Your data matches 22 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000380
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00204: Permutations LLPSInteger partitions
St000380: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1]
=> 2
[1,0,1,0]
=> [1,2] => [1,2] => [1,1]
=> 3
[1,1,0,0]
=> [2,1] => [1,2] => [1,1]
=> 3
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,1,1]
=> 4
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => [1,1,1]
=> 4
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => [1,1,1]
=> 4
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => [1,1,1]
=> 4
[1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => [2,1]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> 5
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => [1,1,1,1]
=> 5
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => [1,1,1,1]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => [1,1,1,1]
=> 5
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => [2,1,1]
=> 4
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => [1,1,1,1]
=> 5
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => [1,1,1,1]
=> 5
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => [1,1,1,1]
=> 5
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => [1,1,1,1]
=> 5
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => [2,1,1]
=> 4
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => [2,1,1]
=> 4
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => [2,1,1]
=> 4
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,3,2,4] => [2,1,1]
=> 4
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => [2,1,1]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => [2,1,1,1]
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => [2,1,1,1]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => [2,1,1,1]
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => [2,1,1,1]
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,2,4,3,5] => [2,1,1,1]
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => [2,1,1,1]
=> 5
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => [2,1,1,1]
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,1,1,1,1]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => [2,1,1,1]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,2,4,3,5] => [2,1,1,1]
=> 5
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => [2,1,1,1]
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [1,2,4,3,5] => [2,1,1,1]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => [2,1,1,1]
=> 5
Description
Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. Put differently, this is the smallest number $n$ such that the partition fits into the triangular partition $(n-1,n-2,\dots,1)$.
Matching statistic: St000393
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00109: Permutations descent wordBinary words
St000393: Binary words ⟶ ℤResult quality: 77% values known / values provided: 100%distinct values known / distinct values provided: 77%
Values
[1,0]
=> [1] => [1] => => ? = 2 - 2
[1,0,1,0]
=> [1,2] => [1,2] => 0 => 1 = 3 - 2
[1,1,0,0]
=> [2,1] => [1,2] => 0 => 1 = 3 - 2
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 00 => 2 = 4 - 2
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => 00 => 2 = 4 - 2
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => 00 => 2 = 4 - 2
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => 00 => 2 = 4 - 2
[1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => 01 => 1 = 3 - 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 000 => 3 = 5 - 2
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => 000 => 3 = 5 - 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => 000 => 3 = 5 - 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => 000 => 3 = 5 - 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => 001 => 2 = 4 - 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => 000 => 3 = 5 - 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => 000 => 3 = 5 - 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => 000 => 3 = 5 - 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => 000 => 3 = 5 - 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => 001 => 2 = 4 - 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => 010 => 2 = 4 - 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => 001 => 2 = 4 - 2
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,3,2,4] => 010 => 2 = 4 - 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => 010 => 2 = 4 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => 0001 => 3 = 5 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => 0001 => 3 = 5 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => 0010 => 3 = 5 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => 0001 => 3 = 5 - 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,2,4,3,5] => 0010 => 3 = 5 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => 0010 => 3 = 5 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => 0001 => 3 = 5 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => 0000 => 4 = 6 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => 0001 => 3 = 5 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,2,4,3,5] => 0010 => 3 = 5 - 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => 0001 => 3 = 5 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [1,2,4,3,5] => 0010 => 3 = 5 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => 0010 => 3 = 5 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [1,3,2,4,5] => 0100 => 3 = 5 - 2
[1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,8,7,6,5,4,2,1] => [1,3,7,2,8,4,6,5] => ? => ? = 6 - 2
[1,1,1,1,0,1,1,1,0,0,0,1,0,0,0,0]
=> [4,7,6,5,8,3,2,1] => [1,4,5,8,2,7,3,6] => ? => ? = 7 - 2
[1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> [4,7,8,6,5,3,2,1] => [1,4,6,3,8,2,7,5] => ? => ? = 6 - 2
[]
=> [] => [] => ? => ? = 0 - 2
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,9,10,11,12,2] => [1,2,3,4,5,6,7,8,9,10,11,12] => 00000000000 => ? = 13 - 2
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [1,2,3,4,5,6,7,8,9,10,11,12] => 00000000000 => ? = 13 - 2
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [3,2,4,1,7,6,8,5,11,10,12,9] => [1,3,4,2,5,7,8,6,9,11,12,10] => 00100010001 => ? = 10 - 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,4,7,6,9,8,11,12,10] => [1,2,3,4,5,6,7,8,9,10,11,12] => 00000000000 => ? = 13 - 2
Description
The number of strictly increasing runs in a binary word.
