edit this statistic or download as text // json
Identifier
Values
=>
[1]=>1 [1,1]=>2 [2]=>1 [1,1,1]=>3 [1,2]=>2 [2,1]=>2 [3]=>1 [1,1,1,1]=>4 [1,1,2]=>3 [1,2,1]=>2 [1,3]=>2 [2,1,1]=>3 [2,2]=>2 [3,1]=>2 [4]=>1 [1,1,1,1,1]=>5 [1,1,1,2]=>4 [1,1,2,1]=>3 [1,1,3]=>3 [1,2,1,1]=>3 [1,2,2]=>2 [1,3,1]=>2 [1,4]=>2 [2,1,1,1]=>4 [2,1,2]=>3 [2,2,1]=>2 [2,3]=>2 [3,1,1]=>3 [3,2]=>2 [4,1]=>2 [5]=>1 [1,1,1,1,1,1]=>6 [1,1,1,1,2]=>5 [1,1,1,2,1]=>4 [1,1,1,3]=>4 [1,1,2,1,1]=>3 [1,1,2,2]=>3 [1,1,3,1]=>3 [1,1,4]=>3 [1,2,1,1,1]=>4 [1,2,1,2]=>3 [1,2,2,1]=>2 [1,2,3]=>2 [1,3,1,1]=>3 [1,3,2]=>2 [1,4,1]=>2 [1,5]=>2 [2,1,1,1,1]=>5 [2,1,1,2]=>4 [2,1,2,1]=>3 [2,1,3]=>3 [2,2,1,1]=>3 [2,2,2]=>2 [2,3,1]=>2 [2,4]=>2 [3,1,1,1]=>4 [3,1,2]=>3 [3,2,1]=>2 [3,3]=>2 [4,1,1]=>3 [4,2]=>2 [5,1]=>2 [6]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The global dimension of the corresponding Comp-Nakayama algebra.
We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
Created
Jul 30, 2018 at 20:58 by Rene Marczinzik
Updated
Jul 30, 2018 at 20:58 by Rene Marczinzik