Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00018: Binary trees left border symmetryBinary trees
St000398: Binary trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [.,.]
=> 0
[.,[.,.]]
=> [.,[.,.]]
=> 1
[[.,.],.]
=> [[.,.],.]
=> 1
[.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> 3
[.,[[.,.],.]]
=> [.,[[.,.],.]]
=> 3
[[.,.],[.,.]]
=> [[.,[.,.]],.]
=> 3
[[.,[.,.]],.]
=> [[.,.],[.,.]]
=> 2
[[[.,.],.],.]
=> [[[.,.],.],.]
=> 3
[.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> 6
[.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> 6
[.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> 6
[.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> 5
[.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> 6
[[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> 6
[[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> 6
[[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> 4
[[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> 6
[[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> 4
[[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> 4
[[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> 5
[[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> 4
[[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> 6
[.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> 10
[.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> 10
[.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> 10
[.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> 9
[.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> 10
[.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> 10
[.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> 10
[.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> 8
[.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> 10
[.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> 8
[.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> 8
[.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> 9
[.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> 8
[.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> 10
[[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> 10
[[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> 10
[[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> 10
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> 9
[[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> 10
[[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> 7
[[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> 7
[[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> 10
[[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> 10
[[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> 6
[[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> 6
[[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> 8
[[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> 7
[[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> 10
Description
The sum of the depths of the vertices (or total internal path length) of a binary tree. The depth of a vertex is the number of edges to the tree's root, see Section 2.3.4.5 of [1] and [3]. This statistic is the very first entry of the OEIS, see [2]. Observe that there the term '''height''' is used instead.
Matching statistic: St000161
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00072: Permutations binary search tree: left to rightBinary trees
St000161: Binary trees ⟶ ℤResult quality: 17% values known / values provided: 17%distinct values known / distinct values provided: 59%
Values
[.,.]
=> [1] => [1] => [.,.]
=> 0
[.,[.,.]]
=> [2,1] => [1,2] => [.,[.,.]]
=> 1
[[.,.],.]
=> [1,2] => [1,2] => [.,[.,.]]
=> 1
[.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => [.,[.,[.,.]]]
=> 3
[.,[[.,.],.]]
=> [2,3,1] => [1,2,3] => [.,[.,[.,.]]]
=> 3
[[.,.],[.,.]]
=> [3,1,2] => [1,2,3] => [.,[.,[.,.]]]
=> 3
[[.,[.,.]],.]
=> [2,1,3] => [1,3,2] => [.,[[.,.],.]]
=> 2
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [.,[.,[.,.]]]
=> 3
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 6
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 6
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 6
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> 5
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 6
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 6
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 6
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> 4
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 6
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,4,2,3] => [.,[[.,[.,.]],.]]
=> 4
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,4,2,3] => [.,[[.,[.,.]],.]]
=> 4
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> 5
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3,4,2] => [.,[[.,.],[.,.]]]
=> 4
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 6
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 10
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 10
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 10
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 9
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 10
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 10
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 10
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> 8
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 10
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> 8
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> 8
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 9
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> 8
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 10
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 10
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 10
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 10
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 9
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 10
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> 7
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> 7
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 10
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 10
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> 6
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> 6
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> 8
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> 7
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 10
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [7,5,6,4,3,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ? = 20
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [7,6,4,5,3,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [6,7,4,5,3,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [7,5,4,6,3,2,1] => [1,2,3,4,6,5,7] => [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ? = 19
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [7,4,5,6,3,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => [1,2,3,4,7,5,6] => [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 19
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => [1,2,3,4,7,5,6] => [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 19
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [6,4,5,7,3,2,1] => [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ? = 20
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => [1,2,3,4,6,7,5] => [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ? = 19
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [7,6,5,3,4,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [6,7,5,3,4,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [7,5,6,3,4,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [6,5,7,3,4,2,1] => [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ? = 20
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [5,6,7,3,4,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [7,6,4,3,5,2,1] => [1,2,3,5,4,6,7] => [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> ? = 18
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [6,7,4,3,5,2,1] => [1,2,3,5,4,6,7] => [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> ? = 18
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [7,6,3,4,5,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [6,7,3,4,5,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [7,5,4,3,6,2,1] => [1,2,3,6,4,5,7] => [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> ? = 17
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [7,4,5,3,6,2,1] => [1,2,3,6,4,5,7] => [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> ? = 17
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [7,5,3,4,6,2,1] => [1,2,3,4,6,5,7] => [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ? = 19
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [7,4,3,5,6,2,1] => [1,2,3,5,6,4,7] => [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> ? = 18
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [7,3,4,5,6,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => [1,2,3,7,4,5,6] => [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> ? = 18
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [5,6,4,3,7,2,1] => [1,2,3,7,4,5,6] => [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> ? = 18
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [6,4,5,3,7,2,1] => [1,2,3,7,4,5,6] => [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> ? = 18
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [5,4,6,3,7,2,1] => [1,2,3,7,4,6,5] => [.,[.,[.,[[.,[[.,.],.]],.]]]]
=> ? = 17
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [4,5,6,3,7,2,1] => [1,2,3,7,4,5,6] => [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> ? = 18
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [6,5,3,4,7,2,1] => [1,2,3,4,7,5,6] => [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 19
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [5,6,3,4,7,2,1] => [1,2,3,4,7,5,6] => [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 19
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [6,4,3,5,7,2,1] => [1,2,3,5,7,4,6] => [.,[.,[.,[[.,.],[[.,.],.]]]]]
=> ? = 17
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [6,3,4,5,7,2,1] => [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ? = 20
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [5,4,3,6,7,2,1] => [1,2,3,6,7,4,5] => [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> ? = 17
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> [4,5,3,6,7,2,1] => [1,2,3,6,7,4,5] => [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> ? = 17
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> [5,3,4,6,7,2,1] => [1,2,3,4,6,7,5] => [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ? = 19
[.,[.,[[[[.,[.,.]],.],.],.]]]
=> [4,3,5,6,7,2,1] => [1,2,3,5,6,7,4] => [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> ? = 18
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [7,6,5,4,2,3,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [6,7,5,4,2,3,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [7,5,6,4,2,3,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [6,5,7,4,2,3,1] => [1,2,3,4,5,7,6] => [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ? = 20
[.,[[.,.],[.,[[[.,.],.],.]]]]
=> [5,6,7,4,2,3,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [7,6,4,5,2,3,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[[.,.],[[.,.],[[.,.],.]]]]
=> [6,7,4,5,2,3,1] => [1,2,3,4,5,6,7] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 21
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [7,5,4,6,2,3,1] => [1,2,3,4,6,5,7] => [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ? = 19
Description
The sum of the sizes of the right subtrees of a binary tree. This statistic corresponds to [[St000012]] under the Tamari Dyck path-binary tree bijection, and to [[St000018]] of the $312$-avoiding permutation corresponding to the binary tree. It is also the sum of all heights $j$ of the coordinates $(i,j)$ of the Dyck path corresponding to the binary tree.