Matching statistic: St000245
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00241: Permutations invert Laguerre heapPermutations
St000245: Permutations ⟶ ℤResult quality: 51% values known / values provided: 51%distinct values known / distinct values provided: 77%
Values
[1,0]
=> [1] => [1] => [1] => 0 = 2 - 2
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 1 = 3 - 2
[1,1,0,0]
=> [2,1] => [1,2] => [1,2] => 1 = 3 - 2
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 2 = 4 - 2
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => [1,2,3] => 2 = 4 - 2
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => [1,2,3] => 2 = 4 - 2
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => [1,2,3] => 2 = 4 - 2
[1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => [1,3,2] => 1 = 3 - 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 3 = 5 - 2
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 3 = 5 - 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 3 = 5 - 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 3 = 5 - 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => [1,2,4,3] => 2 = 4 - 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 3 = 5 - 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 3 = 5 - 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 3 = 5 - 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 3 = 5 - 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => [1,2,4,3] => 2 = 4 - 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => [1,3,2,4] => 2 = 4 - 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => [1,4,2,3] => 2 = 4 - 2
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,3,2,4] => [1,3,2,4] => 2 = 4 - 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => [1,3,4,2] => 2 = 4 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => 3 = 5 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => [1,2,3,5,4] => 3 = 5 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => 3 = 5 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => [1,2,5,3,4] => 3 = 5 - 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,2,4,3,5] => [1,2,4,3,5] => 3 = 5 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => [1,2,4,5,3] => 3 = 5 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => 3 = 5 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 6 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => 3 = 5 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => 3 = 5 - 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => [1,2,5,3,4] => 3 = 5 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [1,2,4,3,5] => [1,2,4,3,5] => 3 = 5 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => [1,2,4,5,3] => 3 = 5 - 2
[1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [3,2,4,5,1,6,7] => [1,3,4,5,2,6,7] => [1,5,2,3,4,6,7] => ? = 7 - 2
[1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [3,2,4,5,1,7,6] => [1,3,4,5,2,6,7] => [1,5,2,3,4,6,7] => ? = 7 - 2
[1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [3,2,4,5,6,1,7] => [1,3,4,5,6,2,7] => [1,6,2,3,4,5,7] => ? = 7 - 2
[1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [3,2,4,6,5,1,7] => [1,3,4,6,2,5,7] => [1,5,6,2,3,4,7] => ? = 7 - 2
[1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [3,2,4,6,7,5,1] => [1,3,4,6,5,7,2] => [1,7,2,3,4,6,5] => ? = 6 - 2
[1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [3,2,5,6,4,1,7] => [1,3,5,4,6,2,7] => [1,6,2,3,5,4,7] => ? = 6 - 2
[1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [3,2,5,6,4,7,1] => [1,3,5,4,6,7,2] => [1,7,2,3,5,4,6] => ? = 6 - 2
[1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [3,2,5,7,6,4,1] => [1,3,5,6,4,7,2] => [1,7,2,3,6,4,5] => ? = 6 - 2
[1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [3,2,6,5,7,4,1] => [1,3,6,4,5,7,2] => [1,7,2,3,5,6,4] => ? = 6 - 2
[1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [3,2,6,7,5,4,1] => [1,3,6,4,7,2,5] => [1,5,7,2,3,6,4] => ? = 6 - 2
[1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [3,2,7,6,5,4,1] => [1,3,7,2,4,6,5] => [1,4,6,5,7,2,3] => ? = 6 - 2
[1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [3,4,6,7,5,2,1] => [1,3,6,2,4,7,5] => [1,4,7,5,6,2,3] => ? = 6 - 2
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [3,4,7,6,5,2,1] => [1,3,7,2,4,6,5] => [1,4,6,5,7,2,3] => ? = 6 - 2
[1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [3,5,4,6,2,1,7] => [1,3,4,6,2,5,7] => [1,5,6,2,3,4,7] => ? = 7 - 2
[1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [3,5,4,6,7,2,1] => [1,3,4,6,2,5,7] => [1,5,6,2,3,4,7] => ? = 7 - 2
[1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,4,2,1,7] => [1,3,6,2,5,4,7] => [1,5,4,6,2,3,7] => ? = 6 - 2
[1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [3,5,6,4,2,7,1] => [1,3,6,7,2,5,4] => [1,5,4,7,2,3,6] => ? = 6 - 2
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [3,5,6,4,7,2,1] => [1,3,6,2,5,7,4] => [1,7,4,5,6,2,3] => ? = 6 - 2
[1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [3,5,6,7,4,2,1] => [1,3,6,2,5,4,7] => [1,5,4,6,2,3,7] => ? = 6 - 2
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [3,5,7,6,4,2,1] => [1,3,7,2,5,4,6] => [1,5,4,6,7,2,3] => ? = 6 - 2
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [3,6,5,4,2,1,7] => [1,3,5,2,6,4,7] => [1,6,4,5,2,3,7] => ? = 6 - 2
[1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [3,6,5,4,2,7,1] => [1,3,5,2,6,7,4] => [1,7,4,5,2,3,6] => ? = 6 - 2
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [3,6,5,4,7,2,1] => [1,3,5,7,2,6,4] => [1,6,4,7,2,3,5] => ? = 6 - 2
[1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [3,6,5,7,4,2,1] => [1,3,5,4,7,2,6] => [1,6,7,2,3,5,4] => ? = 6 - 2
[1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [3,6,7,5,4,2,1] => [1,3,7,2,6,4,5] => [1,5,6,4,7,2,3] => ? = 6 - 2
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [3,7,6,5,4,2,1] => [1,3,6,2,7,4,5] => [1,5,7,4,6,2,3] => ? = 6 - 2
