Processing math: 8%

Your data matches 17 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000376
Mp00100: Dyck paths touch compositionInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000376: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => [1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 0
Description
The bounce deficit of a Dyck path. For a Dyck path D of semilength n, this is defined as \binom{n}{2} - \operatorname{area}(D) - \operatorname{bounce}(D). The zeta map [[Mp00032]] sends this statistic to the dinv deficit [[St000369]], both are thus equidistributed.
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00160: Permutations graph of inversionsGraphs
St001330: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 7%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 0 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 0 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [4,3,1,5,6,7,2] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [5,3,4,1,6,7,2] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => ([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [2,3,4,7,6,1,5] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [4,3,1,5,7,2,6] => ([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [6,3,4,5,1,7,2] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> ? = 4 + 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => ([(0,5),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ([(0,1),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => ([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [2,3,7,5,6,1,4] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => ([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => ([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [2,3,7,5,1,4,6] => ([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,5,4,1,2,7,3] => ([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [7,3,4,1,6,2,5] => ([(0,4),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => ([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => ([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [2,3,7,6,1,4,5] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [5,3,1,2,6,7,4] => ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,6,1,2,3,7,4] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0 + 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,2] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,8,1,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [4,1,2,5,6,7,8,3] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,1,5,6,7,8,3] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [3,1,4,5,6,8,2,7] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [2,3,4,5,8,1,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [5,1,2,3,6,7,8,4] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [2,3,4,5,7,1,8,6] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,1,5,2,6,7,8,4] => ([(0,7),(1,7),(2,7),(3,4),(4,6),(5,6),(5,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,5,1,3,6,7,8,4] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,5,6,8,3,7] => ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,4,1,5,6,8,3,7] => ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [3,1,4,5,8,2,6,7] => ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [2,3,4,8,1,5,6,7] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [6,1,2,3,4,7,8,5] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [2,3,5,1,6,7,8,4] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [3,1,4,5,7,2,8,6] => ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [2,3,4,7,1,5,8,6] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8)
=> 2 = 0 + 2
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St001964
Mp00123: Dyck paths Barnabei-Castronuovo involutionDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St001964: Posets ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 14%
Values
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? = 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ? = 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? = 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 0
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 0
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 0
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 0
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 0
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 0
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ? = 0
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ? = 0
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
Description
The interval resolution global dimension of a poset. This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St001491: Binary words ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 14%
Values
[1,0,1,0]
=> [1,1,0,0]
=> []
=> => ? = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> => ? = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 100 => 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1000 => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 1100 => 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 100 => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 10100 => ? = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1110 => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 100110 => ? = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 11010 => ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 10000 => ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 11000 => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1000 => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 101000 => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 11100 => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 1001100 => ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 1100 => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 100 => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 100100 => ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> 110100 => ? = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> 101100 => ? = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 10100 => ? = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 1010100 => ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 11110 => ? = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 10001110 => ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 1100110 => ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1001110 => ? = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 10100110 => ? = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 1110 => 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 1000110 => ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> 110010 => ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 111010 => ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 10011010 => ? = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 110110 => ? = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> 11010 => ? = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 1101010 => ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 100000 => ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> 110000 => ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 10000 => ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [5,4]
=> 1010000 => ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3,3]
=> 111000 => ? = 3 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [5,3,3]
=> 10011000 => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 11000 => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1000 => 1 = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [5,3]
=> 1001000 => ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [4,4,3]
=> 1101000 => ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [4,3,3]
=> 1011000 => ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 101000 => ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [5,4,3]
=> 10101000 => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2]
=> 111100 => ? = 4 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2]
=> 100011100 => ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2]
=> 11001100 => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2]
=> 10011100 => ? = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2]
=> 101001100 => ? = 0 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> 11100 => ? = 2 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [5,2,2]
=> 10001100 => ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 1100 => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 100 => 1 = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [5,2]
=> 1000100 => ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 1110 => 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [3]
=> 1000 => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [2,2]
=> 1100 => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> 100 => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> 1110 => 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [3]
=> 1000 => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [2,2]
=> 1100 => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [2]
=> 100 => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1]
=> 1110 => 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [3]
=> 1000 => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [2]
=> 100 => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0]
=> [3]
=> 1000 => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [2]
=> 100 => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0,0]
=> [3]
=> 1000 => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0]
=> [2]
=> 100 => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1]
=> 1110 => 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1]
=> 1110 => 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0]
=> [2,2]
=> 1100 => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0]
=> [2,2]
=> 1100 => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0]
=> [2,2]
=> 1100 => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,1]
=> 110 => 1 = 0 + 1
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let A_n=K[x]/(x^n). We associate to a nonempty subset S of an (n-1)-set the module M_S, which is the direct sum of A_n-modules with indecomposable non-projective direct summands of dimension i when i is in S (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of M_S. We decode the subset as a binary word so that for example the subset S=\{1,3 \} of \{1,2,3 \} is decoded as 101.
