Description
The maximal number of elements covered by an element in a poset.
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
Mp00102: Dyck paths rise compositionInteger compositions
St000381: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [.,.]
=> [1,0]
=> [1] => 1
[[],[]]
=> [[.,.],.]
=> [1,1,0,0]
=> [2] => 2
[[[]]]
=> [.,[.,.]]
=> [1,0,1,0]
=> [1,1] => 1
[[],[],[]]
=> [[[.,.],.],.]
=> [1,1,1,0,0,0]
=> [3] => 3
[[],[[]]]
=> [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> [2,1] => 2
[[[]],[]]
=> [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> [2,1] => 2
[[[],[]]]
=> [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> [1,2] => 2
[[[[]]]]
=> [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> [1,1,1] => 1
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> [4] => 4
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 3
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => 3
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 2
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => 2
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => 3
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => 2
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => 2
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => 2
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 3
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 2
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => 2
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => 2
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => 5
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => 4
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1] => 4
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => 3
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => 3
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1] => 4
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => 3
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2] => 3
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => 3
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 3
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 2
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => 2
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 2
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 2
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,1] => 4
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => 3
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => 3
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => 2
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => 2
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => 3
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => 3
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => 2
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => 2
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => 3
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => 2
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => 2
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => 2
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => 2
Description
The largest part of an integer composition.
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00093: Dyck paths to binary wordBinary words
St000392: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1,0]
=> 10 => 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1100 => 2
[[[]]]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1010 => 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 111000 => 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 110010 => 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 101100 => 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 101010 => 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 11110000 => 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 11101000 => 3
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => 3
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 11011000 => 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 11100010 => 3
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 2
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => 3
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 2
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 10101010 => 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1111100000 => 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1111010000 => 4
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1111001000 => 4
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1110110000 => 3
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1110101000 => 3
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1111000100 => 4
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => 3
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1110011000 => 3
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => 3
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1101110000 => 3
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1101101000 => 2
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1101100100 => 2
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1101011000 => 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1111000010 => 4
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => 3
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1110010010 => 3
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1101100010 => 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1101010010 => 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1110001100 => 3
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1110001010 => 3
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1101001100 => 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1101001010 => 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1100111000 => 3
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1100110100 => 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1100110010 => 2
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1100101100 => 2
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1100101010 => 2
Description
The length of the longest run of ones in a binary word.
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St000444: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 4
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> 4
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 3
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 3
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 4
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 3
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 3
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 3
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 3
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 2
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 2
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 4
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 3
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> 3
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 3
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 3
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2
Description
The length of the maximal rise of a Dyck path.
Matching statistic: St001235
Mp00050: Ordered trees to binary tree: right brother = right childBinary trees
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00071: Permutations descent compositionInteger compositions
St001235: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [.,.]
=> [1] => [1] => 1
[[],[]]
=> [.,[.,.]]
=> [2,1] => [1,1] => 2
[[[]]]
=> [[.,.],.]
=> [1,2] => [2] => 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => [1,1,1] => 3
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => [2,1] => 2
[[[]],[]]
=> [[.,.],[.,.]]
=> [1,3,2] => [2,1] => 2
[[[],[]]]
=> [[.,[.,.]],.]
=> [2,1,3] => [1,2] => 2
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => [3] => 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,1,1,1] => 4
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [2,1,1] => 3
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [2,4,3,1] => [2,1,1] => 3
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,2,1] => 2
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [3,1] => 2
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => [2,1,1] => 3
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => [3,1] => 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => [1,2,1] => 2
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [1,2,4,3] => [3,1] => 2
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,1,2] => 3
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [2,2] => 2
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [1,3,2,4] => [2,2] => 2
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3] => 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [4] => 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,1,1,1,1] => 5
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [2,1,1,1] => 4
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [2,1,1,1] => 4
[[],[],[[],[]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,2,1,1] => 3
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [3,1,1] => 3
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [2,1,1,1] => 4
[[],[[]],[[]]]
=> [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [3,1,1] => 3
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [1,2,1,1] => 3
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [3,1,1] => 3
[[],[[],[],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,1,2,1] => 3
[[],[[],[[]]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [2,2,1] => 2
[[],[[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [2,2,1] => 2
[[],[[[],[]]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,3,1] => 2
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [4,1] => 2
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [2,1,1,1] => 4
[[[]],[],[[]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [3,1,1] => 3
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [3,1,1] => 3
[[[]],[[],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [2,2,1] => 2
[[[]],[[[]]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [4,1] => 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [1,2,1,1] => 3
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [3,1,1] => 3
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [1,3,1] => 2
[[[[]]],[[]]]
=> [[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [4,1] => 2
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [1,1,2,1] => 3
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [2,2,1] => 2
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [2,2,1] => 2
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [1,3,1] => 2
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [4,1] => 2
Description
The global dimension of the corresponding Comp-Nakayama algebra. We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
St001239: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1,0]
=> [1,0]
=> 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[[[]]]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 3
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 3
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 4
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 4
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
Description
The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra.
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00093: Dyck paths to binary wordBinary words
St001372: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1,0]
=> 10 => 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1100 => 2
[[[]]]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1010 => 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 111000 => 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 110010 => 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 101100 => 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 101010 => 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 11110000 => 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 11101000 => 3
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => 3
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 11011000 => 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 11100010 => 3
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 2
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => 3
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 2
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 10101010 => 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1111100000 => 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1111010000 => 4
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1111001000 => 4
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1110110000 => 3
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1110101000 => 3
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1111000100 => 4
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => 3
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1110011000 => 3
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => 3
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1101110000 => 3
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1101101000 => 2
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1101100100 => 2
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1101011000 => 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1111000010 => 4
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => 3
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1110010010 => 3
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1101100010 => 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1101010010 => 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1110001100 => 3
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1110001010 => 3
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1101001100 => 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1101001010 => 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1100111000 => 3
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1100110100 => 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1100110010 => 2
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1100101100 => 2
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1100101010 => 2
Description
The length of a longest cyclic run of ones of a binary word. Consider the binary word as a cyclic arrangement of ones and zeros. Then this statistic is the length of the longest continuous sequence of ones in this arrangement.
The following 6 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St000485The length of the longest cycle of a permutation. St001062The maximal size of a block of a set partition. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path.