[1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [4,5,3,2,1,6,7] => [1,4,2,5,3,6,7] => [1,5,3,4,2,6,7] => ? = 6 - 2
[1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [4,5,3,2,1,7,6] => [1,4,2,5,3,6,7] => [1,5,3,4,2,6,7] => ? = 6 - 2
[1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [4,5,3,2,6,1,7] => [1,4,2,5,6,3,7] => [1,6,3,4,2,5,7] => ? = 6 - 2
[1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [4,5,3,2,6,7,1] => [1,4,2,5,6,7,3] => [1,7,3,4,2,5,6] => ? = 6 - 2
[1,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> [4,5,3,2,7,6,1] => [1,4,2,5,7,3,6] => [1,6,7,3,4,2,5] => ? = 6 - 2
[1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [4,5,3,6,2,1,7] => [1,4,6,2,5,3,7] => [1,5,3,6,2,4,7] => ? = 6 - 2
[1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [4,5,3,6,2,7,1] => [1,4,6,7,2,5,3] => [1,5,3,7,2,4,6] => ? = 6 - 2
[1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [4,5,3,6,7,2,1] => [1,4,6,2,5,7,3] => [1,7,3,5,6,2,4] => ? = 6 - 2
[1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [4,5,3,7,6,2,1] => [1,4,7,2,5,6,3] => [1,6,3,5,7,2,4] => ? = 6 - 2
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [4,5,6,3,2,1,7] => [1,4,3,6,2,5,7] => [1,5,6,2,4,3,7] => ? = 6 - 2
[1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [4,5,6,3,2,7,1] => [1,4,3,6,7,2,5] => [1,5,7,2,4,3,6] => ? = 6 - 2
[1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [4,5,6,3,7,2,1] => [1,4,3,6,2,5,7] => [1,5,6,2,4,3,7] => ? = 6 - 2
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [1,4,7,2,5,3,6] => [1,5,3,6,7,2,4] => ? = 6 - 2
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [4,5,7,6,3,2,1] => [1,4,6,2,5,3,7] => [1,5,3,6,2,4,7] => ? = 6 - 2
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => [1,4,3,5,2,6,7] => [1,5,2,4,3,6,7] => ? = 6 - 2
[1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [4,6,5,3,2,7,1] => [1,4,3,5,2,6,7] => [1,5,2,4,3,6,7] => ? = 6 - 2
[1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [4,6,5,3,7,2,1] => [1,4,3,5,7,2,6] => [1,6,7,2,4,3,5] => ? = 6 - 2
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [4,6,5,7,3,2,1] => [1,4,7,2,6,3,5] => [1,5,6,3,7,2,4] => ? = 6 - 2
[1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [4,6,7,5,3,2,1] => [1,4,5,3,7,2,6] => [1,6,7,2,5,3,4] => ? = 6 - 2
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [4,7,6,5,3,2,1] => [1,4,5,3,6,2,7] => [1,6,2,5,3,4,7] => ? = 6 - 2
[1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [5,4,3,6,2,1,7] => [1,5,2,4,6,3,7] => [1,6,3,4,5,2,7] => ? = 6 - 2
[1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [5,4,3,6,2,7,1] => [1,5,2,4,6,7,3] => [1,7,3,4,5,2,6] => ? = 6 - 2
[1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => [1,5,7,2,4,6,3] => [1,6,3,4,7,2,5] => ? = 6 - 2
[1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,4,3,7,6,2,1] => [1,5,6,2,4,7,3] => [1,7,3,4,6,2,5] => ? = 6 - 2
Description
The number of ascents of a permutation.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00238: Permutations Clarke-Steingrimsson-ZengPermutations
St000702: Permutations ⟶ ℤResult quality: 28% values known / values provided: 28%distinct values known / distinct values provided: 46%
Values
[1,0]
=> [1] => [1] => [1] => ? = 2 - 1
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 2 = 3 - 1
[1,1,0,0]
=> [2,1] => [1,2] => [1,2] => 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 3 = 4 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => [1,2,3] => 3 = 4 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => [1,2,3] => 3 = 4 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => [1,2,3] => 3 = 4 - 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => [1,3,2] => 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => [1,2,4,3] => 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => [1,2,4,3] => 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => [1,3,2,4] => 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => [1,4,3,2] => 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,3,2,4] => [1,3,2,4] => 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => [1,4,2,3] => 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => [1,2,3,5,4] => 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => 4 = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => [1,2,5,4,3] => 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,2,4,3,5] => [1,2,4,3,5] => 4 = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => [1,2,5,3,4] => 4 = 5 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => [1,2,5,4,3] => 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [1,2,4,3,5] => [1,2,4,3,5] => 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => [1,2,5,3,4] => 4 = 5 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 4 = 5 - 1
[1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [3,2,4,5,1,6,7] => [1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => ? = 7 - 1
[1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [3,2,4,5,1,7,6] => [1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => ? = 7 - 1
[1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [3,2,4,5,6,1,7] => [1,3,4,5,6,2,7] => [1,6,3,4,5,2,7] => ? = 7 - 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,7,1] => [1,3,4,5,6,7,2] => [1,7,3,4,5,6,2] => ? = 7 - 1
[1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [3,2,4,5,7,6,1] => [1,3,4,5,7,2,6] => [1,7,3,4,5,2,6] => ? = 7 - 1
[1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [3,2,4,6,5,1,7] => [1,3,4,6,2,5,7] => [1,6,3,4,2,5,7] => ? = 7 - 1
[1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [3,2,4,6,5,7,1] => [1,3,4,6,7,2,5] => [1,7,3,4,2,6,5] => ? = 7 - 1
[1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [3,2,4,6,7,5,1] => [1,3,4,6,5,7,2] => [1,7,3,4,6,5,2] => ? = 6 - 1
[1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [3,2,4,7,6,5,1] => [1,3,4,7,2,5,6] => [1,7,3,4,2,5,6] => ? = 7 - 1