Matching statistic: St000406
Mp00118: Dyck paths swap returns and last descentDyck paths
Mp00201: Dyck paths RingelPermutations
St000406: Permutations ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 21%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [2,3,1] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 0
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 0
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 0
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 0
[1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 0
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 0
[1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => 0
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [7,3,4,5,6,1,2] => ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [6,3,4,5,1,7,2] => ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => ? = 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => ? = 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => ? = 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2,7,4,5,6,1,3] => ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [5,3,4,1,6,7,2] => ? = 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [7,5,4,1,6,2,3] => ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => ? = 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,5,4,1,2,7,3] => ? = 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => ? = 0
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,7,5,1,2,3,4] => ? = 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => ? = 0
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [7,3,5,1,6,2,4] => ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => ? = 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => ? = 0
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 0
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => ? = 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => ? = 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,6,5,1,3,4] => ? = 0
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => ? = 0
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 0
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => ? = 0
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => ? = 0
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => ? = 0
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 0
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [2,3,7,5,6,1,4] => ? = 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => ? = 0
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => ? = 0
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [4,3,1,5,6,7,2] => ? = 3
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => ? = 0
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,7,1,5,6,3,4] => ? = 0
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => ? = 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => ? = 0
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [6,7,1,5,2,3,4] => ? = 0
Description
The number of occurrences of the pattern 3241 in a permutation.
Matching statistic: St000750
Mp00118: Dyck paths swap returns and last descentDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00066: Permutations inversePermutations
St000750: Permutations ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 21%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [2,3,1] => [3,1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => 0
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => 0
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => [3,4,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [2,5,1,3,4] => 0
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [4,5,2,3,1] => 0
[1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [2,4,5,3,1] => 0
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [2,3,5,1,4] => 0
[1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [3,5,2,1,4] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [3,1,5,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,4,5,2,1] => 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,1,5,3,2] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [2,6,1,3,4,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [5,6,2,3,4,1] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [2,5,6,3,4,1] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [2,3,6,1,4,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [4,6,2,3,1,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [2,4,6,3,1,5] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [4,5,6,3,2,1] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [2,4,5,6,3,1] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [2,4,1,6,3,5] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [5,1,6,3,4,2] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [2,5,1,6,4,3] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [2,3,5,6,4,1] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [2,3,4,6,1,5] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,6,2,1,4,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [3,1,6,2,4,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,5,6,2,4,1] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [3,1,5,6,4,2] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [3,1,4,6,2,5] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [3,4,6,2,1,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,4,2,6,1,5] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,4,5,6,1,2] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,5,2,6,4,1] => 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [4,1,6,3,2,5] => 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [4,1,2,6,3,5] => 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [4,1,5,6,3,2] => 0
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [4,5,2,6,3,1] => 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [5,1,2,6,4,3] => 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => [7,1,2,3,4,5,6] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => [2,7,1,3,4,5,6] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [7,3,4,5,6,1,2] => [6,7,2,3,4,5,1] => ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => [2,6,7,3,4,5,1] => ? = 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => [2,3,7,1,4,5,6] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [6,3,4,5,1,7,2] => [5,7,2,3,4,1,6] => ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => [2,5,7,3,4,1,6] => ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [7,6,4,5,1,2,3] => [5,6,7,3,4,2,1] => ? = 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [2,5,6,7,4,3,1] => ? = 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [2,3,5,7,4,1,6] => ? = 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2,7,4,5,6,1,3] => [6,1,7,3,4,5,2] => ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => [2,6,1,7,4,5,3] => ? = 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => [2,3,6,7,4,5,1] => ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [2,3,4,7,1,5,6] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [5,3,4,1,6,7,2] => [4,7,2,3,1,5,6] => ? = 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => [2,4,7,3,1,5,6] => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [7,5,4,1,6,2,3] => [4,6,7,3,2,5,1] => ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [2,4,6,7,3,5,1] => ? = 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => [2,4,1,7,3,5,6] => ? = 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,5,4,1,2,7,3] => [4,5,7,3,2,1,6] => ? = 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [2,4,5,7,3,1,6] => ? = 0
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,7,5,1,2,3,4] => [4,5,6,7,3,1,2] => ? = 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [2,4,5,6,7,1,3] => ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => [2,4,5,3,7,1,6] => ? = 0
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [7,3,5,1,6,2,4] => [4,6,2,7,3,5,1] => ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => [2,4,6,3,7,5,1] => ? = 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => [2,4,1,6,7,5,3] => ? = 0
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [2,4,1,5,7,3,6] => ? = 0
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [5,1,7,3,4,2,6] => ? = 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => [2,5,1,7,4,3,6] => ? = 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,6,5,1,3,4] => [5,1,6,7,4,3,2] => ? = 0
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => [2,5,1,6,7,4,3] => ? = 0
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [2,5,1,3,7,4,6] => ? = 0
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => [5,6,2,7,4,3,1] => ? = 0
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [2,5,6,3,7,4,1] => ? = 0
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [2,3,5,6,7,4,1] => ? = 0
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [2,3,5,1,7,4,6] => ? = 0
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [2,3,7,5,6,1,4] => [6,1,2,7,4,5,3] => ? = 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => [2,6,1,3,7,5,4] => ? = 0
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [2,3,6,1,7,5,4] => ? = 0
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [2,3,4,6,7,5,1] => ? = 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [2,3,4,5,7,1,6] => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [4,3,1,5,6,7,2] => [3,7,2,1,4,5,6] => ? = 3
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => [3,1,7,2,4,5,6] => ? = 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => [3,6,7,2,4,5,1] => ? = 0
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,7,1,5,6,3,4] => [3,1,6,7,4,5,2] => ? = 0
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [3,1,4,7,2,5,6] => ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => [3,5,7,2,4,1,6] => ? = 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => [3,1,5,7,4,2,6] => ? = 0
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [6,7,1,5,2,3,4] => [3,5,6,7,4,1,2] => ? = 0
Description
The number of occurrences of the pattern 4213 in a permutation.
Mp00030: Dyck paths zeta mapDyck paths
Mp00232: Dyck paths parallelogram posetPosets
Mp00195: Posets order idealsLattices
St001625: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 7%
Values
[1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 0
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 0
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ? = 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 0
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ?
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ?
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ?
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(0,9),(2,13),(3,12),(4,11),(5,11),(6,10),(7,6),(7,12),(8,3),(8,7),(9,4),(9,5),(10,13),(11,8),(12,2),(12,10),(13,1)],14)
=> ? = 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,8),(2,10),(3,10),(4,9),(5,9),(6,7),(7,2),(7,3),(8,4),(8,5),(9,6),(10,1)],11)
=> ? = 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ?