[1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [3,2,5,4,1,6,7] => [1,3,5,2,4,6,7] => [1,5,3,2,4,6,7] => ? = 7 - 1
[1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [3,2,5,4,1,7,6] => [1,3,5,2,4,6,7] => [1,5,3,2,4,6,7] => ? = 7 - 1
[1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [3,2,5,4,6,1,7] => [1,3,5,6,2,4,7] => [1,6,3,2,5,4,7] => ? = 7 - 1
[1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [3,2,5,4,6,7,1] => [1,3,5,6,7,2,4] => [1,7,3,2,5,6,4] => ? = 7 - 1
[1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,7,6,1] => [1,3,5,7,2,4,6] => [1,7,3,2,5,4,6] => ? = 7 - 1
[1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [3,2,5,6,4,1,7] => [1,3,5,4,6,2,7] => [1,6,3,5,4,2,7] => ? = 6 - 1
[1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [3,2,5,6,4,7,1] => [1,3,5,4,6,7,2] => [1,7,3,5,4,6,2] => ? = 6 - 1
[1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [3,2,5,6,7,4,1] => [1,3,5,7,2,4,6] => [1,7,3,2,5,4,6] => ? = 7 - 1
[1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [3,2,5,7,6,4,1] => [1,3,5,6,4,7,2] => [1,7,3,6,5,4,2] => ? = 6 - 1
[1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [3,2,6,5,4,1,7] => [1,3,6,2,4,5,7] => [1,6,3,2,4,5,7] => ? = 7 - 1
[1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [3,2,6,5,4,7,1] => [1,3,6,7,2,4,5] => [1,7,3,2,4,6,5] => ? = 7 - 1
[1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [3,2,6,5,7,4,1] => [1,3,6,4,5,7,2] => [1,7,3,6,4,5,2] => ? = 6 - 1
[1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [3,2,6,7,5,4,1] => [1,3,6,4,7,2,5] => [1,7,3,6,4,2,5] => ? = 6 - 1
[1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [3,2,7,6,5,4,1] => [1,3,7,2,4,6,5] => [1,6,3,2,7,4,5] => ? = 6 - 1
[1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [3,4,5,2,1,6,7] => [1,3,5,2,4,6,7] => [1,5,3,2,4,6,7] => ? = 7 - 1
[1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [3,4,5,2,1,7,6] => [1,3,5,2,4,6,7] => [1,5,3,2,4,6,7] => ? = 7 - 1
[1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [3,4,5,2,6,1,7] => [1,3,5,6,2,4,7] => [1,6,3,2,5,4,7] => ? = 7 - 1
[1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [3,4,5,2,6,7,1] => [1,3,5,6,7,2,4] => [1,7,3,2,5,6,4] => ? = 7 - 1
[1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [3,4,5,2,7,6,1] => [1,3,5,7,2,4,6] => [1,7,3,2,5,4,6] => ? = 7 - 1
[1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,6,2,1,7] => [1,3,5,2,4,6,7] => [1,5,3,2,4,6,7] => ? = 7 - 1
[1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,6,2,7,1] => [1,3,5,2,4,6,7] => [1,5,3,2,4,6,7] => ? = 7 - 1
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,7,2,1] => [1,3,5,7,2,4,6] => [1,7,3,2,5,4,6] => ? = 7 - 1
[1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [3,4,5,7,6,2,1] => [1,3,5,6,2,4,7] => [1,6,3,2,5,4,7] => ? = 7 - 1
[1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [3,4,6,5,2,1,7] => [1,3,6,2,4,5,7] => [1,6,3,2,4,5,7] => ? = 7 - 1
[1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [3,4,6,5,2,7,1] => [1,3,6,7,2,4,5] => [1,7,3,2,4,6,5] => ? = 7 - 1
[1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [3,4,6,5,7,2,1] => [1,3,6,2,4,5,7] => [1,6,3,2,4,5,7] => ? = 7 - 1
[1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [3,4,6,7,5,2,1] => [1,3,6,2,4,7,5] => [1,7,3,2,6,4,5] => ? = 6 - 1
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [3,4,7,6,5,2,1] => [1,3,7,2,4,6,5] => [1,6,3,2,7,4,5] => ? = 6 - 1
[1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [3,5,4,6,2,1,7] => [1,3,4,6,2,5,7] => [1,6,3,4,2,5,7] => ? = 7 - 1
[1,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [3,5,4,6,2,7,1] => [1,3,4,6,7,2,5] => [1,7,3,4,2,6,5] => ? = 7 - 1
[1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [3,5,4,6,7,2,1] => [1,3,4,6,2,5,7] => [1,6,3,4,2,5,7] => ? = 7 - 1
[1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [3,5,4,7,6,2,1] => [1,3,4,7,2,5,6] => [1,7,3,4,2,5,6] => ? = 7 - 1
[1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,4,2,1,7] => [1,3,6,2,5,4,7] => [1,5,3,6,2,4,7] => ? = 6 - 1
[1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [3,5,6,4,2,7,1] => [1,3,6,7,2,5,4] => [1,5,3,7,2,6,4] => ? = 6 - 1
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [3,5,6,4,7,2,1] => [1,3,6,2,5,7,4] => [1,7,3,6,2,5,4] => ? = 6 - 1
[1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [3,5,6,7,4,2,1] => [1,3,6,2,5,4,7] => [1,5,3,6,2,4,7] => ? = 6 - 1
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [3,5,7,6,4,2,1] => [1,3,7,2,5,4,6] => [1,5,3,7,2,4,6] => ? = 6 - 1
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [3,6,5,4,2,1,7] => [1,3,5,2,6,4,7] => [1,6,3,5,2,4,7] => ? = 6 - 1
[1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [3,6,5,4,2,7,1] => [1,3,5,2,6,7,4] => [1,7,3,5,2,6,4] => ? = 6 - 1
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [3,6,5,4,7,2,1] => [1,3,5,7,2,6,4] => [1,6,3,7,5,2,4] => ? = 6 - 1
Description
The number of weak deficiencies of a permutation. This is defined as $$\operatorname{wdec}(\sigma)=\#\{i:\sigma(i) \leq i\}.$$ The number of weak exceedances is [[St000213]], the number of deficiencies is [[St000703]].
Matching statistic: St001330
Mp00232: Dyck paths parallelogram posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St001330: Graphs ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 62%
Values
[1,0]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
[1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
[1,1,0,0]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 - 1
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 1
[1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 1
[1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 1
[1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 1
[1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
[1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 - 1
[1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 - 1