=> ? = 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ([(0,10),(1,14),(3,13),(4,18),(5,17),(6,12),(7,8),(7,17),(8,3),(8,11),(9,6),(9,16),(10,5),(10,7),(11,13),(11,14),(12,18),(13,15),(14,9),(14,15),(15,16),(16,4),(16,12),(17,1),(17,11),(18,2)],19)
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,8),(2,10),(3,10),(4,9),(5,9),(6,7),(7,2),(7,3),(8,4),(8,5),(9,6),(10,1)],11)
=> ? = 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ([(0,10),(1,16),(3,12),(4,11),(5,13),(6,14),(7,6),(7,12),(8,4),(8,17),(9,5),(9,15),(10,3),(10,7),(11,16),(12,9),(12,14),(13,17),(14,15),(15,8),(15,13),(16,2),(17,1),(17,11)],18)
=> ? = 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,9),(1,11),(2,13),(4,12),(5,12),(6,10),(7,6),(7,13),(8,4),(8,5),(9,2),(9,7),(10,11),(11,8),(12,3),(13,1),(13,10)],14)
=> ? = 0
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,9),(1,11),(2,13),(4,12),(5,12),(6,10),(7,6),(7,13),(8,4),(8,5),(9,2),(9,7),(10,11),(11,8),(12,3),(13,1),(13,10)],14)
=> ? = 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,8),(1,10),(2,11),(4,9),(5,3),(6,4),(6,11),(7,5),(8,2),(8,6),(9,10),(10,7),(11,1),(11,9)],12)
=> ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 0
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,6),(1,10),(2,10),(4,9),(5,9),(6,7),(7,4),(7,5),(8,1),(8,2),(9,8),(10,3)],11)
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? = 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
Description
The Möbius invariant of a lattice. The '''Möbius invariant''' of a lattice L is the value of the Möbius function applied to least and greatest element, that is \mu(L)=\mu_L(\hat{0},\hat{1}), where \hat{0} is the least element of L and \hat{1} is the greatest element of L. For the definition of the Möbius function, see [[St000914]].
Mp00030: Dyck paths zeta mapDyck paths
Mp00232: Dyck paths parallelogram posetPosets
Mp00195: Posets order idealsLattices
St001621: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 7%
Values
[1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ?
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(0,9),(2,13),(3,12),(4,11),(5,11),(6,10),(7,6),(7,12),(8,3),(8,7),(9,4),(9,5),(10,13),(11,8),(12,2),(12,10),(13,1)],14)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,8),(2,10),(3,10),(4,9),(5,9),(6,7),(7,2),(7,3),(8,4),(8,5),(9,6),(10,1)],11)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ?
=> ? = 4 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ([(0,10),(1,14),(3,13),(4,18),(5,17),(6,12),(7,8),(7,17),(8,3),(8,11),(9,6),(9,16),(10,5),(10,7),(11,13),(11,14),(12,18),(13,15),(14,9),(14,15),(15,16),(16,4),(16,12),(17,1),(17,11),(18,2)],19)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,8),(2,10),(3,10),(4,9),(5,9),(6,7),(7,2),(7,3),(8,4),(8,5),(9,6),(10,1)],11)
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ([(0,10),(1,16),(3,12),(4,11),(5,13),(6,14),(7,6),(7,12),(8,4),(8,17),(9,5),(9,15),(10,3),(10,7),(11,16),(12,9),(12,14),(13,17),(14,15),(15,8),(15,13),(16,2),(17,1),(17,11)],18)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,9),(1,11),(2,13),(4,12),(5,12),(6,10),(7,6),(7,13),(8,4),(8,5),(9,2),(9,7),(10,11),(11,8),(12,3),(13,1),(13,10)],14)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,9),(1,11),(2,13),(4,12),(5,12),(6,10),(7,6),(7,13),(8,4),(8,5),(9,2),(9,7),(10,11),(11,8),(12,3),(13,1),(13,10)],14)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,8),(1,10),(2,11),(4,9),(5,3),(6,4),(6,11),(7,5),(8,2),(8,6),(9,10),(10,7),(11,1),(11,9)],12)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,6),(1,10),(2,10),(4,9),(5,9),(6,7),(7,4),(7,5),(8,1),(8,2),(9,8),(10,3)],11)
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? = 2 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
Description
The number of atoms of a lattice. An element of a lattice is an '''atom''' if it covers the least element.