[1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 - 1
[1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 - 1
[1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(4,7),(5,6)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000213
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00086: Permutations first fundamental transformationPermutations
St000213: Permutations ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 46%
Values
[1,0]
=> [1] => [1] => [1] => 1 = 2 - 1
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 2 = 3 - 1
[1,1,0,0]
=> [2,1] => [1,2] => [1,2] => 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 3 = 4 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => [1,2,3] => 3 = 4 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => [1,2,3] => 3 = 4 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => [1,2,3] => 3 = 4 - 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => [1,3,2] => 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => [1,2,4,3] => 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => [1,2,4,3] => 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => [1,3,2,4] => 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => [1,4,3,2] => 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,3,2,4] => [1,3,2,4] => 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => [1,3,4,2] => 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => [1,2,3,5,4] => 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => 4 = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => [1,2,5,4,3] => 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,2,4,3,5] => [1,2,4,3,5] => 4 = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => [1,2,4,5,3] => 4 = 5 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 5 = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => [1,2,5,4,3] => 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [1,2,4,3,5] => [1,2,4,3,5] => 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => [1,2,4,5,3] => 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => [1,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => ? = 7 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => [1,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => ? = 7 - 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => [1,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => ? = 7 - 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => [1,2,3,4,6,7,5] => [1,2,3,4,7,6,5] => ? = 7 - 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,5,4] => [1,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => ? = 7 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => [1,2,3,4,7,5,6] => [1,2,3,4,6,7,5] => ? = 7 - 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [1,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => ? = 7 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => [1,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => ? = 7 - 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [1,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => ? = 7 - 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => [1,2,3,4,6,7,5] => [1,2,3,4,7,6,5] => ? = 7 - 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,5,3] => [1,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => ? = 7 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => [1,2,3,4,7,5,6] => [1,2,3,4,6,7,5] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => [1,2,3,5,6,4,7] => [1,2,3,6,5,4,7] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => [1,2,3,5,6,7,4] => [1,2,3,7,5,6,4] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => [1,2,3,5,7,4,6] => [1,2,3,6,5,7,4] => ? = 7 - 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,4,3,7] => [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => ? = 7 - 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,4,7,3] => [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => ? = 7 - 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,4,3] => [1,2,3,5,7,4,6] => [1,2,3,6,5,7,4] => ? = 7 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,6,4,3] => [1,2,3,5,6,4,7] => [1,2,3,6,5,4,7] => ? = 7 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [1,2,3,6,4,5,7] => [1,2,3,5,6,4,7] => ? = 7 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => [1,2,3,6,7,4,5] => [1,2,3,5,7,6,4] => ? = 7 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,5,7,4,3] => [1,2,3,6,4,5,7] => [1,2,3,5,6,4,7] => ? = 7 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,5,4,3] => [1,2,3,6,4,7,5] => [1,2,3,6,7,4,5] => ? = 6 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => [1,2,3,7,4,6,5] => [1,2,3,6,7,5,4] => ? = 6 - 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [1,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => ? = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 8 - 1
Description
The number of weak exceedances (also weak excedences) of a permutation. This is defined as $$\operatorname{wex}(\sigma)=\#\{i:\sigma(i) \geq i\}.$$ The number of weak exceedances is given by the number of exceedances (see [[St000155]]) plus the number of fixed points (see [[St000022]]) of $\sigma$.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00064: Permutations reversePermutations
St000325: Permutations ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 46%
Values
[1,0]
=> [1] => [1] => [1] => 1 = 2 - 1
[1,0,1,0]
=> [1,2] => [1,2] => [2,1] => 2 = 3 - 1
[1,1,0,0]