Mp00030: Dyck paths zeta mapDyck paths
Mp00232: Dyck paths parallelogram posetPosets
Mp00195: Posets order idealsLattices
St001878: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 7%
Values
[1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ?
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(0,9),(2,13),(3,12),(4,11),(5,11),(6,10),(7,6),(7,12),(8,3),(8,7),(9,4),(9,5),(10,13),(11,8),(12,2),(12,10),(13,1)],14)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,8),(2,10),(3,10),(4,9),(5,9),(6,7),(7,2),(7,3),(8,4),(8,5),(9,6),(10,1)],11)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ?
=> ? = 4 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ([(0,10),(1,14),(3,13),(4,18),(5,17),(6,12),(7,8),(7,17),(8,3),(8,11),(9,6),(9,16),(10,5),(10,7),(11,13),(11,14),(12,18),(13,15),(14,9),(14,15),(15,16),(16,4),(16,12),(17,1),(17,11),(18,2)],19)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,8),(2,10),(3,10),(4,9),(5,9),(6,7),(7,2),(7,3),(8,4),(8,5),(9,6),(10,1)],11)
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ([(0,10),(1,16),(3,12),(4,11),(5,13),(6,14),(7,6),(7,12),(8,4),(8,17),(9,5),(9,15),(10,3),(10,7),(11,16),(12,9),(12,14),(13,17),(14,15),(15,8),(15,13),(16,2),(17,1),(17,11)],18)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,9),(1,11),(2,13),(4,12),(5,12),(6,10),(7,6),(7,13),(8,4),(8,5),(9,2),(9,7),(10,11),(11,8),(12,3),(13,1),(13,10)],14)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,9),(1,11),(2,13),(4,12),(5,12),(6,10),(7,6),(7,13),(8,4),(8,5),(9,2),(9,7),(10,11),(11,8),(12,3),(13,1),(13,10)],14)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,8),(1,10),(2,11),(4,9),(5,3),(6,4),(6,11),(7,5),(8,2),(8,6),(9,10),(10,7),(11,1),(11,9)],12)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,6),(1,10),(2,10),(4,9),(5,9),(6,7),(7,4),(7,5),(8,1),(8,2),(9,8),(10,3)],11)
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> ? = 2 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Mp00118: Dyck paths swap returns and last descentDyck paths
Mp00232: Dyck paths parallelogram posetPosets
Mp00198: Posets incomparability graphGraphs
St000741: Graphs ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 7%
Values
[1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> ([],2)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ? = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ? = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ([(2,8),(3,4),(3,10),(4,9),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ([(2,8),(3,4),(3,10),(4,9),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ([(2,8),(3,4),(3,10),(4,9),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 4 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ([(2,9),(3,8),(4,5),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ? = 0 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ([(2,9),(3,8),(4,5),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ([(2,9),(3,8),(4,6),(5,7),(6,8),(7,9),(8,9)],10)
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ([(2,9),(3,8),(4,6),(5,7),(6,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(4,7),(5,6)],8)
=> ? = 0 + 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
Description
The Colin de Verdière graph invariant.
The following 7 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001613The binary logarithm of the size of the center of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001616The number of neutral elements in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001846The number of elements which do not have a complement in the lattice. St001845The number of join irreducibles minus the rank of a lattice.