=> [2,1] => [1,2] => [2,1] => 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [3,2,1] => 3 = 4 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => [3,2,1] => 3 = 4 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => [3,2,1] => 3 = 4 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => [3,2,1] => 3 = 4 - 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => [2,3,1] => 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => [3,4,2,1] => 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => [3,4,2,1] => 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => [4,2,3,1] => 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => [2,4,3,1] => 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,3,2,4] => [4,2,3,1] => 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => [3,2,4,1] => 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => [4,5,3,2,1] => 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => [4,5,3,2,1] => 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => [5,3,4,2,1] => 4 = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => [3,5,4,2,1] => 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,2,4,3,5] => [5,3,4,2,1] => 4 = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => [4,3,5,2,1] => 4 = 5 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => [4,5,3,2,1] => 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => [4,5,3,2,1] => 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,2,4,3,5] => [5,3,4,2,1] => 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => [3,5,4,2,1] => 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [1,2,4,3,5] => [5,3,4,2,1] => 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => [4,3,5,2,1] => 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => [1,2,3,4,6,7,5] => [5,7,6,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,5,4] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => [1,2,3,4,7,5,6] => [6,5,7,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => [1,2,3,4,6,7,5] => [5,7,6,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,5,3] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => [1,2,3,4,7,5,6] => [6,5,7,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => [1,2,3,5,6,4,7] => [7,4,6,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => [1,2,3,5,6,7,4] => [4,7,6,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => [1,2,3,5,7,4,6] => [6,4,7,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,4,3,7] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,4,7,3] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,4,3] => [1,2,3,5,7,4,6] => [6,4,7,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,6,4,3] => [1,2,3,5,6,4,7] => [7,4,6,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [1,2,3,6,4,5,7] => [7,5,4,6,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => [1,2,3,6,7,4,5] => [5,4,7,6,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,5,7,4,3] => [1,2,3,6,4,5,7] => [7,5,4,6,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,5,4,3] => [1,2,3,6,4,7,5] => [5,7,4,6,3,2,1] => ? = 6 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => [1,2,3,7,4,6,5] => [5,6,4,7,3,2,1] => ? = 6 - 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
Description
The width of the tree associated to a permutation. A permutation can be mapped to a rooted tree with vertices $\{0,1,2,\ldots,n\}$ and root $0$ in the following way. Entries of the permutations are inserted one after the other, each child is larger than its parent and the children are in strict order from left to right. Details of the construction are found in [1]. The width of the tree is given by the number of leaves of this tree. Note that, due to the construction of this tree, the width of the tree is always one more than the number of descents [[St000021]]. This also matches the number of runs in a permutation [[St000470]]. See also [[St000308]] for the height of this tree.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00064: Permutations reversePermutations
St000470: Permutations ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 46%
Values
[1,0]
=> [1] => [1] => [1] => 1 = 2 - 1
[1,0,1,0]
=> [1,2] => [1,2] => [2,1] => 2 = 3 - 1
[1,1,0,0]
=> [2,1] => [1,2] => [2,1] => 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [3,2,1] => 3 = 4 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => [3,2,1] => 3 = 4 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => [3,2,1] => 3 = 4 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => [3,2,1] => 3 = 4 - 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => [2,3,1] => 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => [3,4,2,1] => 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => [4,3,2,1] => 4 = 5 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => [3,4,2,1] => 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => [4,2,3,1] => 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => [2,4,3,1] => 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,3,2,4] => [4,2,3,1] => 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => [3,2,4,1] => 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => [4,5,3,2,1] => 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => [4,5,3,2,1] => 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => [5,3,4,2,1] => 4 = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => [3,5,4,2,1] => 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,2,4,3,5] => [5,3,4,2,1] => 4 = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => [4,3,5,2,1] => 4 = 5 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => [4,5,3,2,1] => 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => [5,4,3,2,1] => 5 = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => [4,5,3,2,1] => 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,2,4,3,5] => [5,3,4,2,1] => 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => [3,5,4,2,1] => 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [1,2,4,3,5] => [5,3,4,2,1] => 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => [4,3,5,2,1] => 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => [1,2,3,4,6,7,5] => [5,7,6,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,5,4] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => [1,2,3,4,7,5,6] => [6,5,7,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => [1,2,3,4,6,7,5] => [5,7,6,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,5,3] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => [1,2,3,4,7,5,6] => [6,5,7,4,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => [1,2,3,5,6,4,7] => [7,4,6,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => [1,2,3,5,6,7,4] => [4,7,6,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => [1,2,3,5,7,4,6] => [6,4,7,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,4,3,7] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,4,7,3] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,4,3] => [1,2,3,5,7,4,6] => [6,4,7,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,6,4,3] => [1,2,3,5,6,4,7] => [7,4,6,5,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [1,2,3,6,4,5,7] => [7,5,4,6,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => [1,2,3,6,7,4,5] => [5,4,7,6,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,5,7,4,3] => [1,2,3,6,4,5,7] => [7,5,4,6,3,2,1] => ? = 7 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,5,4,3] => [1,2,3,6,4,7,5] => [5,7,4,6,3,2,1] => ? = 6 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => [1,2,3,7,4,6,5] => [5,6,4,7,3,2,1] => ? = 6 - 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 1
Description
The number of runs in a permutation. A run in a permutation is an inclusion-wise maximal increasing substring, i.e., a contiguous subsequence. This is the same as the number of descents plus 1.
Matching statistic: St000083
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00061: Permutations to increasing treeBinary trees
St000083: Binary trees ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 38%
Values
[1,0]
=> [1] => [1] => [.,.]
=> ? = 2 - 2
[1,0,1,0]
=> [1,2] => [1,2] => [.,[.,.]]
=> 1 = 3 - 2
[1,1,0,0]
=> [2,1] => [1,2] => [.,[.,.]]
=> 1 = 3 - 2
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [.,[.,[.,.]]]
=> 2 = 4 - 2
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => [.,[.,[.,.]]]
=> 2 = 4 - 2
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => [.,[.,[.,.]]]
=> 2 = 4 - 2
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => [.,[.,[.,.]]]
=> 2 = 4 - 2
[1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => [.,[[.,.],.]]
=> 1 = 3 - 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 3 = 5 - 2
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 3 = 5 - 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 3 = 5 - 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 3 = 5 - 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> 2 = 4 - 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 3 = 5 - 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 3 = 5 - 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 3 = 5 - 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 3 = 5 - 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> 2 = 4 - 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> 2 = 4 - 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => [.,[[.,[.,.]],.]]
=> 2 = 4 - 2
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> 2 = 4 - 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => [.,[[.,.],[.,.]]]
=> 2 = 4 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 3 = 5 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 3 = 5 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> 3 = 5 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> 3 = 5 - 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> 3 = 5 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> 3 = 5 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 3 = 5 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 4 = 6 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 3 = 5 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> 3 = 5 - 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> 3 = 5 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> 3 = 5 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> 3 = 5 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> 3 = 5 - 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => [1,2,3,4,6,5,7] => [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => [1,2,3,4,6,7,5] => [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 7 - 2
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,5,4] => [1,2,3,4,6,5,7] => [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => [1,2,3,4,7,5,6] => [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [1,2,3,4,6,5,7] => [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => [1,2,3,4,6,7,5] => [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,5,3] => [1,2,3,4,6,5,7] => [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => [1,2,3,4,7,5,6] => [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => [1,2,3,5,4,6,7] => [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => [1,2,3,5,4,6,7] => [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => [1,2,3,5,6,4,7] => [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => [1,2,3,5,6,7,4] => [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => [1,2,3,5,7,4,6] => [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,4,3,7] => [1,2,3,5,4,6,7] => [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,4,7,3] => [1,2,3,5,4,6,7] => [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,4,3] => [1,2,3,5,7,4,6] => [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,6,4,3] => [1,2,3,5,6,4,7] => [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [1,2,3,6,4,5,7] => [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => [1,2,3,6,7,4,5] => [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,5,7,4,3] => [1,2,3,6,4,5,7] => [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> ? = 7 - 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,5,4,3] => [1,2,3,6,4,7,5] => [.,[.,[.,[[.,.],[[.,.],.]]]]]
=> ? = 6 - 2
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => [1,2,3,7,4,6,5] => [.,[.,[.,[[.,.],[[.,.],.]]]]]
=> ? = 6 - 2
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ? = 7 - 2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 8 - 2
Description
The number of left oriented leafs of a binary tree except the first one. In other other words, this is the sum of canopee vector of the tree. The canopee of a non empty binary tree T with n internal nodes is the list l of 0 and 1 of length n-1 obtained by going along the leaves of T from left to right except the two extremal ones, writing 0 if the leaf is a right leaf and 1 if the leaf is a left leaf. This is also the number of nodes having a right child. Indeed each of said right children will give exactly one left oriented leaf.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00064: Permutations reversePermutations
St000619: Permutations ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 38%
Values
[1,0]
=> [1] => [1] => [1] => ? = 2 - 2
[1,0,1,0]
=> [1,2] => [1,2] => [2,1] => 1 = 3 - 2
[1,1,0,0]
=> [2,1] => [1,2] => [2,1] => 1 = 3 - 2
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [3,2,1] => 2 = 4 - 2
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => [3,2,1] => 2 = 4 - 2
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => [3,2,1] => 2 = 4 - 2
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => [3,2,1] => 2 = 4 - 2
[1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => [2,3,1] => 1 = 3 - 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 3 = 5 - 2
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => [4,3,2,1] => 3 = 5 - 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => [4,3,2,1] => 3 = 5 - 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => [4,3,2,1] => 3 = 5 - 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => [3,4,2,1] => 2 = 4 - 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => [4,3,2,1] => 3 = 5 - 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => [4,3,2,1] => 3 = 5 - 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => [4,3,2,1] => 3 = 5 - 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => [4,3,2,1] => 3 = 5 - 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => [3,4,2,1] => 2 = 4 - 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => [4,2,3,1] => 2 = 4 - 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => [2,4,3,1] => 2 = 4 - 2
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,3,2,4] => [4,2,3,1] => 2 = 4 - 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => [3,2,4,1] => 2 = 4 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => [4,5,3,2,1] => 3 = 5 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => [4,5,3,2,1] => 3 = 5 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => [5,3,4,2,1] => 3 = 5 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => [3,5,4,2,1] => 3 = 5 - 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,2,4,3,5] => [5,3,4,2,1] => 3 = 5 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => [4,3,5,2,1] => 3 = 5 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => [4,5,3,2,1] => 3 = 5 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 6 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => [4,5,3,2,1] => 3 = 5 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,2,4,3,5] => [5,3,4,2,1] => 3 = 5 - 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => [3,5,4,2,1] => 3 = 5 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [1,2,4,3,5] => [5,3,4,2,1] => 3 = 5 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => [4,3,5,2,1] => 3 = 5 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [1,3,2,4,5] => [5,4,2,3,1] => 3 = 5 - 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 7 - 2
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 7 - 2
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 7 - 2
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => [1,2,3,4,6,7,5] => [5,7,6,4,3,2,1] => ? = 7 - 2
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,5,4] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 7 - 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => [1,2,3,4,7,5,6] => [6,5,7,4,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => [1,2,3,4,6,7,5] => [5,7,6,4,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,5,3] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => [1,2,3,4,7,5,6] => [6,5,7,4,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => [1,2,3,5,6,4,7] => [7,4,6,5,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => [1,2,3,5,6,7,4] => [4,7,6,5,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => [1,2,3,5,7,4,6] => [6,4,7,5,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,4,3,7] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,4,7,3] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,4,3] => [1,2,3,5,7,4,6] => [6,4,7,5,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,6,4,3] => [1,2,3,5,6,4,7] => [7,4,6,5,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [1,2,3,6,4,5,7] => [7,5,4,6,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => [1,2,3,6,7,4,5] => [5,4,7,6,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,5,7,4,3] => [1,2,3,6,4,5,7] => [7,5,4,6,3,2,1] => ? = 7 - 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,5,4,3] => [1,2,3,6,4,7,5] => [5,7,4,6,3,2,1] => ? = 6 - 2
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => [1,2,3,7,4,6,5] => [5,6,4,7,3,2,1] => ? = 6 - 2
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 7 - 2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 8 - 2
Description
The number of cyclic descents of a permutation. For a permutation $\pi$ of $\{1,\ldots,n\}$, this is given by the number of indices $1 \leq i \leq n$ such that $\pi(i) > \pi(i+1)$ where we set $\pi(n+1) = \pi(1)$.
The following 12 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000454The largest eigenvalue of a graph if it is integral. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001626The number of maximal proper sublattices of a lattice. St001960The number of descents of a permutation minus one if its first entry is not one. St001863The number of weak excedances of a signed permutation. St000717The number of ordinal summands of a poset. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St001668The number of points of the poset minus the width of the poset. St001935The number of ascents in a parking function. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.